
Semi-Supervised Object Labeling on Video Data with Collaborative
Classification and Active Learning

Bruno Padilha a and João Eduardo Ferreira b

Institute of Mathematics and Statistics (IME-USP), University of São Paulo, São Paulo, Brazil

Keywords: Active Learning, Out-of-Distribution Classification, Collaborative Image Classification, Big Data Labeling.

Abstract: Streaming applications in video monitoring networks generate datasets that are continuously expanding in
terms of data amount and sources. Thus, given the sheer amount of data in these scenarios, one big and
fundamental challenge is how to reliably automate data annotation for downstream tasks such as object de-
tection, image classification, object tracking among other functionalities. In this work, we propose a novel
active learning strategy based on multi-model collaboration able to self-annotate training data, providing only
a small initial subset of human verified labels, towards incremental model improvement and distribution shifts
adaptation. To validate our approach, we collected approximately 50,000 hours of video data sourced from 193
security cameras from University of São Paulo Monitoring System (USP-EMS) during the years 2021-2023,
totaling 7.3TB of raw data. For experimental purposes, this work is focused on identification of pedestrians,
cyclists and motorcyclists resulting in 3.5M unique objects labeled with accuracy between 92% to 96% for
all cameras. Time-stamped data along with our incremental learning method also facilitate management of
naturally occurring distribution shifts (e.g., weather conditions, time of the year, dirty lenses, out-of-focus
cameras). We are currently working to release this dataset in compliance with local data privacy legislation.

1 INTRODUCTION

State-of-the-art deep learning models for image clas-
sification rely on large volumes of annotated data (e.g.
(Yu et al., 2022), (Srivastava and Sharma, 2024) and
(Kirillov et al., 2023)). Once upon a time, obtaining
data for machine learning was costly and difficult to
come by due to technology restrictions in availabil-
ity of sensors (i.e. cameras, social networks, signal
detectors, etc...), data storage and processing power.
Nowadays, data is cheaper, easier to come by and be-
ing produced at an accelerating pace. On the other
hand, annotating data for supervised learning remain
expensive once human generated labels are still per-
vasive in many successful training strategies. In spite
of recent advancements in object tracking algorithms,
pre-trained models and other tools that can assist hu-
mans to speed up data annotation (Ashktorab et al.,
2021)(Li et al., 2021a), the cost is still high and can
increase faster than linear with the dataset size (Kok-
ilepersaud et al., 2023).

Some large annotated datasets (e.g. ImageNet
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(Ridnik et al., 2021), COCO (Lin et al., 2014), Open-
Images (Kuznetsova et al., 2020), SA-B1 (Kirillov
et al., 2023)) share similar classes also found in many
other domains. One low-cost way to leverage pre-
trained models is known as Transfer Learning (TL)
(Zhuang et al., 2021) and consists in fine-tuning a pre-
trained model with a much smaller dataset of a tar-
get domain. It is feasible providing the two domains
(original and targeted) share good amounts of general
object attributes and data distributions are not too far
apart. However, it is harder to find such large datasets
for niche domains that would allow us to apply TL
in more domain specific downstream tasks (e.g. med-
ical images (Hesamian et al., 2019), manufacturing
quality control (Zuo et al., 2022), agricultural appli-
cations (Li et al., 2021b)). Furthermore, we will show
that there is no guaranties that TL will generalize well
even when the target domain contain classes suppos-
edly known to by the pre-trained model, culminat-
ing in introduced noise as false positives and or neg-
atives. In object detection, target objects are anno-
tated with bounding boxes (i.e the minimal area rect-
angle encompassing the object). Misplaced or miss-
ing boxes in training data directly affects the model
performance (Murrugarra-Llerena et al., 2022).
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Another approach to alleviate the burden of an-
notating a new dataset is known as Active Learning
(AL) (Ren et al., 2021b). In AL, the main concern
is how to attain the best possible performance from
a model with a minimal amount of annotated data.
In other words, data can labeled in small amounts to
train a model in an iterative manner and the previ-
ous acquired knowledge is leveraged to devise a query
strategy to label new samples. One such strategy is
based on the model uncertainty (He et al., 2019b) of
each class to identify samples contains most novelty.
If the model is too certain for a given sample, there is
no novel information regarding the underlying distri-
bution. On the other hand, too much uncertainty could
mean the sample is too far away from the known dis-
tribution so far or it is just noise. In our experiments
we have observed the optimal uncertainty region to
effectively use AL, that is in the vicinity of the de-
cision boundary, is somewhere in between depend-
ing on how much knowledge the model accumulated.
To make the best of both TL and AL as annotation
tools, we employ a pre-trained model (Yolov8 (Jocher
et al., 2023) on COCO(Lin et al., 2014)) to initiate our
dataset with a collection of detected objects. Due to
varying degree of generalization from camera to cam-
era, noise samples will be produced and AL comes
into play to separate good samples from bad ones.

In this work, we present a novel method based
on the combination Transfer Learning with Active
Learning to reliably annotate large amount of objects
in video data in a semi-automated manner. It is com-
posed by teams of binary classifiers whose decisions
are made collaboratively by voting and consensus
policies. Initially, a small subset (e.g 1000 samples
per class) of a raw dataset is randomly sampled for hu-
man verification and possible correction of wrong la-
bels and discarding of noisy samples (e.g. partial ob-
jects or pieces of background) to train one weak clas-
sifier per class, what we named experts. Data is par-
titioned in a one vs. rest (OvR) fashion to minimize
the odds of teams yielding arbitrary high confidence
outputs for far out-of-distribution samples (Nguyen
et al., 2015) (Hein et al., 2019). This strategy allows
these teams of experts to self-annotate data relying on
partial acquired knowledge in order to incrementally
expand the training set (i.e. select new batches of
1000 samples) and eventually, after a few iterations,
converging towards the true underlying distribu-
tion. Other than this incremental learning strategy,
the proposed method also concerns continual moni-
toring to guide experts updating and cope with distri-
bution shifts.

We demonstrate the effectiveness of our method
with classification experiments on real data for the

classes cyclist, motorcyclist and pedestrian. The clas-
sification data contains ∼3.5M unique object samples
extracted from 50.000h of raw video footage from
193 cameras from USP-EMS (Electronic Monitoring
System at University of São Paulo)(Ferreira et al.,
2018) collected between the years of 2021-2023. In
all experiments, the teams of experts were able to con-
sistently learn the cameras distributions, reaching up
to 96% in accuracy, while using only a few thousand
of automatically labeled samples per class. Intending
to better understand the challenges of learning with
AL and the teams of experts, we opted to approach
it as a classification problem leaving added complexi-
ties of detection and segmentation problems for future
works.

The rest of the paper is organized as follows. Sec-
tion 2 provides an overview of related works on Ac-
tive Learning and automated data labeling. In Sec-
tion 3, we present important details of our incremental
learning strategy. Experiments are described in Sec-
tion 4. In Section 5 we highlight the limitations of our
method and present some concluding remarks.

2 RELATED WORK

2.1 Expansible Dataset

The new dataset we are going to build is continu-
ously sourced by video footage from security cam-
eras monitoring open public areas in the dependen-
cies of the University of São Paulo (USP). The most
common classes of objects found in this environment
are vehicles, including cars, buses and trucks, per-
sons, bicycles, motorcycles, animals (e.g dogs, wild
birds) and an assortment of static objects such as
trees, traffic signs, benches, etc. Due to these classes
being present in both ImageNet and COCO datasets,
we proceeded to evaluate the last iteration of YOLO
(Jocher et al., 2023) object detector pre-trained on
both dataset on videos from USP cameras in order
to crop out samples for classification. Not surpris-
ingly, detection effectiveness depends on the camera
and also on the class as shown in Table 1. In the scope
of this work, we consider only the classes motorcy-
clist, cyclist and pedestrian. These classes have many
visual attributes in common and will further challenge
our semi-automated labeling method. Furthermore,
detection of motorcyclist and cyclist is done by object
composition as presented in (Nardi et al., 2022).
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2.2 Active Learning

The main concept behind Active Learning (AL) is
to start training a model with only a small fraction
of reliable (i.e. human verified) labeled data. Then,
this partial learned knowledge can be employed to
discover which unlabeled samples will contribute the
most to improve the model this time. The process re-
peats until the model meets some performance crite-
ria. Another key concept is how to apply a model
to query the unlabeled set. According to (Ren et al.,
2021b), AL strategies can be categorized into mem-
bership query synthesis, stream sampling and pool
sampling. In the context of deep learning, the first
one is usually related to sample generation, for exam-
ple with GANs or VAEs models, and request it to be
human labeled. The second one is suitable for storage
and computing limited devices in which is there is no
access to at least a sizable portion of the unlabeled set.
In the last one, pool sampling, model knowledge is
used to rank unlabeled data based either on sample di-
versity (Agarwal et al., 2020) or uncertainty (Hwang
et al., 2024) (Kokilepersaud et al., 2023).

Also based on uncertainty sampling, (Hwang
et al., 2024) and (Kokilepersaud et al., 2023) are
closer to our approach. Just like ours, the former pro-
poses a new multi-camera city scenes dataset. They
show with empirical experiments that, contrary to pre-
vious beliefs, the cost of human labeling increases
faster than linear with dataset size. Regarding sam-
pling and model training, they leverage optical flow
motion relationships between consecutive frames to
label entire sequences of unique objects. The model
is a YOLOv5 object detector and unlabeled sequences
are ranked by entropy based on the softmax proba-
bilities of this model. On the other hand, we opted
to shift from object detection to image classification
on cropped out objects to use simpler models (resnet-
18) working collaboratively to account for potential
overconfidence in softmax and out-of-distribution ro-
bustness. The latter, (Kokilepersaud et al., 2023),
is specific to mitigate overconfidence in AL scenar-
ios. Their approach is based on a augmented MixUP
(Zhang et al., 2017) training strategy and a overcon-
fidence sensitive ranking function. We employ label
smoothing (Müller et al., 2019) to tackle overconfi-
dence combined with uncertainty voting policies to-
wards a similar purpose. Nonetheless, our approach
favors interpretability.

2.3 Out-of-Distribution Detection

Out of distribution (OOD) detection is the ability
of a model to recognize data samples that deviate

from data distribution of learned representations. It
has gained more attention recently as an increas-
ing number of applications are being developed to
work with data generated in real-time. Contrary to
static datasets, the knowledge obtained from live data
is much more subject to distribution shifts, which
essentially demands classification models to oper-
ate on data containing OOD samples. According to
(Winkens et al., 2020), OOD detection problems are
more challenging when OOD samples are near the in-
distribution ones (near-OOD) than when they appear
farther away (far-OOD). Expansible datasets contem-
plates both scenarios once new unlabeled samples can
contain novel knowledge (near-OOD), valuable to im-
prove classification, or simply detrimental noise (far-
OOD).

One simple approach the far-OOD case is a
method know as the Mahalanobis Distance (MD)(Lee
et al., 2018). It is a function that computes the dis-
tance of a point to a known distribution. In Deep
learning, the features map of a deep layer of a clas-
sification model trained on N classes is used, along
with the in-distribution training set, to fit N class
conditional Gaussian distributions. The means vec-
tor and a covariate matrix is then used to compute
the confidence and uncertainty scores for test inputs.
Several authors ((Winkens et al., 2020), (Ren et al.,
2021a), (Denouden et al., 2018), (Podolskiy et al.,
2021)) have been trying to improve the MD method
in the near-OOD case. However, these proposals rely
on large and consolidate datasets with reliable an-
notations (e.g. CIFAR-10, CIFAR-100, ImageNet-
21k), which initially is not available when building a
new dataset. Furthermore, according to (Maciejewski
et al., 2022), estimating multivariate normal densities
for limited feature maps (i.e a single layer) and for
an insufficient number of samples (1000 to 5000 per
class) makes Mahalanobis distance-based methods in-
effective for near-OOD data.

Pre-trained Vision Transformers (ViT) (Han et al.,
2022) have been shown to be more robust to distri-
bution shifts, less prone to learn spurious correlations
(short-cut learning) and to present better results when
fine-tinning on smaller datasets when compared to
Convolutional Neural Networks (CNN). (Fort et al.,
2021) coupled a ViT pre-trained on ImageNet-21k
with MD to show it can improve near-OOD detec-
tion, at least in benchmark datasets as CIFAR-10
and CIFAR-100. As presented in (Zhang and Ran-
ganath, 2023), robustness to spurious correlations
plays an important role in OOD detection for real
word datasets once, for example, objects captured in
a shared scene will inevitably contain many confound
features in common (e.g. same background). Further-
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more, the approach proposed by (Fort et al., 2021) is
still subject to some of the limitations of MD methods
as discussed in (Maciejewski et al., 2022).

Contrastive Learning (CL) (Schroff et al.,
2015)(Chen et al., 2020) has also been explored in
OOD detection tasks. In (Tack et al., 2020), for
example, a self-supervised CL based RestNET-18
is trained with rotated samples to serve as negative
examples in the contrastive loss function. As stated
by the authors, and demonstrated in (Chen et al.,
2020), the most appropriate shift transformations for
CL are dataset dependent, that is, not invariant to data
distribution and may not work well for expansible
datasets. More recent approaches (Sun et al., 2022)
(Mou et al., 2022) combine CL with nearest neigh-
bors algorithms attempting to provide alternative
OOD distance functions. Arguing that CL may not be
sufficient to learn proper in distribution representa-
tions for OOD, (Li et al., 2023) propose a ViT based
model trained on Masked Image Modeling (MIM).
For the OOD metric, they conclude the Mahalanobis
distance gives the best results. Experiments did not
account for data containing varying amounts of noisy
samples or incorrect labels, which are common in
expansible datasets.

2.4 Overconfidence and Uncertainty
Estimation

Most modern deep learning models are based on
the softmax to compute probabilities and the cross-
entropy as the loss function. However, these prob-
abilities can be overestimated and do not represent
true likelihood (Guo et al., 2017). Moreover, train-
ing data with one-hot labels may lead to cross-entropy
overfitting to labels before it actually overfit to data
(Zhang et al., 2017). Both issue lead to overconfi-
dent models and hinders uncertainty estimation. As
mitigating measures, (Kristiadi et al., 2020) proposes
an adversarial training technique to enforce low con-
fidence for far out-of-distribution data. Mixup (Zhang
et al., 2017) combines samples and labels from differ-
ent classes to provide soft targets. Label smoothing
(Müller et al., 2019), which we have employed in our
method, has been proven (Zhang et al., 2021) to be
a effective regularization technique to soften one-hot
labels and mitigate overconfidence.

Despite the great advances in related works pre-
sented in items 2.2, 2.3, 2.4 of this section, automated
or semi-automated annotation in expansible datasets
remains one of the big challenges to be overcome for
data labeling in video monitoring networks. More
concretely, the new datasets are going to be built in
continuously sourced by video footage from security

cameras monitoring open public areas such as in the
dependencies of the University of São Paulo (USP).
The most common classes of objects found in this
environment are vehicles, including cars, buses and
trucks, persons, bicycles, motorcycles, animals (e.g
dogs, wild birds) and an assortment of static objects
such as trees, traffic signs, benches, etc. Due to most
of these classes being present in both ImageNet and
COCO datasets, we proceeded to evaluate the last it-
eration of YOLO (Jocher et al., 2023) object detector
pre-trained on both dataset on videos from USP cam-
eras in order to crop out samples for classification.
Not surprisingly, detection effectiveness depends on
the camera and also on the class as shown in Table 1.
In the scope of this work, we consider only the classes
motorcyclist, cyclist and pedestrian. These classes
have many visual attributes in common and will fur-
ther challenge our semi-automated labeling method.
Furthermore, detection of motorcyclists and cyclists
is done by object composition as presented in (Nardi
et al., 2022).

3 PROPOSED METHOD

Creating a new annotated dataset is a laborious as-
signment that, in spite of many tools to generate au-
tomated annotations (Adnan et al., 2021), ultimately
requires human expertise to at least assert the quality
of annotations (CAI Li and Yang-Yong, 2020).Noise
is unavoidable when collecting data from real world
sources. The magnitude and type of noise present
in our generated datasets will depend on how well
the object detection tool generalizes to each cam-
era. In this work we are concerned with two types
of noise: noisy labels (Jiang et al., 2020) and noisy
images. Noisy labels arrive from confusion between
classes during detection (e.g cyclist vs motorcyclist),
while noisy images are false positives containing
mostly pieces of background or heavily occluded ob-
jects.Table 1 illustrates the varying amount of noise in
the raw objects dataset depending on the data source.
For each chosen camera, a random sample of a 1000
images per class is selected for human validation.
Both noisy images and noisy labels are removed. For
example, we consider the sample for camera S5-24 to
be low noise for all classes. On the other hand, while
the sample for camera S5-15 has moderate noise for
the classes motorcyclist and cyclist, it is more severe
for the person class. Our proposed method is able to
discard both types of noise as far OOD samples and,
as long as good cropped images are being produced,
learning is feasible once we can always obtain more
data for low efficiency cameras.
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Table 1: Number of correct classified samples (human validated) of a random selection of a thousand images per class
(motorcyclist, cyclist and pedestrian) from the raw dataset produced by YOLOv8 on video footage from several USP cameras.

camera motorcyclist (1000) cyclist (1000) person (1000) total (3000)
S5-12 807 843 662 2312 (77.0%)
S5-13 682 825 847 2354 (78.4%)
S5-15 752 755 405 1912 (63.7%)
S5-24 962 958 912 2832 (94.4%)

S10-08 346 599 491 1436 (47.8%)

Small datasets sampled from real world sources,
lets say about 1000 samples per class, even in the ab-
sence of label or sample noise as defined earlier usu-
ally are insufficient to properly learn a domain distri-
bution. However, this limited dataset do contain some
knowledge to train weak classifiers. Furthermore, in
case we can segment this dataset per data source (i.e
per camera), we can train a team of n independent bi-
nary weak classifiers (one for each class) that can col-
laboratively reach a voting-based consensus to iden-
tify near-OOD samples, which we empirically show
that are the ones containing novel information regard-
ing the distribution of this dataset segment. A batch
of these near-OOD samples, automatically labeled by
the team, can be selected based on the team joint con-
fidence to increment the training set and expand the
model knowledge. Because we start with weak classi-
fiers, we increase the training set in small increments
to avoid absorbing too much noise. After only a few
rounds of increment-and-train, we have a team of ex-
perts for that distribution. Our solution should not
be confused with ensemble learning (Zhang and Ma,
2012). Contrary to the later approach, member of
our committee evolve from weak classifiers at train-
ing phase to full fledge independent models.

3.1 Model Architecture

Figure 1 depicts our proposed architecture for a team
of classifiers. All members of this team, also called
branches, are ResNet-18 (He et al., 2016) paired with
CBAM (Woo et al., 2018) attention layers. Branches
are binary classifiers specialized in a single class, that
is, they individually decide if a given sample belongs
(true) or do not belong (false) to that class. Input data
for training is split in a One-vs-Rest (OvR) fashion
where, for each branch, the true class contain only
samples of a specific class (e.g. motorcyclist) and the
false class is composed of a combination of samples
from all other classes (e.g cyclist + pedestrians). In
our experiments, this training data arrangement has
been demonstrated to be a reliable way to approxi-
mate the pseudo-class I don’t know when decisions
are made collaboratively by the members of a classi-
fication team. Moreover, in order to mitigate the over-

confidence problem (Hein et al., 2019) that may occur
when training ResNets with piece-wise linear activa-
tion functions (e.g. Relu and variants), models are
trained with label smoothing (Szegedy et al., 2015).
In summary, we have the following hyper-parameters:

• Implemented in PyTorch framework

• Three classes (Motorcyclist, Cyclist and Pedes-
trian)

• Max epochs: 30

• Batch sizes: Train = 64, Test = 16

• Early stopping to avoid overfitting

• 5-fold validation

• Kaiming weights initialization(He et al.,
2015)(He et al., 2019a)

• Weighted Cross-Entropy with label smoothing as
the loss function

• Gradients calculated with SGD (learning rate =
0.1, momentum = 0.9, weight decay = 5∗10−4)

• Cosine Annealing learning rate sched-
uler(Loshchilov and Hutter, 2016)

3.2 Team Consensus

When in evaluation mode, individual decisions are
combined in the voting module. One simple yet
effective voting strategy is the consensus, meaning
all branches must agree on one class. For exam-
ple, Figure 2 illustrates the results of the evaluation
of a picture containing a motorcyclist for which the
”motorcyclist” branch voted true while the other two
branches, ”cyclist” and ”pedestrian”, voted false, thus
reaching an agreement for classifying this image as
motorcyclist. On the other hand, Figure 3 illustrates a
case of no consensus for which both the ”cyclist” and
the ”pedestrian” branches voted true. In this case, the
team as a whole could not decide and the verdict is ”I
don’t know”. The confidences of each branch will be
used as thresholds to decide what images should be
considered for expanding the training set for the next
iteration.
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Figure 1: Classification team architecture.

Figure 2: Evaluation of a picture containing a motorcyclist
for which the ”motorcyclist” branch voted true while the
other two branches, ”cyclist” and ”pedestrian”, voted false,
thus reaching an agreement.

Figure 3: Team was unable to reach a consensus and the
final verdict is ”I don’t know”.

4 EXPERIMENTS

The main source of data for the following exper-
iments is USP-EMS (Electronic Monitoring Sys-
tem)(Ferreira et al., 2018). It contains hundreds of se-
curity cameras to monitor USP dependencies in eight
campuses in the state of São Paulo, Brazil. The
footage used in this work was collected during the
years of 2021 and 2022, spanning varying seasons,
weather and times of the day. Each source video is

one hour long. These cameras were hand picked in
close collaboration with campus security department
to reflect regions and times of biggest traffic move-
ment, cyclist concentration, street crossing and some
intersections prone to intercurrences.

In order to avoid manual annotating data from
scratch, we leverage transfer learning by feeding raw
video data to a pre-trained object detector and tracker
for objects cropping. For this purpose, the most suit-
able tool we found was a combination of YOLOv8
(Jocher et al., 2023) pre-trained on COCO (Lin et al.,
2014) dataset, the strongSort object tracking algo-
rithm (Du et al., 2023) and our custom cyclist and
motorcyclist detection algorithm (Nardi et al., 2022).
This combination, named YOLO+, produced enough
data containing our three chosen target classes (pedes-
trian, cyclists and motorcyclists) with varying levels
efficiency of noise depending on the camera. The
tracking algorithm is necessary to group together
unique objects as much as possible to optimize data
usage at training time and to alleviate the oversam-
pling effect (Mohammed et al., 2020). Samples are
organized hierarchically by camera, video file of ori-
gin, class and unique object. The final dataset for im-
age classification is a 3-sampled view (i.e. three sam-
ples per unique object) of the original data.

4.1 Incremental Learning

The incremental learning process in our proposed ar-
chitecture starts with a small human validated por-
tion of the targeted expansible dataset assuming la-
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Table 2: Difference in terms of recall and average confidence (true class only) of a classification team trained on the initial
human validated dataset (1000 images per class) vs. trained on a random sample of the same size from the raw output as
produced by YOLO+, and the team of experts after six rounds for camera S10-08

S10-08 recall average confidence
dataset origin motorcyclist cyclist pedestrian motorcyclist cyclist pedestrian

raw 65.3% 48% 66% 58.4% 61% 44.3%
human 91.5% 88% 88% 89.3% 88.1% 85.7%
experts 96.3% 95.8% 93.6% 95.1% 94.7% 93.2%

bels, if present, cannot be relied upon and an variable
amount of noise is present. We fixed the size of this
initial dataset in one thousand images per class once
this quantity was sufficient to bootstrap the incremen-
tal learning in all evaluated cameras. Furthermore, it
takes on average only 12 minutes of human supervi-
sion per class to select that amount from a slight larger
random batch (about 2000 samples) from raw cropped
data, which itself is pre-classified by YOLO+. As pre-
sented in Table 1, the raw data produced for camera
S10-08 contains a large amount of noise, to the point
of precluding learning. After cleaning up this noise,
a massive improvement was observed as displayed in
Table 2, further improved after the incremental learn-
ing. Similar improvements were observed for all four-
teen cameras selected as data sources. Due to space
limitation, these results were not included in this pa-
per.

Once the initial dataset is selected, we proceed
to the first round of incremental learning. Table 3
presents the evolution of branches training after six
rounds of increment-and-train. The dataset is split
into 80% for training and 20% for validation. Eval-
uation metric is the recall for the individual voting
classes True and False. The numbers i1 ... i5 rep-
resent the new set of thousand images per class as
selected by the team through the consensus mecha-
nism. For the selection strategy, we evaluate on the
remaining samples in the raw dataset for that specific
camera and sort the output of the consensus by confi-
dence, considering only the top 25% values (the up-
per quartile) as candidates. Among the candidates,
selection of the next thousand samples, is random
once it demonstrates to be beneficial to mitigate in-
ductive biases introduced by human selecting samples
in step i0 (Kaltenpoth and Vreeken, 2023), which if is
not addressed, may propagate to subsequent iterations
and potentially degenerate some models. When visu-
ally inspecting the self-selected samples less and less
noise is observed, reflecting the improvement in recall
numbers and providing compelling evidence that, in
fact, our learning strategy converges towards the true
underlying distribution of these expansible datasets.

4.2 Limitations and Assumptions

This work was initially developed to address a real-
world demand to produce reliable annotations for
non-stop growing datasets of objects extracted from
security cameras in USP-EMS. In this scenario, we
are able to define individual cameras as local do-
mains, thus producing local datasets. The concept of
near/far OOD in this limited view of the world, al-
though based on real-word data, is more self-behaved
than applying the same concept without imposing any
restriction on global data (from all cameras sources).
In order to overcome this limitation, we are currently
working on an improved version of our approach
based on concepts and techniques proposed in some
of the works presented in Section 2.

5 CONCLUSION

One main challenge when building novel datasets is
how to reliably annotate data for supervised learn-
ing. Expansible datasets continuously sourced by
real-world live sensors, in our case security cameras,
takes this challenge even further due to the increased
significance of distribution shifts and the inexorable
presence of noise. When training classification mod-
els to evaluate new incoming data, these changes in
data distribution manifest itself in the form of near-
OOD samples, while noise is mostly concentrated in
the far-OOD ones. Based on this premise, our active
learning based strategy along with the consensus al-
gorithm enables us to build highly accurate collabo-
rative models, starting with weak classifiers that re-
quire only small subsets of human verified data to
bootstrap training. The teams of experts have been
demonstrated to be a simple yet effective approach to
auto-annotate the sheer amount of data found in ex-
pansible datasets.
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Table 3: Recall results of Incremental learning for six rounds on camera S10-08 (Praça R) with a team containing three
members (motorcyclist, cyclist and pedestrian). Only the data for the initial iteration (i0) is human certified. After every
training round, the team jointly evaluates, through the consensus mechanism, the available raw data for that camera to select
near OOD samples to increment the training set (1000 images increments)

Camera S10-08 (Praça R): Branches Recall

Motorcyclist Cyclist Pedestrian
true false true false true false

i0 (human) 91.5% 92.2% 88% 92% 88% 94.2%
i0+i1 93.5% 94% 93.7% 95.1% 92.2% 94.3%
i0+i1+i2 93.6% 90.2% 94.8% 94.9% 93.1% 92%
i0+i1+i2+i3 97.6% 93.4% 96.6% 95% 91.1% 94.1%
i0+i1+i2+i3+i4 95.6% 94% 96% 96.7% 93% 96.9%
i0+i1+i2+i3+i4+i5 96.3% 95.1% 95.8% 96.9% 94.6% 96.4%
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