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Abstract: Uncertainty poses a significant challenge in ontology-based systems, manifesting in forms such as incomplete

information, imprecision, vagueness, ambiguity, or inconsistency. This paper addresses this challenge by

introducing a quantitative possibilistic approach to manage and model incomplete information systematically.

Ontologies are modelled using the Domain Information System (DIS) framework, which is designed to handle

Cartesian data structured as sets of tuples or lists, enabling the construction of ontologies grounded in the

dataset under consideration. Possibility theory is employed to extend the DIS framework, enhancing its ability

to represent and reason with incomplete information. The proposed extension captures uncertainty associated

with instances, attributes, relationships, and concepts. Furthermore, we propose a reasoning mechanism within

DIS that leverages necessity-based possibilistic logic to draw inferences under uncertainty. The proposed

approach is characterized by its simplicity. It improves the expressiveness of DIS-based systems, introducing

a foundation for flexible and robust decision-making in the presence of incomplete information.

1 INTRODUCTION

One of the primary challenges in knowledge-based

systems, particularly those that rely on ontologies

for domain reasoning, is managing uncertainty stem-

ming from incomplete information. In dataset-driven

ontologies, data is contextualized to define con-

cepts, relationships, and instances. However, real-

world applications frequently suffer from missing

or partial information, leading to epistemic uncer-

tainty (Sentz and Ferson, 2002). This type of un-

certainty affects instance classification, attribute re-

liability, relationship strength, and concept validity.

When unaddressed, such uncertainty can render on-

tologies either overly rigid, failing to accommodate

partial knowledge, or misleading, by permitting un-

justified inferences. Effectively managing uncer-

tainty is therefore essential to ensure the expressive-

ness, reliability, and adaptability of ontology-based

systems, especially in the context of decision sup-

port or automated reasoning systems. To illustrate,

consider a customer service ontology; the concept

PositiveFeedback may depend on attributes like

Satisfaction, Quality, and ResponseTime. If one
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of these values is missing or partially available, classi-

cal inference systems may fail to classify an instance

as PositiveFeedback or do so incorrectly. This

highlights the need for a framework that can represent

and reason under partial knowledge.

This paper introduces a quantitative possibilistic

extension to the Domain Information System (DIS)

framework (Marinache et al., 2021) to represent and

reason under partial knowledge. DIS is a bottom-

up, data-centric formalism that constructs ontologies

from datasets, structurally separating the domain on-

tology from the data view and linking them via a map-

ping operator. Unlike Description Logic (DL)-based

ontologies, which separate the A-Box and T-Box log-

ically, DIS achieves this separation structurally and

grounds the ontology in data, reducing data-ontology

mismatches. DIS is useful for aligning ontologies

with real-world datasets, which makes it particularly

effective for domains where ontologies must be gen-

erated or adapted from existing data sources, im-

proving modularity, transparency, and maintainability

in ontology design. In contrast to traditional ontol-

ogy languages like Web Ontology Language (OWL),

which struggle to directly represent mereological re-

lationships in Cartesian datasets (i.e., the structured

data itself) without complex extensions, DIS lever-
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ages cylindric algebra and Boolean algebra to model

both data structures and conceptual part-whole re-

lations. This enables more natural and robust han-

dling of mereological reasoning within structured

data. However, the original DIS model does not cap-

ture domain uncertainty and information uncertainty.

The proposed approach overcomes this by associating

each ontological component with quantified certainty.

Unlike vagueness or imprecision, the fo-

cus here is on uncertainty due to incomplete-

ness, typically addressed via probability theory

(e.g., (Laha and Rohatgi, 2020)), possibility theory

(e.g., (Dubois and Prade, 2015)), or Dempster–Shafer

theory (e.g., (Sentz and Ferson, 2002)), as discussed

in (Alomair et al., 2025). In this study, possibility

theory is adopted and rationale behind this selection

is explained in the section 5.

The proposed approach models uncertainty across

all key ontological elements: attributes, concepts, re-

lationships, and instances. The key contributions of

this paper are as follows:

1. Modelling Uncertainty of Attributes: Introduces a

necessity-based mapping from the dataset’s attributes

to ontology concepts.

2. Modelling Uncertainty of Instances: Proposes an

instance distribution relation (SV D ), allowing a datum

(instance) to be assigned to multiple sorts (attributes)

with varying degrees of certainty.

3. Modelling Uncertainty of Relationships: Intro-

duces necessity-based relationship, which allows re-

lationships to hold with varying levels of certainty.

4. Modelling Uncertainty of Concepts: Refines the

construction of datascape concepts (which depend on

available data values) by incorporating uncertainty

modelling into their data-specializing predicate.

5. Possibilistic Reasoning for Uncertainty-Aware In-

ference: Develops a reasoning mechanism within

the DIS framework, leveraging necessity-based pos-

sibilistic logic to support inference under incomplete

information.

The paper is structured as follows: Section 2 in-

troduces foundational theories. Section 3 presents the

integration of possibilistic components into the DIS

framework, followed by uncertainty-aware reasoning

in Section 4. Section 5 reviews related work and of-

fers a discussion. Section 6 concludes the paper and

outlines future directions.

2 PRELIMINARIES

This section reviews uncertainty in ontology, intro-

duces possibility theory and possibilistic logic, and

presents the theoretical background of the DIS frame-

work.

2.1 Uncertainty and Ontology

Information imperfection includes incompleteness,

imprecision, vagueness, ambiguity, and inconsis-

tency (Ma et al., 2013; Bosc and Prade, 1997). The

paper adopts a broad interpretation, considering

uncertainty as arising from any of these defi-

ciencies, as adopted in (Anand and Kumar, 2022;

Ceravolo et al., 2008). Incompleteness arises when

information is partial. This creates uncertainty about

which interpretation of a statement to rely on, of-

ten addressed by calculating an estimation degree

for possible worlds (Straccia, 2013). Imprecision

refers to the lack of exactness, occurring when data

is expressed in approximate or qualitative terms in-

stead of precise values (Ma et al., 2013). Vagueness

emerges when terms or concepts lack clear bound-

aries (Straccia and Bobillo, 2017). Ambiguity arises

from multiple interpretations (Ma et al., 2013), and

inconsistency involves contradictions, such as con-

flicting statements (Bosc and Prade, 1997).

An extensive review of uncertainty mod-

elling in domain ontologies is presented

in (Alomair et al., 2025). The survey examines

over 550 studies published between 2010 and 2024

on this topic. A guiding taxonomy is proposed,

classifying ontological uncertainty into concept

uncertainty and information uncertainty. This clas-

sification supports the systematic identification of

uncertainty types across ontological frameworks and

the selection of appropriate formalisms to manage

them. Concept uncertainty involves uncertainty of

relationships, uncertainty of attributes defining a

concept, and uncertainty due to semantic ambiguity,

where context influences the interpretation of a

concept. Information uncertainty concerns asso-

ciating instances with concepts or relations. The

identified uncertainties are attributed to incomplete,

imprecise, vague, or inconsistent information. Then,

various formalisms are presented to manage these

uncertainties. This taxonomy offers a structured ap-

proach to understanding and addressing uncertainty

in ontology-driven systems. A visual representation

of the taxonomy is shown in Figure 1.

2.2 Possibility Theory and Possibilistic

Logic

Possibility theory models incomplete and inconsistent

knowledge using qualitative (ordinal) or quantitative

(numerical) approaches (Dubois and Prade, 2015).
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Figure 1: Ontological Uncertainty Taxonomy.

The qualitative approach ranks events without nu-

merical degree (e.g., ”highly possible”, ”possible”, or

”less possible”), while the quantitative approach as-

signs a numerical degree to represent degrees of pos-

sibility. Possibility distribution represents an agent’s

knowledge about the world by assigning plausibility

degrees to states in a set S, which may be finite or in-

finite. Formally, it is a function π : S → L, where L is

a totally ordered scale (often [0,1]). The value π(x)
expresses how plausible the state x ∈ S. A value of

π(x) = 0 means state x is impossible, while π(x) = 1

means it is fully plausible. If S is exhaustive, at least

one state must have plausibility 1. The possibilis-

tic framework captures both complete and incomplete

knowledge. Complete knowledge is represented by

assigning possibility 1 to a single state and 0 to all

others. Complete ignorance is modeled by assign-

ing possibility 1 to all states, indicating that any state

could be true. The possibility distribution forms the

basis for defining possibility and necessity measures

over any subset X ⊆ S:

Π(X) = sup
x∈X

π(x) and N(X) = inf
x/∈X

(1−π(x)), (1)

where Π(X) indicates feasibility, and N(X) expresses

certainty (Alola et al., 2013). The measures are dual

via: N(X) = 1 − Π(X ′), where X ′ is the comple-

ment of X . Possibility measures follow the maxitiv-

ity axiom: Π(A∪B) = max(Π(A),Π(B)), while ne-

cessity measure satisfies the dual minitivity axiom:

N(A ∩ B) = min(N(A),N(B)). The necessity degree

for the union of two sets satisfies the following prop-

erty, expressed as (Dubois and Prade, 2014):

N(A∪B)≥ max(N(A),N(B)) (2)

Unlike probability theory, which quantifies

likelihood, possibility theory evaluates feasibility.

In (Zadeh, 1999), a distinction between possibility

and probability theories has been made through an

example of ”Hans is eating eggs for breakfast”. In

his example, the possibility distribution of (πX(3) =

1) suggests it is entirely possible for Hans to eat

three eggs, but the probability (PX(3) = 0.1) indicates

this outcome is statistically rare. This demonstrates

that high possibility does not imply high probabil-

ity, though an impossible event (πX(u) = 0) has zero

probability (PX(u) = 0).
Possibility theory underpins possibilistic logic,

which we limit here to necessity-based possibilistic

logic (Dubois et al., 1994; Dubois and Prade, 2014;

Nieves et al., 2007). In this logic, a formula is a pair

(θ,α), where θ is a classical first-order logic formula,

and α ∈ [0,1] is a certainty or priority degree. This

pair indicates that θ is certain at least to level α, (i.e.,

N(θ) ≥ α). The interval [0,1] can be replaced by

any linearly ordered scale. Standard limit conditions

hold: Π(⊥) = N(⊥) = 0, Π(⊤) = N(⊤) = 1, where

⊥ and ⊤ denote contradiction and tautology, respec-

tively. In the formal system of this logic, the follow-

ing properties hold: N(θ ∧ γ) = min({N(θ),N(γ)})
and N(θ ∨ γ) ≥ max({N(θ),N(γ)}), where θ and γ
are formulae. One of its main rules is the weakest

link resolution rule:

(¬θ ∨ γ,α),(θ ∨ δ,β) ⊢ (γ ∨ δ,min(α,β)), (3)

Here, the conclusion’s certainty is the smallest among

the premises, reflecting that an inference chain is lim-

ited by its weakest premise.

The weighted minimum and maximum

operations, introduced in (Grabisch, 1998;

Dubois and Prade, 1986) within the framework

of possibility theory, generalize the standard min and

max functions to account for elements from different

contexts, each associated with a distinct weight of

importance. These operations refine aggregation by

modulating the influence of each element based on

its assigned weight.

Let X = {x1, · · · ,xn} be a set of criteria. Let ai and

wi be, respectively, the score and the weight of impor-

tance attributed to criterion xi such that Σn
i=1wi = 1.

Then we have:

Weighted Min(a1, · · · ,an) = min(i | 1 ≤ i ≤ n :

max((1−wi),ai)).

This formulation ensures that elements with lower

weights contribute less to the overall minimum com-

putation. Similarly, the operation Weighted Max is

given by:

Weighted Max(a1, · · · ,an) = max(i | 1 ≤ i ≤ n :

min(wi,ai)).
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2.3 Domain Information System

DIS is an ontology framework consisting of

three primary components (Marinache et al., 2021;

Marinache, 2025): Domain Ontology View (DOnt)

O, Domain Data View (DDV) A , and mapping func-

tion τ linking A to O, forming the structure D =
(O,A ,τ).

The DOnt, O =(C ,L,G), is composed of three el-

ements. The concept structure C = (C,⊕,ec), which

is a commutative idempotent monoid where the car-

rier set C includes an empty concept (ec), a set of

atomic concepts (T ) derived directly from dataset at-

tributes, and composite concepts formed using the ⊕
operator. The Boolean lattice L = (L,⊑c) organizes

concepts hierarchically based on a natural order ⊑c,

defined as c1 ⊑c c2 ⇐⇒ c1 ⊕ c2 = c2. Lastly, the set

of rooted graphs G provides additional expressiveness

by capturing concepts and relations beyond those de-

fined by the lattice structure. Each rooted graph Gti =

(Ci,Ri, ti) consists of a set of vertices Ci ⊆C, a set of

edges Ri, and a root vertex ti ∈ L.

The DDV, A = (A,+,⋆,−,0A,1A,{ck}k∈U), is

formalized as a diagonal-free cylindric algebra, where

U is a finite set of sorts (the universe). The main

notion of this view is sort, which corresponds to an

attribute in the dataset. The ordered pair of a sort

and its value is known as Sorted Value (SV). A

set of SV with a maximum of one SV for each sort

forms Sorted Datum (S Datum). The carrier set A

consists of Sorted Data (S Data), structured as a set

of S Datum. The cylindrification operators ck are in-

dexed by the sorts used in the data, corresponding to

the elements of L, the carrier set of the Boolean lattice

L . For a deeper understanding of cylindric algebra,

readers are referred to (Imieliński and Lipski, 1984).

The final component of DIS is the mapping func-

tion τ : A → L, which links the elements of A in DDV

to their corresponding concepts in the Boolean lattice

L within DOnt. To define τ, several helper opera-

tors introduced, one of which is the helper mapping

operator η : U → L. This ensures a one-to-one corre-

spondence between the sorts in DDV and the atomic

concepts in the Boolean lattice of DOnt. Ensuring

a seamless mapping from data attributes to ontology

concepts: η(Sattr) = attr, where Sattr and attr are a

sort and an atomic concept, respectively.

In DIS, concepts are categorized based on their de-

pendence on objective reality or data elements, lead-

ing to the distinction between objective concepts and

datascape concepts, denoted by Cd . Objective con-

cepts exist independently of any dataset. For instance,

consider the objective statement ∃(x | x ∈ Animal :

Pet(x)). The concept Pet remains valid regardless

of whether supporting data is available. In contrast,

datascape concepts rely on data for their definition

and existence. For instance, consider the modified

example ∃(x | x ∈ Animal : Active Pet(x)). The con-

cept Active Pet, defined as a pet that exercises for at

least one hour daily, depends on a specific data source

such as daily activity logs. If such data is unavailable

or does not meet the required conditions, the concept

cannot be realized. Formally, a datascape concept in

a DIS is defined as follows:

Definition 1 (From (Alomair and Khedri, 2025),

Datascape Concept). Let D = (O,A ,τ) be a given

DIS. For a carrier set A in A and a lattice L in

O, a datascape concept Cd is defined as follows:

Cd
def
= {a | τ(a) ∈ L ∧ Φ(a)}, where a ∈ A and Φ

is a data-specializing predicate expressed in Disjunc-

tive Normal Form (DNF). This predicate Φ is given

by: Φ(a) =∨ (i | 1 ≤ i ≤ N : Ψi(a)), with N is a

natural number, and each conjunctive clause Ψi(a)
is defined as: Ψi(a) =∧ ( j | 1 ≤ j ≤ M : Ω(i, j)(a)),
where M is a natural number and Ω(i, j)(a) = ( f(i, j)(a ·
sort name(i, j)),c(i, j))∈ R(i, j), where f(i, j) ∈F , and

F = {⊕,ec,⊤L ,+,⋆,−,0,1,τ,cyl} is the set of func-

tion symbols, c(i, j) is a ground term in the DIS lan-

guage, and R(i, j) is a relator.

Based on the above definition, we define the oper-

ation ⊕ as an operation on concepts.

Definition 2. Let D = (O,A ,τ) be a given DIS. Let

Cd1 = {a | τ(a)∈ L ∧ Φ1(a)}, and Cd2 = {a | τ(a)∈
L ∧ Φ2(a)} be two datascape concepts defined on D.

We have Cd1 ⊕Cd2 =

Cd1 ∪ Cd2 = {a | τ(a) ∈ L ∧ (Φ1(a) ∨ Φ2(a))}.

The structure of the Cd1 ⊕Cd2 is that of a datas-

cape as (Φ1(a)∨ Φ2(a)) is in DNF and the other con-

ditions stipulated by Definition 1 are satisfied. More-

over, the empty concept e can be perceived as a datas-

cape concept defined as e = {a | τ(a) = ec ∧ false}=
/0. Hence, if we take, for a given DIS, Cd is the set of

datascape concepts, then (Cd ,⊕,ec) is a commutative

monoid due to the properties of set union.

Illustrative Example of DIS Construction. We con-

sider a CustomerService dataset with the attributes:

Satisfaction, Quality, and ResponseTime. The

corresponding DIS structure is built as follows:

1. Lattice construction: Each dataset attribute

is mapped to an atomic concept: τ =
{(Quality,Status),(ResponseTime,Duration),
(Satisfaction,Comfort)}. Then the rest of the

Boolean lattice is generated, where each node rep-

resents a possible composition of atomic concepts

(e.g., status Tenure = Status⊕Duration).
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2. Objective rooted graph concept: Rooted graphs

enrich the ontology beyond lattice nodes.

One such objective concept is Feedback,

rooted at CustomerService, and defined ab-

stractly as follows: Feedback
def
= {a | τ(a) ∈

CustomerService}.

3. Datascape rooted graph concept: A rooted graph

concept might be a datascape concept, in which

its definition depends on data. For exam-

ple, the concept PositiveFeedback can be

defined as: PositiveFeedback= {a | τ(a) ∈
CustomerService ∧ a.Satisfaction ≥ 0.6}.

The predicate here indicates that an instance a of

the Satisfaction attributes should have a value

greater than or equal to 0.6.

4. Construction of the domain data view: An ex-

ample of SV is (Quality, Good). An exam-

ple of S Datum is dt 1 = {(Quality, Good),

(ResponseTime, Fast), (Satisfaction, Yes)}.

An example of S Data is a = {dt 1,dt n}.

5. Building the whole DIS system: The DIS is then

formed by (O,A ,τ). A full illustration of the DIS

structure is shown in Figure 2.

Figure 2: Customer Service DIS Framework.

3 UNCERTAINTY MODELLING

IN DIS FRAMEWORK

In this section, we extend the DIS framework to

handle uncertainty by addressing two key questions:

What type of uncertainty can be modelled, and where

in the DIS framework it can be introduced. As noted

in section 1, we focus on incomplete information and

adopt possibility theory as the formalism.

To illustrate where uncertainty can arise, Figure 3

shows an example using a customer service dataset.

Database attributes may assign values, introducing

uncertainty of instances. These attributes are mapped

via the operator τ (shown by arrows) to atomic con-

cepts introducing uncertainty of attributes. The lat-

tice is further expanded with multiple rooted graphs,

such as PositiveFeedback and Feedback, introduc-

ing uncertainty of concepts. The Feedback graph in-

cludes specialized concepts like Rating, with arrows

indicating semantic paths among these concepts, cap-

turing the uncertainty of relationships.

Figure 3: Necessity Degrees Assigned to DIS.

Since the focus is on uncertainty due to incom-

plete information, it is crucial to distinguish between

data and information. In our formalism, a datum is

strictly a raw value without any assigned context (e.g.,

the number 3.7 isolated from metadata, units, or se-

mantics). At this stage, it has no uncertainty; Un-

certainty arises only when contextual interpretation is

applied (e.g., labelling 3.7 as “sensor voltage reading

with ±0.2 error”). We acknowledge that the broader

literature often treats data as implicitly contextualized

(and thus uncertain), but our formalism explicitly sep-

arates raw values from their contextual layers. It is

also important to emphasize that the assigned degree

is explicitly interpreted as a measure of certainty, not

as a degree of truth or graded quality. For this reason,

we adopt necessity-based possibilistic logic, where
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necessity degrees directly correspond to the degree of

certainty. This interpretation aligns naturally with our

setting, in which the degree reflects the certainty in

the existence of concepts, in instance-to-concept and

attribute-to-concept associations, and in the presence

of relationships. In our approach, we examine four

types of uncertainty:

1. Uncertainty of mapping instances to sorts: When

mapping a value to a sort(attribute), for example, as

indicated in Figure 3, the Quality attribute being as-

signed values like Good or Bad, with a necessity de-

gree reflecting the degree of certainty with which the

value belongs to a given sort. For instance, assigning

(Good,0.9) to Quality indicates that for this particu-

lar instance, it is 0.9 certain that the Quality is Good.

2. Uncertainty in mapping attributes to atomic con-

cepts: When mapping a sort to a lattice concept, such

as associating Quality with the Status concept as

N(Quality → Status) = 0.7.

3. Uncertainty of relationships: When defining rela-

tionships among rooted graph concepts, like the rela-

tionship between Rating and Feedback is associated

with N(isA(Rating,Feedback)) = 0.9.

4. Uncertainty of datascape concepts: This

uncertainty arises when a concept is defined

in terms of data conditions that may them-

selves be uncertain. For example, consider

the datascape concept PositiveFeedback, de-

fined as PositiveFeedback = {a | τ(a) ∈
CustomerService ∧ a.Satisfaction ≥ 0.6}.

Here, the condition (Φ(a) = a.Satisfaction ≥ 0.6)

is the data-specializing predicate that character-

izes the concept. In our framework, the necessity

degree of the datascape concept itself, that is, the

degree to which the concept PositiveFeedback

holds in the presence of incomplete information, is

derived directly from the necessity with which its

data-specializing predicate is satisfied.

The first three types of uncertainty that are listed

above are given by the domain expert, while the last

one is calculated.

3.1 Uncertainty of Mapping Instances

to Sorts

In the traditional DIS framework, data records

(instances) are typically assigned to sorts (attributes)

through a certain mapping function. This assign-

ment is SV : V → U, where V is a finite set of

values assigned to the sort, and U is a finite set

of sorts (the universe). For example, consider a

customer service database presented in Figure 3,

where the attribute Quality can take values such

as Good and Bad. The traditional mapping function

would assign these values to the Quality sort,

as SV(Good) = Quality and SV(Bad) = Quality.

However, uncertainty brings nondeterminism in this

mapping, as a value might be assigned to several

sorts with some degree of certainty. Hence, to

account for the uncertainty in these assignments,

we introduce a new relation called the instance

distribution relation, denoted SV D , and defined as

SV D ⊆ V ×U × [0,1]. The relation SV D relates a

data value to sorts and necessity degree that represent

the degree of certainty in the assignment. A data

value might be assigned to several sorts with varying

degrees of certainty. In the example, the instance

distribution relation could return values like: SV D =
{ (Good,(Quality,0.9)),(Bad,(Quality,0.9)),
(Bad,(Quality,0.4)),(Good,(Satisfaction,0.7))}.
Here, the data value Good is assigned to the Quality

sort with a certainty of 0.9, while the value Bad is

assigned to the same sort with two different certainty

degrees: 0.9 and 0.4. These reflect varying contexts,

such as different data records, where assignment

certainty differs. Although the notation does not

explicitly represent context, it is implicitly captured

through association with different instances. Addi-

tionally, Good is assigned to the Satisfaction sort

with a certainty of 0.7. This extension enables the

framework to better reflect uncertainty by accommo-

dating varying degrees of certainty in data-to-sort

assignments.

3.2 Uncertainty in Mapping Attributes

to Atomic Concepts

As previously discussed in subsection 2.3, the DIS

framework defines the helper mapping operator η :

U → L, which assigns each sort (attributes) in U to its

corresponding atomic concept in the Boolean lattice.

Similar to the uncertainty of instances, uncertainty in

attribute mapping introduces non-determinism when

associating sorts with atomic lattice concepts. To ac-

count for this, we define the mapping distribution re-

lation ηD , which captures the uncertainty in this map-

ping. The relation ηD ⊆ U × L × [0,1] is provided

by a domain expert, and assigns a necessity degree to

each potential mapping.

Consider the customer service database presented

in Figure 3, where the mapping operators η are de-

fined as follows:

η(Quality) = Status,η(Satisfaction) =

Comfort,η(ResponseTime) = Duration.
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In this mapping, the sorts Quality, Satisfaction,

and ResponseTime correspond to the atomic con-

cepts Status, Comfort, and Duration, respectively.

To capture the uncertainty in these mappings, the

mapping distribution relation ηD assigns a necessity

degree to each association:

ηD(Quality) = (Status, 0.7),

ηD(Satisfaction) = (Comfort, 0.9),

ηD(ResponseTime) = (Duration, 0.8).

These degrees indicate the degree of certainty in each

mapping, allowing the DIS framework to handle the

uncertainty in the alignment between data attributes

and ontology concepts.

3.3 Uncertainty of Relationships

Within the DIS framework, there are relationships be-

tween the concepts of rooted graphs and a parthood

relationship between the concepts of the Boolean lat-

tice. The parthood relationship ⊑c forms the rela-

tionship between objective concepts given in the lat-

tice. The existence of this relationship among lat-

tice concepts is certain, as they are constructed by

a Cartesian construction from the atomic concepts.

In other terms, a concept k1 is considered a partOf

another concept k, if k1 is a Cartesian projection of

k or if its atomic structure is a subset of that of k.

However, the relations among the concepts of the

rooted graph might be uncertain. Given a rooted

graph Gti = (Ci,Ri, ti), Ci ⊆ C, Ri ⊆ Ci ×Ci, ti ∈ L,

its relation is transformed to give each edge a neces-

sity degree. We extend Ri to a necessity-based RD
i .

Hence, RD
i ⊆ Ri× [0,1], which incorporates necessity

degrees to quantify the degree of certainty associated

with each relationship.

In the customer service database illustrated

in Figure 3, the relation of the rooted graph, denoted

by Ri, is the following: Ri =

{(isA(PositiveFeedback,CustomerService)),

(isA(Complaints,Feedback)),

(isA(Rating,Feedback)),

(isA(Feedback,CustomerService)),

(isA(Compliments,Feedback))}

Hence, the relations RD
i is given as follows: RD

i = {

(isA(PositiveFeedback,CustomerService),0.4),

(isA(Complaints,Feedback),1),

(isA(Rating,Feedback),0.9)

(isA(Feedback,CustomerService),0.5),

(isA(Compliments,Feedback),0.7)}

These necessity degrees quantify the degree of cer-

tainty in each relationship, enabling the framework

DIS to systematically capture and reason about un-

certainty in relational structures.

3.4 Uncertainty of Datascape Concepts

If we examine the elementary predicate Ω(i, j)(a),
which is used in building the data-specializing predi-

cate Φ(a) of a datascape concept and which is equal

to ( f(i, j)(a ·sort name(i, j)),c(i, j))∈R(i, j), we find that

there are two sources of uncertainty. The first comes

from mapping a datum a to a sort due to the usage

of the term a · sort name(i, j), and the second comes

from the relator R(i, j) used in Ω(i, j)(a). Hence, by

capturing these two sources of uncertainty, we capture

the uncertainty of the datascape concept. For that, we

adopt the weighted minimum function, previously de-

fined in subsection 2.2. The weights of instance map-

ping winst, and the weight of the relationship wrel

assign relative importance to the necessity measures

SV D(a) and RD
i (a), with winst+wrel = 1. Then, we

have the following inductive procedure for calculat-

ing the necessity degree NΦ(a) of a datascape concept

having Φ as its data-specializing predicate.

Procedure 3.1 (Necessity Degree of a Datascape

Predicate). Let D = (O,A ,τ) be a given DIS. Let

Cd = {a | τ(a) ∈ L ∧ Φ(a)} be a datascape con-

cept that is defined within D, and has Φ as its spe-

cializing predicate. For a given element a ∈ A, let

δ = (winst = wWrel) ∨
(

(SV D(a)≤ (1−winst)) ∧

(RD
(i, j)(a) ≤ (1 − wWrel))

)

. The necessity degree

N(Φ(a)) is computed inductively as follows:

• Base cases:

1. N(true) = 1;

2. N(false) = 0.

3. N(Ω(i, j)(a)) =


































min

(

SV D(a),RD
(i, j)(a)

)

, if δ = true,

min

(

max

(

(1−winst),SV D(a)
)

,

max

(

(1−wrel),R
D
(i, j)(a)

)

)

, otherwise.

• Inductive cases:

1. Conjunction of atomic predicates:

N(Ψi(a))= min

(

j | 1≤ j≤M : N(Ω(i, j)(a))
)

2. Disjunction of conjunctive clauses:

N(Φ(a)) = max

(

i | 1 ≤ i ≤ N : N(Ψi(a))
)
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In the base case, the necessity degree of each

atomic predicate is considered. The necessity degree

of the ground terms true and false are, respectively,

1 and 0. For the elementary term Ω(i, j)(a) forming

Φ(a), we have several cases:

• When we have equal weights of all the criteria, then

the weights are omitted in determining N(Ω(a)).

• When both the certainty of a mapped to its sort

is below 1 minus the weight assigned to the map-

ping, and the certainty of the relator RD
(i, j)(a) used

in Ω is also below 1 minus the weight assigned to

the relationship, then the weights are also omitted.

Hence, when (SV D(a) ≤ (1−winst) and RD
(i, j)(a) ≤

(1−wWrel) means that the importance or influence of

the mapping of instances to sorts and the relator in the

overall-uncertainty determination outweighs the level

of uncertainty associated with it. That is why we ig-

nore the weights in this case.

We can extend the necessity degree function to the

datascape concepts as follows: N(Cd)
def
= N(Φ) =

max

(

a | a ∈ A : N(Φ(a))
)

, where Cd = {a | τ(a) ∈

L ∧ Φ(a)} is a datascape concept that is defined

within a DIS D. We take the max of the individual

necessity degrees due to the union property described

earlier in Equation 2.

For objective concepts in the lattice, the composi-

tion operator⊕ enables the formation of new concepts

by composing existing ones i.e., creating composite

concepts from the set of atomic concepts T . Writing

k = k1 ⊕ k2 means that concept k is constructed by

the Cartesian product of concepts k1 and k2. These

concepts are certain and carry no uncertainty. An al-

ternative way to consider uncertainty in an objective

concept is considering its specializing predicate that

is always true, hence its certainty degree is 1.

4 REASONING ON

POSSIBILISTIC DIS

FRAMEWORK

We discuss several reasoning tasks and their govern-

ing inference rules for deriving conclusions in differ-

ent reasoning scenarios. These tasks are concept sat-

isfiability and concept subsumption. Each of which is

explained in detail. We use N to denote the necessity

degree function.

4.1 Concept Satisfiability

In this subsection, we examine concept satisfiability

in necessity-based reasoning within the DIS frame-

work, distinguishing between the objective and the

datascape concept satisfiability.

In the classical DIS framework, a datascape con-

cept is considered satisfiable if its corresponding data

values exist within the carrier set of the DDV. How-

ever, in the necessity-based extension of DIS, we in-

troduce the necessity degree to account for incom-

plete information of the data specializing predicate

(Φ(a)), which defines the datascape concept. In

this extended framework, a datascape concept Cd is

deemed satisfiable if there exists at least one instance

a ∈ Cd such that the necessity degree N(a,Cd) of this

instance is strictly greater than zero. Therefore, a

datascape concept is satisfiable if and only if its ne-

cessity degree is strictly greater than zero, indicating

that there is sufficient data support for the concept’s

existence.

Definition 3. Let D = (O,A ,τ) be a given DIS. Let

Cd = {a | τ(a) ∈ L ∧ Φ(a)} be a datascape concept

that is defined within D, with Φ(a) as its data spe-

cializing predicate. The datascape concept Cd is sat-

isfiable, denoted by stsfd(Cd), if and only if ∃(a |
a ∈ A : N(Φ(a)) > 0).

For objective concepts within the Boolean lattice,

their certainty is inherently guaranteed, as they are

directly linked to the DDV of the DIS under con-

sideration. Thus, their satisfiability is inherently en-

sured, meaning they are both valid and certain to ex-

ist. The satisfiability of a composite concept is also

guaranteed, as its atomic components have a degree

of necessity of one. In this case, the combination of

their necessity degree results in the composite con-

cept also having a necessity degree of one, ensuring

its satisfiability. If, from another perspective, one sees

objective concepts as concepts that are independent

of datasets, which translates into a data specializing

predicate equivalent to true, then using Definition 3

and Procedure 3.1(item 1), one infers that its neces-

sity degree is also equal to one.

Claim 4.1. Let Cd 1 and Cd2 be datascape concepts

defined in a given DIS. Let Φ1(a) and Φ2(a) be their

data specializing predicates, respectively. We have

stsfd(Cd1 ⊕Cd2)≡ stsfd(Cd1) ∨ stsfd(Cd 2).

Proof. The concepts Cd1 and Cd 2 are two datas-

cape concepts. Hence, by Definition 1 and for D =
(O,A ,τ) is a given DIS, we can write Cd1 and Cd2

as follows: Cd1
def
= {a | τ(a) ∈ L ∧ Φ1(a)}, and

Cd2
def
= {a | τ(a) ∈ L ∧ Φ2(a)}.

Then, we have stsfd(Cd1 ⊕Cd2)

≡ 〈 Definition 2 〉

stsfd{a | τ(a) ∈ L ∧ (Φ1(a) ∨ Φ2(a))}
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≡ 〈 Definition 3: Satisfiability of datascape

concept 〉
∃(a | a ∈ A : N(Φ1(a))> 0 ∨ N(Φ2(a))> 0)

≡ 〈 Axiom Distributivity for ∨ 〉

∃(a | a ∈ A : N(Φ1(a))> 0)

∨ ∃(a | a ∈ A : N(Φ2(a))> 0)

≡ 〈 Definition 3 〉

stsfd(Cd1) ∨ stsfd(Cd 2)

Example 4.1 (Satisfiability of a Datas-

cape Concept). Consider the datascape con-

cept PositiveFeedback = {a | τ(a) ∈
CustomerService∧ a.Satisfaction≥ 0.6}.
Thus, this concept consists of a single atomic predi-

cate: Ω(a) = (a.Satisfaction ≥ 0.6). Assume

the following information is provided by a domain

expert:

• Instance distribution relation:

SV D(a1) = (Good,(Satisfaction,0.7))

• Relator necessity degree: RD(a1) = (Good ≥
0.6, 0.8)

• Wights of importance: winst = 0.4,wWrel = 0.6

Then, using Procedure 3.1, we compute the necessity

degree of the atomic predicate:

min

(

max(1−winst,SV D(a1)), max(1−wWrel,R
D(a1))

)

= min(max(0.6,0.7), max(0.4,0.8)) = 0.7

Since Φ(a) consists of just this atomic predicate, we

have:

N(Cd) = N(Φ(a)) = N(Ω(a1)) = 0.7

By Definition 3, the concept is satis-

fiable because N(Φ(a)) > 0. Hence:

stsfd(PositiveFeedback) holds.

4.2 Necessity-Based Subsumption

In general, we say that a concept C1 subsumes a con-

cept C2 if every instance of C2 is in C1. In classical

DIS, we have an additional kind of subsumption re-

lationship. It is the partOf relationship, denoted by

⊑c, that exists among the members of the Boolean

lattice. When we write C1⊑cC2, it indicates that the

instances of C1 are obtained through the projection of

corresponding instances of C2 on the attributes defin-

ing C1. In this case, we say that C2 subsumes C1. The

formal definition of DIS based subsumption is given

below:

Definition 4. Given a DIS D = (O,A ,τ). Let C1 and

C2 be two concepts in the set of concepts of D. We

say that C2 ⊑C1 iff one of the conditions holds:

1. C1 ∈ L ∧ C2 ∈ L ∧ C2 ⊑c C1.

2. C1 and C2 are two datascape concepts with data

specializing predicates Φ1 and Φ2, respectively and

∀(a | a ∈ A : Φ2(a) =⇒ Φ1(a)).

3. C1 ∈ L and C2 is a datascape concept. We have

(C1,C2) ∈ R∗, where R∗ is the reflexive transitive clo-

sure of a relation R of the graph rooted at C1.

Definition 4 formalizes concept subsumption in

DIS, covering both objective and datascape concepts.

First, if C1 and C2 are objective concepts in the ontol-

ogy lattice, subsumption holds if C2⊑cC1, meaning

C2 is structurally more specific than C1 per the lat-

tice order, reflecting the traditional subclass relation

of the lattice hierarchical structure. Second, if both

are datascape concepts defined by data specializing

predicates Φ1 and Φ2, then C2 ⊑ C1 holds if ∀a ∈ A,
the implication Φ2 =⇒ Φ1 is satisfied. This ensures

all instances satisfying C2 also satisfy C1. Third, if

C1 is an objective concept and C2 is a datascape, sub-

sumption holds if a path exists from C1 to C2 in the

reflexive-transitive closure R∗ of relation R. Notably,

all concepts in the graph rooted at C1 are considered

a specialization of C1. Subsumption is a partial order

(reflexive, antisymmetric, transitive) over concepts, as

stated in the following claim.

Claim 4.2. Given a DIS D = (O,A ,τ), the subsump-

tion relation on the set of concepts in D is a partial

order.

Proof. We provide a proof for each case of the sub-

sumption relation as given in Definition 4.

1. In the first case, the subsumption relation is iden-

tical to the partOf (i.e., ⊑c) relation. The latter sat-

isfies the properties required for subsumption (reflex-

ivity, transitivity, and anti-symmetry) because it is de-

fined on a Boolean lattice, which is itself a partially

ordered set (poset) (Marinache, 2025).

2. In the second case, the subsumption relation ⊑
defines a partial order over the datascape concepts.

This is due to the properties of the logical =⇒
operation that satisfies the properties of partial or-

der (Gries and Schneider, 1993, Pages 57-59).

3. In the third case, subsumption is interpreted as

membership to the reflexive transitive closure R∗. It

is established that a reflexive transitive closure on an

acyclic graph is a partial order. Indeed, the rooted

graphs are acyclic, as furthermore each is a Directed

Acyclic Graph (DAG).
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In the context of necessity-based subsumption,

the subsumption necessity degree is determined by a

domain expert. In addition, as the transitivity of sub-

sumption applies, the degree of transitive subsump-

tion is governed by the weakest link resolution rule,

presented previously in subsection 2.2. This approach

to possibilistic transitivity reasoning has been adopted

in prior research (e.g., (Mohamed et al., 2018;

Benferhat and Bouraoui, 2015)) and has shown effec-

tiveness in handling uncertainty within possibilistic

ontologies.

Claim 4.3. Let D = (O,A ,τ) be a DIS. Let C1, C2,

and C3 be concepts defined in D. Let

R⊑ = {(C1,C2) | C1 ∈C ∧ C2 ∈C ∧ C1 ⊑C2}

and RD
⊑ is its corresponding necessity relation. We

have:

((C1,C2),α) ∈ RD
⊑ ∧ ((C2,C3),β) ∈ RD

⊑

=⇒ ((C1,C3),min(α,β)) ∈ RD
⊑

Proof. ((C1,C2),α) ∈ RD
⊑ ∧ ((C2,C3),β) ∈ RD

⊑

≡ 〈 Definition of RD
⊑ 〉

(C1,C2) ∈ RD
⊑ ∧ (C2,C3) ∈ RD

⊑

∧ N((C1,C2)) = α ∧ N((C2,C3)) = β

=⇒ 〈 Transitivity of R⊑ and the weakest link

resolution rule (Equation 3) 〉
(C1,C3) ∈ RD

⊑ ∧ N((C1,C3)) = min(α,β)

≡ 〈 Definition of RD
⊑ 〉

((C1,C3),min(α,β)) ∈ RD
⊑

The necessity-based subsumption between objec-

tive concepts (partOf relation) invariably assumes

a necessity degree of 1, since the parthood rela-

tion among lattice concepts is considered fully cer-

tain i.e., N(partOf) = 1, as indicated previously

in subsection 3.3. This certainty extends naturally to

the transitivity of partOf relation, whereby the mini-

mum necessity degree computed over a chain of part-

hood relations, among lattice concepts, gives a degree

of 1.

Example 4.2 (Transitivity of Concept Subsump-

tion in DIS). Let C1 = Complaints, C2 =
Feedback, C3 = CustomerService be three

concepts defined in given DIS. Suppose the following

necessity-based subsumption relationships are pro-

vided by the domain expert:

{((Complaints,Feedback),0.6),

((Feedback,CustomerService),0.8)} ⊆ RD
⊑

By Claim 4.3, the transitive subsumption relation

holds with:

N(Complaints,CustomerService) = 0.6

5 RELATED WORK AND

DISCUSSION

This section reviews ontology modelling approaches

that handle uncertainty using possibility theory, and

explains our choice of this formalism.

In possibilistic DL-based approaches, uncertainty

is modelled by assigning necessity or possibility

degrees to ontology axioms at different levels. For

instance, Pb-π-DL-Lite (Boutouhami et al., 2017)

assigns necessity degrees only to ABox assertions,

allowing uncertain instance membership such as

(Status,Good) = 0.9 in the CustomerService

domain, without modelling uncertainty at concept

or relationship levels. The work of (Sun, 2013)

focuses on uncertainty at the TBox level, as-

signing necessity degrees to TBox axioms such

as N(isA(Rating,Feedback)) = 0.8, yet does

not support uncertain instance classification

or data-driven concept definitions. Similarly,

studies such as (Benferhat and Bouraoui, 2015;

Benferhat et al., 2014; Qi et al., 2011) extend pos-

sibilistic logic to both TBox and ABox axioms,

enriching the expressiveness by allowing weighted

axioms at multiple levels; however, their frameworks

still assume that concepts like PositiveFeedback

are defined and do not enable concept definitions

directly derived from data (i.e., datascape concepts).

The study of (Mohamed et al., 2018) further incor-

porates possibility distributions over interpretations,

adding expressiveness to represent uncertainty about

models themselves, but does not provide mechanisms

to ground concepts in uncertain data attributes or

integrate graded uncertainty at the attribute-concept

mapping level.

At the language level, (Safia and Aicha, 2014)

propose extending Web Ontology Language 2

(OWL2) with possibilistic annotations, enabling un-

certainty representation in both concepts and in-

stances. Using the CustomerService example, one

could annotate a concept like PositiveFeedback, or

an instances like Fast with possibility degrees, yet

the approach still requires concepts to be pre-defined

and does not support automatic or context-aware con-

struction of concepts from data conditions. Finally,

the work of (Ben Salem et al., 2018) assigns possibil-

ity degrees directly to concepts outside DL seman-

tics, like assigning possibility degree to the concept

PositiveFeedback, but does not address uncertainty

propagation from attribute data to instances or model

uncertainty in relationships or attribute mappings.

In contrast, our DIS-based framework uniquely in-

tegrates uncertainty at all levels: attributes, instances,

relationships, and data-driven concepts. For example,
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we model uncertain attribute-concept mappings such

as N(Quality → Status) = 0.7, uncertain instance-

concept classification like (Good,0.9), and relation-

ships such as N(isA(Rating,Feedback)) = 0.9. Our

datascape concept PositiveFeedback is defined by

a data-specializing predicate reflecting the actual sat-

isfaction values, allowing uncertainty in satisfaction

data to propagate naturally to the membership degree

in PositiveFeedback concept. This unified, data-

grounded modelling allows more expressive, context-

aware reasoning about uncertain information com-

pared to existing possibilistic ontology methods.

From a methodological standpoint, choosing an

uncertainty formalism requires alignment with the

modelling goals and constraints of the framework.

While several candidates exist, including probabilis-

tic approaches and Dempster-Shafer Theory (DST),

we adopt possibility theory for its suitability to

our framework. Probability theory enforces the

additivity axiom, requiring the sum of probabil-

ities for mutually exclusive events in a universe

of discourse to equal one even under insufficient

data (Kovalerchuk, 2017), leading to challenges in ac-

curately representing uncertainty. In contrast, possi-

bility theory relaxes this constraint, making it more

suitable for the proposed approach. This ratio-

nale is supported by several possibilistic ontology

frameworks (e.g., (Bal-Bourai and Mokhtari, 2016;

Boutouhami et al., 2017)). Regarding DST, it is

primarily designed for belief fusion from multi-

ple sources (McClean, 2003), whereas our approach

derives certainty from a single source. More-

over, DST typically assigns belief to sets of hy-

potheses rather than individual ones, making it

more suitable for representing group-level uncer-

tainty. In contrast, the DIS framework demands fine-

grained certainty assignments to individual attributes,

values, and relationships (Sentz and Ferson, 2002;

Gordon and Shortliffe, 1984). Possibility theory di-

rectly supports this by enabling necessity degrees to

annotate specific elements, making it a natural fit for

our ontology-based model.

6 CONCLUSION AND FUTURE

WORK

This paper presents a principled extension of the

DIS framework to support reasoning under incom-

plete information using necessity-based possibilis-

tic logic. Unlike most ontology-based systems that

assume complete information, our approach mod-

els uncertainty across instances, attributes, relation-

ships, and concept definitions, enabling fine-grained,

graded reasoning. A key advantage is replacing bi-

nary inferences with necessity-valued conclusions, al-

lowing cautious reasoning with partial information.

Overall, this approach provides a structured foun-

dation for possibilistic reasoning in ontology-based

systems advancing more expressive and uncertainty-

aware knowledge representations essential for robust

decision-making in complex, data-limited contexts.

We are currently automating necessity-

based reasoning tasks using the Domain Infor-

mation System Extended Language (DISEL)

tool (Wang et al., 2022). Future work will focus on

automating necessity degree assignment via machine

learning, integrating fuzzy logic to handle impreci-

sion, developing a scalable reasoning engine, and

applying the framework to real-world domains. Once

the automation is in place, we plan to use DISEL to

reason over data collected from network security pre-

vention mechanisms. This data is often uncertain and

originates from diverse sources with varying levels of

reliability. Furthermore, this data originates from log

files, whether structured or semi-structured, making

it well-suited for DIS modelling. The goal is to pre-

process and clean the data (Khedri et al., 2013), then

apply the proposed reasoning framework to facilitate

reliable and context-aware security decision-making

in highly dynamic and complex uncertain landscapes.
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