Weakly Supervised Graph Neural Networks for Scalable 3D Phase Segmentation in Molecular Dynamics Simulations

Abin Shakya^{©a} and Bijaya B. Karki^{©b}

School of Electrical Engineering and Computer Science, Louisiana State University, U.S.A.

Keywords: GNN, Phase Segmentation.

Abstract:

Accurate phase identification in large-scale molecular dynamics simulation remains a significant challenge due to ambiguous boundaries between compositionally distinct regions and the lack of ground truth labels. While unsupervised methods can perform phase segmentation for small systems through structure-aware segmentation pipelines, their computational cost becomes prohibitive for large-scale analysis. We present a weakly-supervised machine learning pipeline that trains Graph Neural Networks (GNNs) to enable scalable phase segmentation in 3D atomistic systems. Using a physically grounded unsupervised method, we generate weak labels for small FeMgSiON systems that exhibit Fe-rich (metallic) and Fe-poor (silicate) phase separation. These labels guide GNNs to learn physically meaningful representations of atomic neighborhoods. Once trained, the GNNs act as an efficient parametric model, enabling direct segmentation of arbitrarily large atomistic systems eliminating the computational overhead of the initial unsupervised pipeline. By learning from thousands of weakly labeled snapshots, the model discerns latent structural patterns, enhancing both prediction accuracy and generalization to unseen data. This methodology enables efficient, accurate, and physically consistent phase segmentation in large-scale molecular dynamics, unlocking new possibilities for scalable analysis in material simulations.

1 INTRODUCTION

Identifying distinct physical or chemical phases is a fundamental problem in science and engineering. It enables analysis of phase stability in materials, core-mantle differentiation in geoscience, and biomolecular assemblies such as protein condensates and lipid domains in biology. Across these domains, accurate phase identification is essential for quantifying composition and tracking interfaces. In molecular dynamics (MD) simulations, this challenge is often addressed through semantic segmentation, which assigns per-element labels to spatial data to identify physically meaningful regions (Long et al., 2015; Ronneberger et al., 2015; Chen et al., 2017; Oi et al., 2017). This approach is especially important for analyzing complex phenomena such as phase separation, chemical mixing and interfacial behavior. However, automated segmentation remains a significant challenge due to the absence of ground truth labels, the irregular nature of atomic point clouds, and the pres-

^a https://orcid.org/0009-0000-3176-5629

b https://orcid.org/0000-0003-2428-0206

ence of nonlinear, diffuse boundaries between phases.

We focus on phase separation in molecular dynamics simulations of FeMgSiON, a chemically complex system representative of bulk earth—under pressure-temperature conditions of 29 GPa and 3000 K, and 35 GPa and 4000 K (McDonough and Sun, 1995). These simulations produce a series of configurations, each capturing the 3D positions of all atoms within the simulation cell at a given time step. As the system evolves, it spontaneously separates into chemically distinct regions-most notably a Fe-rich metallic phase and a Fe-poor silicate phase (Shakya et al., 2024). Although the separation is visually apparent, automating the segmentation of atoms into meaningful phases is non-trivial due to atomic-scale noise and overlapping compositional transitions. Moreover, precise boundary identification is essential for accurately evaluating the elemental composition of each phase, as even minor misclassifications near interfaces can significantly skew weight percent estimates.

To address this, we propose a hybrid framework that combines physics-informed unsupervised analysis with graph-based learning. Our key insight is that small systems can be segmented using physically motivated heuristics, and the resulting weak labels can then be used to train graph-based models capable of generalizing to much larger systems. This approach bridges the gap between accurate but computationally expensive unsupervised methods (Lopez et al., 2019) and scalable predictive models suitable for large-scale simulations. Our implementation details can be found here. ¹

Our method proceeds in two stages. First, we generate weak labels for small systems by computing a smoothed density field of Fe atoms using kernel density estimation (KDE), followed by K-Means clustering and morphological post-processing (Silverman, 1986; MacQueen, 1967). This unsupervised pipeline produces per-atom labels for Fe-rich, Fe-poor, and interfacial boundary regions. Second, we train a message-passing graph neural network on these weak labels to learn a mapping from local atomic environments to phase labels. Atomic snapshots are represented as graphs, with edges defined by spatial proximity under periodic boundary conditions. We experiment with two distinct GNN architectures—Graph Convolutional Networks (GCN) and Graph Attention Networks (GAT)—to evaluate their compatibility with different message-passing schemes. (Scarselli et al., 2009; Kipf and Welling, 2017; Hamilton et al., 2017; Veličković et al., 2018).

Once trained, the GNN enables fast and accurate segmentation of large-scale atomic systems that would be prohibitively expensive to label using the original unsupervised pipeline. For example, the GNN achieves over two orders of magnitude speedup on 33,280-atom snapshots compared to the KDE-based pipeline, while maintaining high fidelity to the reference labels, especially near phase boundaries. Moreover, the learned model generalizes to simulations of arbitrary scale without retraining, overcoming a fundamental limitation of unsupervised approaches.

Beyond this specific application, our work demonstrates how physically grounded weak supervision can be used to overcome the dual challenges of label scarcity and computational scalability in scientific machine learning. While our study targets a specific problem, the broader strategy—deriving weak labels from small, well-characterized systems and training parametric models to generalize segmentation—applies to a wide range of 3D scientific data in physics, chemistry, and related domains.

2 RELATED WORK

Phase segmentation in molecular dynamics simulation has been approached through a range of strategies, including geometric heuristics, structure based classification, statistical binning methods, and datadriven machine learning techniques. These approaches differ in how they represent atomic environments, define boundaries, and balance accuracy with scalability.

Traditional approaches for identifying phases in molecular dynamics simulations typically employ structural or topological heuristics, including Common Neighbor Analysis (CNA) (Honeycutt and Andersen, 1987) and Voronoi-based techniques. CNA classifies atomic environments by examining the local bonding topology-particularly the count and arrangement of shared neighbors—proving particularly useful for distinguishing crystalline phases and defects. Voronoi-based methods, in contrast, assess coordination environments through geometric tessellation. Stukowski (Stukowski, 2012) offers a detailed evaluation of these approaches while introducing improvements to CNA for multi-phase systems. Although these methods perform well in recognizing distinct structural patterns, their dependence on rigid geometric or topological assumptions restricts their effectiveness in chemically diverse systems, where phase determination depends more on compositional variation and gradual transitions rather than clear-cut symmetry.

Geometric approaches identify phase boundaries using constructs derived directly from atomic positions. For instance, alpha shapes (Edelsbrunner and Mücke, 1994)—a generalization of convex hulls (Chazelle, 1993) —have been used to enclose atomic clusters and define metal-rich regions by drawing a boundary around Fe atoms (Zhang and Guo, 2009). Atoms within the alpha shape are classified as metallic, while those outside are treated as silicate. This method offers an intuitive spatial characterization and has been used effectively for small, cleanly separated systems. However, it assumes sharp, welldefined boundaries and neglects the diffuse and transitional nature of phase interfaces often observed in multi-atom species and high-temperature environments. The approach also lacks per-atom resolution, and its reliance on geometric regularity makes it sensitive to noise, parameter tuning, and system size, ultimately limiting its applicability to more complex or disordered atomic configurations.

Binning-based approaches attempt to overcome geometric rigidity by dividing the simulation cell into a regular 3D grid and aggregating atomic properties—

¹Code used in this study available at: https://github.com/arsenomadridabin/PhaseSegmentationWithGNN

typically counts or densities—within each bin. This enables bulk statistical analysis of local composition and has been used to infer regions with varying elemental concentration. For example, Fe atom counts across bins can yield bimodal distributions, where the low and high count peaks correspond to Si-rich and Fe-rich regions, respectively (Shakya et al., 2024). Bins between the peaks are heuristically interpreted as boundary regions. While this method provides a coarser but interpretable classification of the domain, it still lacks atomic-level granularity. Moreover, the quality of the segmentation depends strongly on the bin size and user-defined thresholds. These thresholds do not necessarily reflect physical principles and must be retuned for different system sizes or simulation setups. The intermediate bins, although intended to represent interfaces, are not explicitly modeled, and the lack of learning mechanisms prevents generalization or reuse across different datasets.

Machine learning-based techniques offer the potential to overcome many of these limitations by learning complex spatial and chemical patterns directly from data. Voxel-based 3D convolutional neural networks (3D-CNNs), which operate on discretized atomic grids, have demonstrated success in binary phase classification tasks such as solid-liquid separation (Fukuya and Shibuta, 2020). However, convolutional filters in 3D-CNNs are structure-agnostic and do not inherently incorporate domain-specific information such as element identity or chemical coordination, which are critical for distinguishing compositionally complex phases. Also, these models typically require fixed-size inputs, making them ill-suited to variable-sized simulation cells.

GNNs address these challenges by working directly on atomic point clouds and leveraging chemical and spatial relationships through neighborhood graphs. Our method builds on this approach by incorporating weak supervision from a physics-informed unsupervised clustering pipeline applied to small systems. We use kernel density estimation to smooth atomic distributions, followed by density-based clustering and morphological operations, to generate coarse per-atom labels for Fe-rich, Fe-poor, and boundary regions. These labels, derived from physically informed unsupervised analysis (Jadrich et al., 2018), guide the GNN to learn associations between local atomic environments and phase identity. Once trained, the GNN supports efficient inference through radius-based neighborhood graphs, scales linearly with the number of atoms, and generalizes to much larger systems with varying cell sizes and configurations. Crucially, we model transition regions explicitly using a post-processing dilation step based on

average atomic bond lengths, yielding a more physically interpretable classification of boundary atoms. This enables us to bridge the gap between discrete, coarse-grained binning and fine-grained, learned peratom segmentation.

By combining weakly supervised labels, domaininformed graph features, and scalable inference, our method overcomes the limitations of geometric heuristics, binning methods, CNN-based models, and structure-based classifiers. It enables detailed peratom phase classification in chemically diverse, irregular systems—capturing boundaries with physical fidelity, eliminating manual threshold tuning, and scaling efficiently to large simulations.

3 METHODOLOGY

Accurate phase segmentation in molecular dynamics simulations requires addressing two fundamental challenges: (1) the absence of ground truth labels for training supervised models, and (2) the computational intractability of applying accurate unsupervised methods to large systems. We propose a physics-guided weak supervision framework that distills knowledge from small-scale unsupervised analyses into a scalable GNNs . Our approach is motivated by three key observations:

- Physical Priors Enable Weak Labeling. Although manual labeling is impractical, the fundamental physics of phase separation imposes natural constraints that guide label generation:
 - Fe-rich metal region and Fe-poor silicate regions exhibit distinct density distributions.
 - Interfacial widths are typically on the order of atomic bond lengths.

These properties allow for automated label generation via density-based clustering and post-processing.

- The Scalability Barrier. High-resolution unsupervised methods such as kernel density estimation scale as $O(N \cdot M)$, where N is the number of atoms and M the number of voxels. As detailed in Table 3, this scaling becomes a computational bottleneck for large systems, limiting the feasibility of such methods for large-scale simulations.
- Local Environments Transfer Across Scales. Atomic-level phase features—such as coordination numbers and local elemental ratios—are size-invariant. This enables GNNs trained on weakly labeled small systems to generalize to larger systems through learned local feature representations.

Our solution combines these insights in a two-stage process as shown in Figure 1.

3.1 Weak Label Generation Pipeline

We created a specialized weak labeling system to train supervised learning models without requiring hand-labeled training data, using principles from metal-silicate phase separation physics. The objective is to distinguish between Fe-rich (metallic) and Fe-poor (silicate) areas within atomic-scale simulations. Since clustering atoms based on their 3D positions proves unreliable—due to the complex, non-linear boundaries between phases—we converted the analysis from spatial coordinates to density-based representations. This transformation makes the phase boundaries more linearly defined, which significantly improves the performance of unsupervised clustering algorithms. The pipeline includes these essential components:

3.1.1 Density Field Construction

We compute a 3D voxelized Fe density field using kernel density estimation (KDE) (Silverman, 1986) over the atomic coordinates, as implemented in SciPy (Virtanen et al., 2020). This transforms the sparse atomic distribution into a smooth scalar field that captures local Fe concentration, making spatial patterns more discernible and suitable for clustering. To properly account for the periodic nature of the simulation cell, we replicate Fe atom positions across adjacent periodic images before applying KDE. This ensures that density is smoothly estimated near the simulation box boundaries, avoiding artificial discontinuities. The simulation cell is discretized into a uniform grid of $50 \times 50 \times 50$ voxels, providing a balance between spatial resolution and computational cost. KDE scales as $O(N \cdot M)$, where N is the number of atoms and M the number of voxels. Hence, increasing voxel resolution leads to a significant rise in computational complexity. Our selected grid resolution captures the relevant physical features while keeping density estimation computationally tractable. Since this process is repeated across thousands of simulation snapshots, the total cost adds up substantially.

3.1.2 K-Means Clustering in Density Space

We apply K-Means clustering, specifying the number of clusters as two, to the voxelized density data, partitioning the system into Fe-rich and Fe-poor domains. Each voxel, which captures local iron concentration, serves as a data point in the scalar density field. The clustering algorithm processes only vox-

els containing non-zero density values, and we designate the cluster exhibiting higher mean density as the Fe-rich phase. This strategy exploits the inherent bimodal density distribution characteristic of phase-separated systems, where concentrated metallic regions are distinctly separated from dispersed silicate areas. The density-based approach transforms intricate spatial boundaries into more manageable linear separations, allowing a straightforward unsupervised clustering method to achieve reliable phase identification.

3.1.3 Periodic Boundary Condition-Aware Connected Component Analysis

Clustering based solely on voxel density can produce fragmented regions scattered throughout the simulation cell. To enforce spatial coherence, we apply connected component labeling to the Fe-rich cluster assignments. This is implemented using a custom union-find algorithm that explicitly handles periodic boundary conditions—a crucial consideration for atomistic systems where atoms near the boundaries may interact across simulation cell edges. Among all Fe-rich regions identified, we retain only the largest spatially connected component and designate it as the metal phase. All remaining regions, including smaller disconnected Fe-rich fragments, are classified as part of the silicate phase, regardless of their local iron concentration. This post-processing step aligns with the physical expectation that the system consists of exactly two macroscopic phases-metal and silicate—separated by a single continuous interface. By preserving only the dominant connected Fe-rich region, we ensure the metal phase is correctly captured while avoiding spurious classification of isolated Ferich pockets as separate metallic domains.

3.1.4 Boundary Region Assignment

To model the fuzzy transition zone between metal and silicate phases, we apply binary dilation to both the metal and silicate regions. Binary dilation is a morphological operation that expands a region by including neighboring voxels within a specified radius, effectively growing the mask outward and capturing nearby space (Serra, 1982). When applied to both regions independently, the overlapping volume of their dilated masks defines the boundary region. This boundary represents the interfacial zone where atoms are likely influenced by both phases. While the dilation radius is initially guided by typical atomic bond lengths, the final boundary thickness is determined empirically. We evaluate the variance of Fe weight percent in the Fe-rich region across multiple

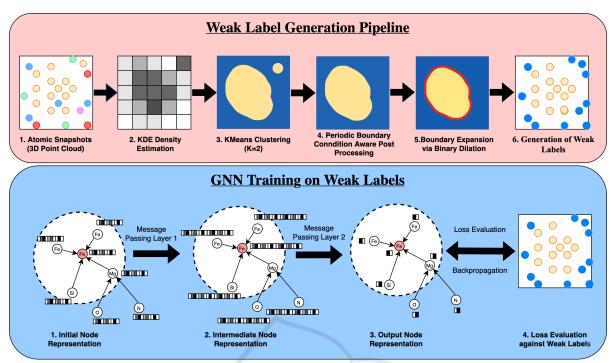


Figure 1: Schematic of the proposed phase segmentation approach. Top: Weak labels are generated via a pipeline that involves KDE-based density estimation, clustering, Periodic Boundary Condition aware post-processing, and boundary (interface) expansion using binary dilation. Bottom: A GNN is trained on these weak labels using node features based on atomic type and local environment.

simulation snapshots for different boundary widths and select the value that minimizes this variance, indicating improved stability in phase classification and reduced ambiguity at the interface.

3.1.5 Label Assignment to Atoms

To generate per-atom labels, we map each atomic position to its corresponding voxel in the clustered density grid. The voxel's pre-assigned phase label—either Fe-rich metal, Fe-poor silicate, or boundary—is transferred to all atoms whose positions fall within that voxel. This mapping ensures consistency between the density-based voxel segmentation and the atom-level labels required for model training. Because the voxel grid spans the entire simulation cell, every atom is assigned a label based on its spatial location relative to the phase-separated structure. This process results in a fully labeled dataset of atoms, where each atom inherits the phase identity of its local environment as inferred from the KDE-based clustering and post-processing pipeline. These labels serve as weak supervision targets for training our graph neural network model.

3.2 GNN Training on Weak Labels

We formulate a semantic phase segmentation as a node classification task on atomic graphs, where supervised learning is performed using weak labels derived from our physics-informed pipeline. This approach tests whether a lightweight graph neural network can replicate the accuracy of our computationally intensive density-based method while achieving superior scalability. To evaluate the generality of our learning framework, we implement two different GNN architectures—GCN and GAT—using identical feature inputs and training protocols. This comparative setup allows us to assess whether our weak supervision strategy is compatible with different message-passing schemes.

3.2.1 Graph Representation and Node Features

Each atomic configuration is represented as an undirected graph G=(V,E), where each node $v_i \in V$ corresponds to an atom, and an edge $(i,j) \in E$ connects atoms i and j if their spatial separation is less than a predefined cutoff distance r_c . To preserve the physical continuity of the atomic environment, we apply periodic boundary conditions (PBC) during neighbor search using a wrapped distance metric.

Each node v_i is associated with a feature vector

 $\mathbf{x}_i \in \mathbb{R}^{10}$ that encodes both chemical identity and local structural information. The full node feature vector is expressed as:

$$\mathbf{x}_{i} = \operatorname{concat}\left(\operatorname{OneHot}(\operatorname{type}_{i}), \, N_{\operatorname{Fe}}^{i}, \, \mu_{\operatorname{Fe}}^{i}, \, \sigma_{\operatorname{Fe}}^{2}, \, f_{\operatorname{Fe}}^{i}, \, N_{\operatorname{Mg}}^{i}\right), \tag{1}$$

where $N_{\rm Fe}^i$ denotes the number of Fe neighbors, $\mu_{\rm Fe}^i$ and $\sigma_{\rm Fe}^2$ are the mean and variance of their distances, $f_{\rm Fe}^i$ is the fraction of Fe neighbors relative to total neighbors, and $N_{\rm Mg}^i$ is the count of Mg neighbors.

These features are chosen to reflect both the chemical identity of the central atom and the local coordination environment, which are known to be predictive of phase identity in metal-silicate systems. In particular, statistics over Fe neighbors help capture the density and spatial distribution of metallic bonding, while the inclusion of Mg neighbors aids in identifying silicate-like environments. Neighbor counts for Si and O were initially considered but later excluded from the final feature design, as they were found to be redundant. Their inclusion had negligible impact on the macro F1 score for GCN (0.878 vs. 0.873 without them) and slightly reduced the performance of GAT (0.809 vs. 0.819 without them), indicating that these features do not contribute meaningfully to the phase classification task.

3.2.2 Message Passing and Prediction Framework

GNNs operate by iteratively updating node representations through localized neighborhood aggregation. For a given graph G = (V, E), with initial node features $\mathbf{h}_i^{(0)} = \mathbf{x}_i$, each GNN layer refines node embeddings via:

$$\mathbf{h}_{i}^{(l+1)} = \sigma\left(AGG^{(l)}\left(\left\{\mathbf{h}_{j}^{(l)} \mid j \in \mathcal{N}(i)\right\} \cup \left\{\mathbf{h}_{i}^{(l)}\right\}\right)\right),$$
(2)

where $\mathcal{N}(i)$ denotes the set of neighbors of node i, σ is the ReLU activation function, and $AGG^{(l)}$ is the layer-specific aggregation function.

Our model architecture consists of two such message-passing layers, enabling nodes to incorporate information from both first and second-order neighborhoods. The output of the final layer is a 2-dimensional embedding used for binary classification (Fe-rich vs. Fe-poor). These logits are converted into class probabilities using a softmax function:

$$\hat{\mathbf{y}}_i = \operatorname{softmax}(\mathbf{h}_i^{(L)}), \tag{3}$$

where L is the total number of layers.

We implement and evaluate two GNN variants, each employing a different aggregation strategy:

GraphConv: The GraphConv operator uses normalized aggregation as follows:

$$\mathbf{h}_{i}^{(l+1)} = \sigma \left(\sum_{j \in \mathcal{N}(i) \cup \{i\}} \frac{1}{\sqrt{|\mathcal{N}(i)||\mathcal{N}(j)|}} \mathbf{W}^{(l)} \mathbf{h}_{j}^{(l)} \right). \tag{4}$$

GAT: Graph Attention Networks introduce learnable attention weights between neighbors:

$$\mathbf{h}_{i}^{(l+1)} = \sigma \left(\sum_{j \in \mathcal{N}(i)} \alpha_{ij}^{(l)} \mathbf{W}^{(l)} \mathbf{h}_{j}^{(l)} \right), \quad (5)$$

with attention coefficients computed as:

$$\alpha_{ij}^{(l)} = \frac{\exp\left(f\left(\mathbf{a}^{\top} \left[\mathbf{W}^{(l)} \mathbf{h}_{i}^{(l)} \parallel \mathbf{W}^{(l)} \mathbf{h}_{j}^{(l)}\right]\right)\right)}{\sum\limits_{k \in \mathcal{N}(i)} \exp\left(f\left(\mathbf{a}^{\top} \left[\mathbf{W}^{(l)} \mathbf{h}_{i}^{(l)} \parallel \mathbf{W}^{(l)} \mathbf{h}_{k}^{(l)}\right]\right)\right)}$$
(6)

where $\mathbf{W}^{(l)} \in \mathbb{R}^{d' \times d}$ is a learnable weight matrix, $\mathbf{a} \in \mathbb{R}^{2d'}$ is a learnable attention weight vector, \parallel denotes vector concatenation, and f is the LeakyReLU activation function.

Training Objective. The network is trained using the standard cross-entropy loss, defined over the set of weakly labeled atoms:

$$\mathcal{L} = -\sum_{i \in \mathcal{I}} \sum_{c=1}^{2} y_{ic} \log \hat{y}_{ic}, \tag{7}$$

where \mathcal{T} is the set of labeled atoms, $y_{ic} \in \{0,1\}$ is the one-hot encoded ground truth weak label, and \hat{y}_{ic} is the predicted class probability from Equation 3. Training is performed using the Adam optimizer, with both models trained under the same hyperparameter settings.

4 EXPERIMENTS AND RESULTS

4.1 Weak Label Generation

We first evaluate the effectiveness of our weak labeling pipeline on a small FeMgSiON system containing 520 atoms in a cubic simulation supercell of 17 Å length. Each atom is assigned a phase label—Fe-rich (metal), Fe-poor (silicate), or boundary/interface—based on its spatial location within a voxelized grid, where each voxel is classified into one of the three regions. Atoms inherit the phase label of the voxel they fall into.

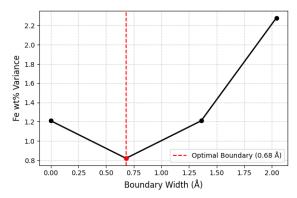


Figure 2: Variance of Fe weight percent in the Fe-rich region across 1000 snapshots from the 3000 K simulation, plotted as a function of boundary width.

A critical hyperparameter in this labeling process is the boundary width, which determines how many voxels are designated as interfacial (boundary) rather than purely Fe-rich or Fe-poor. To determine an appropriate value, we evaluate the variance of Fe weight percent in the Fe-rich region across 1000 simulation snapshots, under different boundary thicknesses. As shown in Figure 2, a boundary width of 0.68 Å results in the lowest variance, indicating greater stability in the phase classification and reduced ambiguity at the interface. While this analysis was conducted at 3000 K, we found that the same boundary width also yielded the lowest variance for simulations at 4000 K.

We visualize how different boundary widths affect segmentation outcomes in Figure 3, which shows central XY, YZ, and XZ slices of a representative snapshot. Without a boundary region, the segmentation is overly sharp and fails to capture the transitional nature of the interface. Introducing a 0.68 Å boundary produces smoother, more physically realistic segmentation. Larger boundaries (1.36 Å, 2.04 Å) begin to erode phase interiors, reducing fidelity.

To assess the spatial coherence and physical plausibility of the assigned labels, we visualize the Fe-rich region from a reference snapshot. As shown in Figure 4, the segmented metallic domain forms a large, continuous structure consistent with physical expectations for phase-separated systems. Although the visualization shows two disconnected volumes, they belong to a single contiguous phase, split only by periodic boundaries. Our labeling method accounts for this, correctly identifying such regions as topologically connected. This confirms that the chosen boundary width and labeling approach preserve spatial continuity and yield stable, physically meaningful phase assignments suitable for training downstream models.

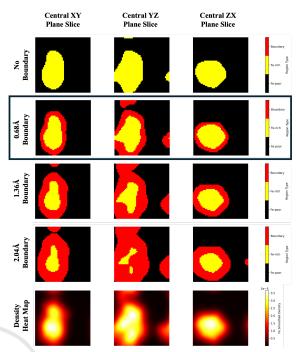


Figure 3: Phase segmentation slices across three planes (XY, YZ, XZ) for different boundary sizes in the 3000 K simulation. Rows show no boundary, 0.68Å, 1.36Å, and 2.04Å, respectively. The 0.68Å boundary best preserves phase boundaries without distorting region interiors.

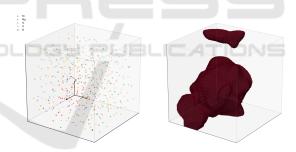


Figure 4: 3D visualization of phase segmentation. **Left:** Atom positions with species color-coded. **Right:** Segmented Fe-rich region rendered as a connected volume. The split appearance is due to periodic boundaries; the region is physically continuous.

4.2 Phase Segmentation with Graph-Based Models

We conducted experiments on two distinct FeMg-SiON systems—one at 29 GPa and 3000 K, and another at 35 GPa and 4000 K. For each condition, simulations were performed at two different scales. Each system was simulated at two scales: a small system (520 atoms) used for training, and a large system (33,280 atoms) used for inference and validation. The small and large systems were constructed with identi-

cal elemental ratios, differing only in spatial scale and total number of atoms.

For each temperature-pressure condition, we trained GNNs independently on the small system. Specifically, we used two architectures—GAT and GCN—and evaluated their performance on the corresponding large system. We benchmarked their outputs against labels generated by our unsupervised pipeline, which serves as a high-fidelity—but computationally expensive reference.

4.3 Results and Analysis

To evaluate classification performance, we tested two GNN architectures—GAT and GCN—on large-scale FeMgSiON systems at two thermodynamic states. Both models were trained on small systems using weak labels derived from our unsupervised segmentation pipeline and evaluated on larger systems using the following metrics:

- Elemental weight percent (wt%) in predicted Ferich (metal) and Fe-poor (silicate) regions, averaged over 100 snapshots,
- Classification accuracy and F1 scores (micro, macro, and per-class),
- ROC curves and confusion matrices for model comparison.

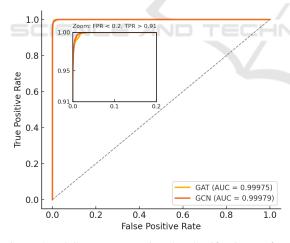


Figure 5: ROC curve comparing the classification performance of GAT and GCN models on the reference snapshot of the 3000 K, 29 GPa simulation. The inset highlights the region with low false positive rates and high true positive rates.

At 3000 K, where thermal agitation is minimal and phase boundaries are sharply defined, both GAT and GCN generalize well from the small training system to the large-scale target. The confusion matrices (Figure 7) show strong diagonal dominance, and

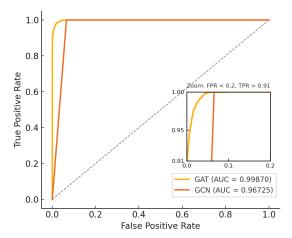


Figure 6: ROC curve comparing the classification performance of GAT and GCN models on the reference snapshot of the 4000 K, 35 GPa simulation. The inset highlights the region with low false positive rates and high true positive rates, showing finer differences in model sensitivity.

the ROC curves (Figure 5) confirm near-perfect separability, with area under the curve (AUC) exceeding 0.999 for both models. These high AUC values reflect threshold-agnostic discriminative performance, indicating that both GNNs reliably distinguish Fe-rich, Fe-poor, and boundary atoms across a range of thresholds. The macro F1 scores also exceed 0.85, underscoring consistent performance across all classes (Table 1).

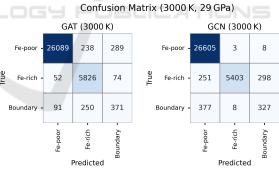


Figure 7: Confusion matrices for Fe-rich, Fe-poor, and boundary classification at 3000 K and 29 GPa using GAT and GCN. Shown for the reference snapshot of our large-scale simulation (33,280 atoms), predictions are benchmarked against labels obtained from the high-fidelity unsupervised segmentation pipeline.

At 4000 K, increased thermal mixing introduces ambiguity in phase boundaries, making segmentation more difficult. GCN's performance degrades significantly, particularly in its ability to detect boundary regions, as reflected in a low boundary F1 score (0.06). Its AUC also drops to 0.967, indicating reduced confidence in its ranking. While GCN correctly classifies nearly all Fe-rich (Metal) phase atoms

System	Model	Accuracy	F1 (Fe-Poor/ Silicate)	F1 (Fe-Rich/ Metal)	F1 (Boundary)	Macro F1	Micro F1
3000 K, 29.1 GPa	GAT	0.979	0.986	0.964	0.506	0.819	0.979
	GCN	0.986	0.995	0.945	0.678	0.873	0.986
4000 K, 35 GPa	GAT	0.975	0.986	0.929	0.515	0.810	0.975
	GCN	0.899	0.926	0.866	0.061	0.618	0.899

Table 1: Classification performance of GNN models across systems. Reported values include accuracy, class-wise F1 scores, macro F1, and micro F1 scores.

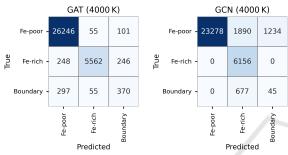


Figure 8: Confusion matrices for Fe-rich, Fe-poor, and boundary classification at 4000 K and 35 GPa using GAT and GCN. Shown for the reference snapshot of our large-scale simulation (33,280 atoms), predictions are benchmarked against labels obtained from the high-fidelity unsupervised segmentation pipeline.

at 4000 K (see Figure 8), it fails to resolve transitional regions, misclassifying most boundary atoms as Fe-rich—highlighting its limited capacity to capture compositional shifts in disordered systems. In contrast, GAT maintains strong performance, with an AUC above 0.998 and a macro F1 of 0.81. We attribute this robustness to its attention mechanism, which adaptively weighs contributions from neighboring atoms and remains effective even under high-temperature, disordered conditions.

Table 2 summarizes the average elemental compositions (wt%) predicted for Fe-rich/Metal and Fepoor/Silicate phases under both 3000 K/29 GPa and 4000 K/35 GPa conditions. At 3000 K, both GNN models closely match the unsupervised baseline, indicating accurate phase segmentation under low mixing. At 4000 K, GCN predictions deviate more noticeably from the unsupervised results—particularly in Fe and Mg content—while GAT continues to produce more consistent estimates. These trends highlight the improved reliability of GAT in capturing phase behavior under more challenging thermodynamic conditions.

Figures 9 and 10 show the XY projections of atoms whose Z-bins lie between 20 and 30 from the reference test snapshots of the large-scale systems at

29 GPa and 3000 K, and 35 GPa and 4000 K, respectively. In both cases, this representative slice is extracted from a 50×50×50 spatial grid. These visualizations compare the GNN predictions against weak labels to qualitatively assess the model's ability to recover physically meaningful phase separation into Ferich, Fe-poor, and boundary regions.

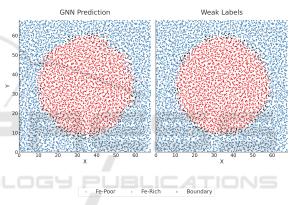


Figure 9: XY projection of atoms from the central Z slice of our reference snapshot in the 3000 K, 29 GPa system, comparing GNN predictions with weak labels.

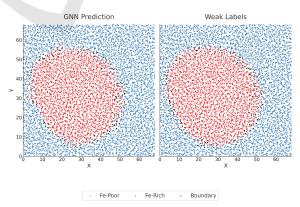


Figure 10: XY projection of atoms from the central Z slice of our reference snapshot in the 4000 K, 35 GPa system, comparing GNN predictions with weak labels.

Beyond segmentation accuracy, a key advantage of our graph-based approach is its speed at inference time. In particular, we compare the inference time of

Table 2:	Average	elemental	composition	(wt%)	in F	e-rich	(Metal)	and	Fe-poor	(Silicate)	regions	for	both	sys-
tems—300	00 K/29 GI	Pa and 4000) K/35 GPa—a	is predicte	ed by	y GAT,	GCN, ar	nd the	unsuperv	ised basel	ine. Valu	es ar	e aver	aged
over 100 to	est snapsh	ots; standar	d error is repo	rted.										

T-P	Phase	Method	Fe (wt %)	Mg (wt %)	Si (wt %)	O (wt %)	N (wt %)
		GAT	93.22 ± 0.18	0.06 ± 0.18	1.61 ± 0.10	1.83 ± 0.07	3.20 ± 0.00
	Fe-rich	GCN	94.64 ± 0.20	0.00 ± 0.00	1.57 ± 0.12	0.72 ± 0.08	3.05 ± 0.02
	(Metal)	Unsupervised	93.81 ± 0.21	0.10 ± 0.01	1.67 ± 0.12	1.27 ± 0.09	3.15 ± 0.01
3000 K, 29 GPa		GAT	1.23 ± 0.07	29.45 ± 0.02	23.06 ± 0.05	46.13 ± 0.03	0.11 ± 0.00
	Fe-poor	GCN	5.06 ± 0.12	28.04 ± 0.02	22.06 ± 0.06	44.56 ± 0.05	0.28 ± 0.00
	(Silicate)	Unsupervised	3.77 ± 0.08	28.53 ± 0.02	22.39 ± 0.05	45.10 ± 0.03	0.19 ± 0.00
	Fe-rich	GAT	90.59 ± 0.03	0.10 ± 0.01	2.99 ± 0.03	3.06 ± 0.04	3.25 ± 0.01
	(Metal)	GCN	80.27 ± 0.25	3.41 ± 0.10	5.11 ± 0.05	8.41 ± 0.14	2.87 ± 0.01
4000 K. 35 GPa	(Metal)	Unsupervised	89.54 ± 0.01	0.37 ± 0.01	3.35 ± 0.03	3.52 ± 0.02	3.22 ± 0.02
.00012, 55 01 4	Fe-poor	GAT	3.47 ± 0.04	29.28 ± 0.01	22.07 ± 0.01	45.03 ± 0.02	0.14 ± 0.01
	(Silicate)	GCN	2.17 ± 0.04	29.82 ± 0.04	22.30 ± 0.06	45.68 ± 0.06	0.08 ± 0.00
	(Sincate)	Unsupervised	5.79 ± 0.05	28.49 ± 0.02	21.47 ± 0.02	44.07 ± 0.01	0.19 ± 0.01

our trained GNNs against the original unsupervised pipeline used for generating weak labels. All inferences were conducted on the 33,280-atom large-scale system using non-parallelized implementations. To ensure fair comparison, all methods were executed on identical hardware with the same processor configuration.

Table 3: Inference time and scaling behavior of different segmentation methods, reported over 100 test snapshots from the 33,280-atom large-scale system. Values reflect the mean and standard error.

Method	Time (s)	Scaling
GNN (GAT)	3.61 ± 0.12	$\sim O(N)$
GNN (GCN)	3.12 ± 0.14	$\sim O(N)$
Unsupervised	210.0 ± 2.2	$O(N \cdot M)$
(KDE + Clustering)		

GNN inference comprises two steps: graph construction and forward propagation. Graph construction uses a fixed-radius neighbor search with spatial indexing (e.g., cKDTree), scaling approximately linearly with system size. The forward pass involves a constant number of message-passing layers and also scales linearly with the number of atoms. In contrast, the unsupervised pipeline involves kernel density estimation (KDE) over a 3D voxel grid, followed by clustering and morphological post-processing. KDE requires each atom to contribute to many voxels, resulting in $O(N \cdot M)$ complexity, where N is the number of atoms and M the number of voxels—making it a computational bottleneck for large-scale simulations.

As shown in Table 3, our GNN models reduce inference time from over 200 seconds to just over 3 seconds for the 33,280-atom system—achieving a

speedup of over two orders of magnitude. This highlights their efficiency over the original unsupervised pipeline and suitability for large-scale applications.

5 CONCLUSIONS

We introduced a hybrid learning approach for scalable and accurate phase segmentation in large-scale molecular dynamics simulations by combining a structure-aware unsupervised pipeline with a weaklysupervised GNNs. This approach enables model training even in the absence of labeled data by leveraging structural heuristics to generate weak supervision. The GNNs are trained on small systems but generalize effectively to much larger configurations without sacrificing accuracy, demonstrating robust performance across varying system sizes. Among the architectures evaluated, GATs in particular showed consistent performance across systems with different degrees of disorder, effectively capturing boundary regions. As parametric models, they offer significant speedups during inference by eliminating the need for repeated unsupervised computations, with runtime benefits that grow with system size. While demonstrated on FeMgSiON systems, the strategy is broadly applicable to other multi-phase materials where highquality labels are unavailable but structural cues exist. These results underscore a broader opportunity in using machine learning to accelerate and scale scientific analyses in domains where conventional labeling is impractical. A promising direction for future work is the integration of uncertainty-aware active learning, where the model identifies regions of low confidence-particularly near phase boundaries—and selectively queries for additional weak supervision. Techniques such as Monte Carlo Dropout or Bayesian GNNs could be employed to estimate uncertainty, allowing the model to prioritize ambiguous regions and further improve segmentation quality while minimizing labeling overhead.

ACKNOWLEDGEMENTS

This work was supported by NASA (Grant No. 80NSSC21K0377) and the National Science Foundation (EAR 1463807). Computational resources were provided by the High Performance Computing facility at Louisiana State University. Additional support was received through the Summer Opportunities Fellowship, awarded by Shell Oil Company.

REFERENCES

- Chazelle, B. (1993). An optimal convex hull algorithm in any fixed dimension. *Discrete & Computational Geometry*, 10(4):377–409.
- Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2017). Rethinking atrous convolution for semantic image segmentation. *IEEE Transactions on Pattern Analysis and Machine Intelligence* (*TPAMI*), 39(12):2341–2355.
- Edelsbrunner, H. and Mücke, E. P. (1994). Three-dimensional alpha shapes. *ACM Transactions on Graphics (TOG)*, 13(1):43–72.
- Fukuya, T. and Shibuta, Y. (2020). Machine learning approach to automated analysis of atomic configuration of molecular dynamics simulation. *Computational Materials Science*, 184:109880.
- Hamilton, W. L., Ying, R., and Leskovec, J. (2017). Inductive representation learning on large graphs. In *Advances in Neural Information Processing Systems* (NeurIPS).
- Honeycutt, J. and Andersen, H. (1987). Molecular dynamics study of melting and freezing of small lennard-jones clusters. *The Journal of Physical Chemistry*, 91(19):4950–4963.
- Jadrich, R. B., Lindquist, B. A., and Truskett, T. M. (2018). Unsupervised machine learning for detection of phase transitions. *Physical Review E*, 97:023301.
- Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph convolutional networks. In *International Conference on Learning Representations* (*ICLR*).
- Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3431–3440.
- Lopez, C. A., Vesselinov, V. V., Gnanakaran, S., and Alexandrov, B. S. (2019). Unsupervised machine learning for analysis of coexisting lipid phases and

- domain growth in biological membranes. *bioRxiv*, 527630(v2). Preprint, version 2.
- MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In *Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics*, pages 281–297. University of California Press.
- McDonough, W. F. and Sun, S.-S. (1995). The composition of the Earth. *Chemical Geology*, 120(3–4):223–253.
- Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017). Pointnet: Deep learning on point sets for 3d classification and segmentation. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 652–660.
- Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. *Medical Image Computing and Computer-Assisted Intervention (MICCAI)*, 9351:234–241.
- Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2009). The graph neural network model. *IEEE Transactions on Neural Networks*, 20(1):61–80.
- Serra, J. (1982). Image analysis and mathematical morphology. *Academic Press*.
- Shakya, A., Ghosh, D. B., Jackson, C., Morra, G., and Karki, B. B. (2024). Insights into core–mantle differentiation from bulk earth melt simulations. *Scientific Reports*, 14(1):18739.
- Silverman, B. W. (1986). *Density Estimation for Statistics and Data Analysis*. Chapman and Hall/CRC.
- Stukowski, A. (2012). Structure identification methods for atomistic simulations of crystalline materials. Modelling and Simulation in Materials Science and Engineering, 20(4):045021.
- Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2018). Graph attention networks. In *International Conference on Learning Representations (ICLR)*.
- Virtanen, P., Gommers, R., Oliphant, T. E., and ... (2020). SciPy 1.0: Fundamental algorithms for scientific computing in python. *Nature Methods*, 17:261–272.
- Zhang, Y. and Guo, G. (2009). Partitioning of si and o between liquid iron and silicate melt: A two-phase ab initio molecular dynamics study. *Geophysical Research Letters*, 36(18):L18305.