Possibilistic Extension of Domain Information System (DIS) Framework

Keywords:

Abstract:

Deemah Alomair!?®? and Ridha Khedri! ®°
Y Department of Computing and Software, McMaster University, Hamilton, Canada

2Department of Computer Information Systems, Imam Abdulrahman Bin Faisal University, K.S.A.

Uncertainty, Incomplete Information, Knowledge Representation and Reasoning, Ontology Modelling,
Ontologies, Possibilistic Logic, Ontology Reasoning.

Uncertainty poses a significant challenge in ontology-based systems, manifesting in forms such as incomplete
information, imprecision, vagueness, ambiguity, or inconsistency. This paper addresses this challenge by
introducing a quantitative possibilistic approach to manage and model incomplete information systematically.
Ontologies are modelled using the Domain Information System (DIS) framework, which is designed to handle
Cartesian data structured as sets of tuples or lists, enabling the construction of ontologies grounded in the
dataset under consideration. Possibility theory is employed to extend the DIS framework, enhancing its ability
to represent and reason with incomplete information. The proposed extension captures uncertainty associated
with instances, attributes, relationships, and concepts. Furthermore, we propose a reasoning mechanism within
DIS that leverages necessity-based possibilistic logic to draw inferences under uncertainty. The proposed
approach is characterized by its simplicity. It improves the expressiveness of DIS-based systems, introducing
a foundation for flexible and robust decision-making in the presence of incomplete information.

1 INTRODUCTION

One of the primary challenges in knowledge-based
systems, particularly those that rely on ontologies
for domain reasoning, is managing uncertainty stem-
ming from incomplete information. In dataset-driven
ontologies, data is contextualized to define con-
cepts, relationships, and instances. However, real-
world applications frequently suffer from missing
or partial information, leading to epistemic uncer-
tainty (Sentz and Ferson, 2002). This type of un-
certainty affects instance classification, attribute re-
liability, relationship strength, and concept validity.
When unaddressed, such uncertainty can render on-
tologies either overly rigid, failing to accommodate
partial knowledge, or misleading, by permitting un-
justified inferences. Effectively managing uncer-
tainty is therefore essential to ensure the expressive-
ness, reliability, and adaptability of ontology-based
systems, especially in the context of decision sup-
port or automated reasoning systems. To illustrate,
consider a customer service ontology; the concept
PositiveFeedback may depend on attributes like
Satisfaction, Quality, and ResponseTime. If one
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of these values is missing or partially available, classi-
cal inference systems may fail to classify an instance
as PositiveFeedback or do so incorrectly. This
highlights the need for a framework that can represent
and reason under partial knowledge.

This paper introduces a quantitative possibilistic
extension to the Domain Information System (DIS)
framework (Marinache et al., 2021) to represent and
reason under partial knowledge. DIS is a bottom-
up, data-centric formalism that constructs ontologies
from datasets, structurally separating the domain on-
tology from the data view and linking them via a map-
ping operator. Unlike Description Logic (DL)-based
ontologies, which separate the A-Box and T-Box log-
ically, DIS achieves this separation structurally and
grounds the ontology in data, reducing data-ontology
mismatches. DIS is useful for aligning ontologies
with real-world datasets, which makes it particularly
effective for domains where ontologies must be gen-
erated or adapted from existing data sources, im-
proving modularity, transparency, and maintainability
in ontology design. In contrast to traditional ontol-
ogy languages like Web Ontology Language (OWL),
which struggle to directly represent mereological re-
lationships in Cartesian datasets (i.e., the structured
data itself) without complex extensions, DIS lever-
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ages cylindric algebra and Boolean algebra to model
both data structures and conceptual part-whole re-
lations. This enables more natural and robust han-
dling of mereological reasoning within structured
data. However, the original DIS model does not cap-
ture domain uncertainty and information uncertainty.
The proposed approach overcomes this by associating
each ontological component with quantified certainty.

Unlike vagueness or imprecision, the fo-
cus here is on uncertainty due to incomplete-
ness, typically addressed via probability theory
(e.g., (Laha and Rohatgi, 2020)), possibility theory
(e.g., (Dubois and Prade, 2015)), or Dempster—Shafer
theory (e.g., (Sentz and Ferson, 2002)), as discussed
in (Alomair et al., 2025). In this study, possibility
theory is adopted and rationale behind this selection
is explained in the section 5.

The proposed approach models uncertainty across
all key ontological elements: attributes, concepts, re-
lationships, and instances. The key contributions of
this paper are as follows:

1. Modelling Uncertainty of Attributes: Introduces a
necessity-based mapping from the dataset’s attributes
to ontology concepts.

2. Modelling Uncertainty of Instances: Proposes an
instance distribution relation (SV?), allowing a datum
(instance) to be assigned to multiple sorts (attributes)
with varying degrees of certainty.

3. Modelling Uncertainty of Relationships: Intro-
duces necessity-based relationship, which allows re-
lationships to hold with varying levels of certainty.

4. Modelling Uncertainty of Concepts: Refines the
construction of datascape concepts (which depend on
available data values) by incorporating uncertainty
modelling into their data-specializing predicate.

5. Possibilistic Reasoning for Uncertainty-Aware In-
ference: Develops a reasoning mechanism within
the DIS framework, leveraging necessity-based pos-
sibilistic logic to support inference under incomplete
information.

The paper is structured as follows: Section 2 in-
troduces foundational theories. Section 3 presents the
integration of possibilistic components into the DIS
framework, followed by uncertainty-aware reasoning
in Section 4. Section 5 reviews related work and of-
fers a discussion. Section 6 concludes the paper and
outlines future directions.

2 PRELIMINARIES

This section reviews uncertainty in ontology, intro-
duces possibility theory and possibilistic logic, and
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presents the theoretical background of the DIS frame-
work.

2.1 Uncertainty and Ontology

Information imperfection includes incompleteness,
imprecision, vagueness, ambiguity, and inconsis-
tency (Maet al., 2013; Bosc and Prade, 1997). The
paper adopts a broad interpretation, considering
uncertainty as arising from any of these defi-
ciencies, as adopted in (Anand and Kumar, 2022;
Ceravolo et al., 2008). Incompleteness arises when
information is partial. This creates uncertainty about
which interpretation of a statement to rely on, of-
ten addressed by calculating an estimation degree
for possible worlds (Straccia, 2013). Imprecision
refers to the lack of exactness, occurring when data
is expressed in approximate or qualitative terms in-
stead of precise values (Ma et al., 2013). Vagueness
emerges when terms or concepts lack clear bound-
aries (Straccia and Bobillo, 2017). Ambiguity arises
from multiple interpretations (Ma et al., 2013), and
inconsistency involves contradictions, such as con-
flicting statements (Bosc and Prade, 1997).

An extensive review of uncertainty mod-
elling in domain ontologies is presented
in (Alomair et al., 2025).  The survey examines
over 550 studies published between 2010 and 2024
on this topic. A guiding taxonomy is proposed,
classifying ontological uncertainty into concept
uncertainty and information uncertainty. This clas-
sification supports the systematic identification of
uncertainty types across ontological frameworks and
the selection of appropriate formalisms to manage
them. Concept uncertainty involves uncertainty of
relationships, uncertainty of attributes defining a
concept, and uncertainty due to semantic ambiguity,
where context influences the interpretation of a
concept. Information uncertainty concerns asso-
ciating instances with concepts or relations. The
identified uncertainties are attributed to incomplete,
imprecise, vague, or inconsistent information. Then,
various formalisms are presented to manage these
uncertainties. This taxonomy offers a structured ap-
proach to understanding and addressing uncertainty
in ontology-driven systems. A visual representation
of the taxonomy is shown in Figure 1.

2.2 Possibility Theory and Possibilistic
Logic
Possibility theory models incomplete and inconsistent

knowledge using qualitative (ordinal) or quantitative
(numerical) approaches (Dubois and Prade, 2015).
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Uncertainty Taxonomy within Ontology
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Figure 1: Ontological Uncertainty Taxonomy.

The qualitative approach ranks events without nu-
merical degree (e.g., “highly possible”, possible”, or
”less possible”), while the quantitative approach as-
signs a numerical degree to represent degrees of pos-
sibility. Possibility distribution represents an agent’s
knowledge about the world by assigning plausibility
degrees to states in a set S, which may be finite or in-
finite. Formally, it is a function ® : S — L, where L is
a totally ordered scale (often [0, 1]). The value Tt(x)
expresses how plausible the state x € S. A value of
7(x) = 0 means state x is impossible, while m(x) =1
means it is fully plausible. If § is exhaustive, at least
one state must have plausibility 1. The possibilis-
tic framework captures both complete and incomplete
knowledge. Complete knowledge is represented by
assigning possibility 1 to a single state and 0 to all
others. Complete ignorance is modeled by assign-
ing possibility 1 to all states, indicating that any state
could be true. The possibility distribution forms the
basis for defining possibility and necessity measures
over any subset X C §:

(Xx)= Sléf 7(x) and N(X) :;g)f((l —n(x)), (1)

where I1(X) indicates feasibility, and N(X) expresses
certainty (Alola et al., 2013). The measures are dual
via: N(X) =1-TI(X’), where X’ is the comple-
ment of X. Possibility measures follow the maxitiv-
ity axiom: TI(AUB) = max(II(A),I1(B)), while ne-
cessity measure satisfies the dual minitivity axiom:
N(ANB) =nin(N(A),N(B)). The necessity degree
for the union of two sets satisfies the following prop-
erty, expressed as (Dubois and Prade, 2014):

N(AUB) > nax(N(A),N(B)) 2)

Unlike probability theory, which quantifies
likelihood, possibility theory evaluates feasibility.
In (Zadeh, 1999), a distinction between possibility
and probability theories has been made through an
example of "Hans is eating eggs for breakfast”. In
his example, the possibility distribution of (1 (3) =

110

1) suggests it is entirely possible for Hans to eat
three eggs, but the probability (Px(3) = 0.1) indicates
this outcome is statistically rare. This demonstrates
that high possibility does not imply high probabil-
ity, though an impossible event (mx (u) = 0) has zero
probability (Px(u) = 0).

Possibility theory underpins possibilistic logic,
which we limit here to necessity-based possibilistic
logic (Dubois et al., 1994; Dubois and Prade, 2014;
Nieves et al., 2007). In this logic, a formula is a pair
(6,a), where 0 is a classical first-order logic formula,
and o € [0,1] is a certainty or priority degree. This
pair indicates that 0 is certain at least to level o, (i.e.,
N(8) > o). The interval [0,1] can be replaced by
any linearly ordered scale. Standard limit conditions
hold: TI(L) =N(L) =0, II(T) = N(T) = 1, where
1 and T denote contradiction and tautology, respec-
tively. In the formal system of this logic, the follow-
ing properties hold: N(6 A y) = min({N(8),N(Y)})
and N(0 V v) > max({N(0),N(y)}), where 6 and 7y
are formulae. One of its main rules is the weakest
link resolution rule:

(-6 VY,),(8V3,B)F (vV 8 nin(a,p)), ()

Here, the conclusion’s certainty is the smallest among
the premises, reflecting that an inference chain is lim-
ited by its weakest premise.

The weighted minimum and maximum
operations, introduced in (Grabisch, 1998;
Dubois and Prade, 1986) within the framework
of possibility theory, generalize the standard min and
max functions to account for elements from different
contexts, each associated with a distinct weight of
importance. These operations refine aggregation by
modulating the influence of each element based on
its assigned weight.

LetX = {x1, -+ ,x,} be a set of criteria. Let a; and
w; be, respectively, the score and the weight of impor-
tance attributed to criterion x; such that X! ,w; = 1.

Then we have:
Weighted-Min(ay, - ,a,) =min(i| 1 <i<n:
max((1—w;),a;)).
This formulation ensures that elements with lower

weights contribute less to the overall minimum com-
putation. Similarly, the operation Weighted_Max is

given by:
Weighted-Max(ay, - ,an) =max(i| 1 <i<n:
min(wi,ai)).



2.3 Domain Information System

DIS is an ontology framework consisting of
three primary components (Marinache et al., 2021;
Marinache, 2025): Domain Ontology View (DOnt)
O, Domain Data View (DDV) A4, and mapping func-
tion T linking 4 to O, forming the structure D =
(0,4,7).

The DOnt, 0= (C, L, G), is composed of three el-
ements. The concept structure C = (C, @, e.), which
is a commutative idempotent monoid where the car-
rier set C includes an empty concept (e.), a set of
atomic concepts (7) derived directly from dataset at-
tributes, and composite concepts formed using the &
operator. The Boolean lattice £ = (L,C,) organizes
concepts hierarchically based on a natural order C,
defined as ¢y . 2 <= c| B¢y = ¢3. Lastly, the set
of rooted graphs G provides additional expressiveness
by capturing concepts and relations beyond those de-
fined by the lattice structure. Each rooted graph G;, =
(Ci,R;,t;) consists of a set of vertices C; C C, a set of
edges R;, and a root vertex ¢; € L.

The DDV, 4 = (A,+,%,—,04, 14, {ck tkeu), is
formalized as a diagonal-free cylindric algebra, where
U is a finite set of sorts (the universe). The main
notion of this view is sort, which corresponds to an
attribute in the dataset. The ordered pair of a sort
and its value is known as Sorted Value (SV). A
set of SV with a maximum of one SV for each sort
forms Sorted Datum (S_Datum). The carrier set A
consists of Sorted Data (S_Data), structured as a set
of S_Datum. The cylindrification operators c; are in-
dexed by the sorts used in the data, corresponding to
the elements of L, the carrier set of the Boolean lattice
L. For a deeper understanding of cylindric algebra,
readers are referred to (Imielifiski and Lipski, 1984).

The final component of DIS is the mapping func-
tion T: A — L, which links the elements of 4 in DDV
to their corresponding concepts in the Boolean lattice
L within DOnt. To define 7, several helper opera-
tors introduced, one of which is the helper mapping
operator M : U — L. This ensures a one-to-one corre-
spondence between the sorts in DDV and the atomic
concepts in the Boolean lattice of DOnt. Ensuring
a seamless mapping from data attributes to ontology
concepts: N(Sqrr) = attr, where Sy and attr are a
sort and an atomic concept, respectively.

In DIS, concepts are categorized based on their de-
pendence on objective reality or data elements, lead-
ing to the distinction between objective concepts and
datascape concepts, denoted by C,;. Objective con-
cepts exist independently of any dataset. For instance,
consider the objective statement 3(x | x € Animal :
Pet(x)). The concept Petr remains valid regardless
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of whether supporting data is available. In contrast,
datascape concepts rely on data for their definition
and existence. For instance, consider the modified
example 3(x | x € Animal : Active_Pet(x) ). The con-
cept Active_Pet, defined as a pet that exercises for at
least one hour daily, depends on a specific data source
such as daily activity logs. If such data is unavailable
or does not meet the required conditions, the concept
cannot be realized. Formally, a datascape concept in
a DIS is defined as follows:

Definition 1 (From (Alomair and Khedri, 2025),
Datascape Concept). Let D = (0,4,7) be a given
DIS. For a carrier set A in A and a lattice L in
O, a datascape concept Cy is defined as follows:

Ca 4 {a | ©(a) € L A ®(a)}, where a € A and P
is a data-specializing predicate expressed in Disjunc-
tive Normal Form (DNF). This predicate ® is given
by: ®(a)=V (i|1 <i<N:%¥(a)), with N isa
natural number, and each conjunctive clause Pi(a)
is defined as: Wi(a) =N (j |1 < j<M:Qgj(a))
where M is a natural number and Q; j(a) = (f(; j)(a-
sort_name(,-J)),C(,-?j)) S R(l]), where f(’v]) € _'7'—, and
F ={®,ec; Tr,+,%—,0,1,7,cyl} is the set of func-
tion symbols, c(; ;) is a ground term in the DIS lan-
guage, and R; j) is a relator. O

Based on the above definition, we define the oper-
ation @ as an operation on concepts.

Definition 2. Letr D = (0, 4,1) be a given DIS. Let
Car={a|t(a) eLA®(a)}, andCqy={a | t(a) €
L A ®;(a)} be two datascape concepts defined on D.
We have Cy1 ® Cyp =

Cis1 U Cpp=A{a | t(a) e LA (®i(a) V D2(a))}.

The structure of the Cyy & Cy, is that of a datas-
cape as (@ (a) V ®2(a)) is in DNF and the other con-
ditions stipulated by Definition 1 are satisfied. More-
over, the empty concept e can be perceived as a datas-
cape concept defined as e = {a | t(a) = e N false} =
0. Hence, if we take, for a given DIS, Cy is the set of
datascape concepts, then (Cy, @, e.) is a commutative
monoid due to the properties of set union.
Ilustrative Example of DIS Construction. We con-
sider a CustomerService dataset with the attributes:
Satisfaction, Quality, and ResponseTime. The
corresponding DIS structure is built as follows:

1. Lattice construction: FEach dataset attribute
is mapped to an atomic concept: T =
{(Quality,Status),(ResponseTime,Duration),
(satisfaction,Comfort)}. Then the rest of the
Boolean lattice is generated, where each node rep-
resents a possible composition of atomic concepts
(e.g., status Tenure = Status @Duration).
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2. Objective rooted graph concept: Rooted graphs
enrich the ontology beyond lattice nodes.
One such objective concept is Feedback,
rooted at CustomerService, and defined ab-

def
stractly as follows: Feedback = {a | 1(a) €
CustomerService}.

3. Datascape rooted graph concept: A rooted graph
concept might be a datascape concept, in which
its definition depends on data.  For exam-
ple, the concept PositiveFeedback can be
defined as: PositiveFeedback= {a | t(a) €
CustomerService A a.Satisfaction > 0.6}.
The predicate here indicates that an instance a of
the Satisfaction attributes should have a value
greater than or equal to 0.6.

4. Construction of the domain data view: An ex-
ample of SV is (Quality, Good). An exam-
ple of SDatum is df-1 = {(Quality, Good),
(ResponseTime, Fast), (Satisfaction, Yes)}.
An example of S_Data is a = {dr_1,dt n}.

5. Building the whole DIS system: The DIS is then
formed by (O, 4,7). A full illustration of the DIS
structure is shown in Figure 2.

Rooted graphs

Compliments Complaints|

- w
P | Rating
Positive

|Feedback |Feedback «

ST TF
Boolean Lattice | Customer Service :

(Status Torurs]
X5 RO

\ Status HDurann\ Comfort |
2 ik

2SI
) ‘}L/ S
) 2/ [ec| k)
£ 2/ 1% ;|
Mapping operator = & — "‘:
—_— g i o,
! ! %
Dataset Quality Response |  gatisfaction
Time
good fast yes
bad slow no
bad fast good

Figure 2: Customer Service DIS Framework.

3 UNCERTAINTY MODELLING
IN DIS FRAMEWORK

In this section, we extend the DIS framework to
handle uncertainty by addressing two key questions:
What type of uncertainty can be modelled, and where
in the DIS framework it can be introduced. As noted
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in section 1, we focus on incomplete information and
adopt possibility theory as the formalism.

To illustrate where uncertainty can arise, Figure 3
shows an example using a customer service dataset.
Database attributes may assign values, introducing
uncertainty of instances. These attributes are mapped
via the operator T (shown by arrows) to atomic con-
cepts introducing uncertainty of attributes. The lat-
tice is further expanded with multiple rooted graphs,
such as PositiveFeedback and Feedback, introduc-
ing uncertainty of concepts. The Feedback graph in-
cludes specialized concepts like Rating, with arrows
indicating semantic paths among these concepts, cap-
turing the uncertainty of relationships.

4.Uncertainty of datascape concepts” i y \ \
N(PositiveFeedback)= 0.4 (Positive | liments Complaints|

Feedback
3. Uncertainty of relationships* ‘thggk'l/l

N(isA(PaositiveFeedback, CustomerService))
=0.7 ~ 3. Uncertainty of relationships
N(isA(Rating.Feedhack)) = 0.9

| Rating )

N(CusmmerSerulce)=1‘ Customer Service |

N(Status Tenure)= 1‘ Status Tenure |

N(smus]:‘i‘ Status M DuralionH Comfort ‘
P Rl A

2. Uncertainty in mapping
attributes to atomic cuncgf:;

N(Quality — Status =07) By, B

b N(ResponseTime
— Duration =0.8)

/'Nisatisfaction —
Comfort=0.9)

Quality Response Time Satisfaction

N(Quality, good)= 0.9 N(Time, fast)= 0.9 N(Satisfaction, yes)= 0.9

N(Quality, bad)= 0.9 N(Time, slow)= 0.6 N(Satisfaction, no)= 0.8

N(Satisfaction, good)= 0.7

N(Quality, bad)= u:/.- " N(Time, fast)= 0.8

12 Uncertainty of mapping instances to sorts

Figure 3: Necessity Degrees Assigned to DIS.

Since the focus is on uncertainty due to incom-
plete information, it is crucial to distinguish between
data and information. In our formalism, a datum is
strictly a raw value without any assigned context (e.g.,
the number 3.7 isolated from metadata, units, or se-
mantics). At this stage, it has no uncertainty; Un-
certainty arises only when contextual interpretation is
applied (e.g., labelling 3.7 as “sensor voltage reading
with +0.2 error”’). We acknowledge that the broader
literature often treats data as implicitly contextualized
(and thus uncertain), but our formalism explicitly sep-
arates raw values from their contextual layers. It is
also important to emphasize that the assigned degree
is explicitly interpreted as a measure of certainty, not
as a degree of truth or graded quality. For this reason,
we adopt necessity-based possibilistic logic, where



necessity degrees directly correspond to the degree of
certainty. This interpretation aligns naturally with our
setting, in which the degree reflects the certainty in
the existence of concepts, in instance-to-concept and
attribute-to-concept associations, and in the presence
of relationships. In our approach, we examine four
types of uncertainty:

1. Uncertainty of mapping instances to sorts: When
mapping a value to a sort(attribute), for example, as
indicated in Figure 3, the Quality attribute being as-
signed values like Good or Bad, with a necessity de-
gree reflecting the degree of certainty with which the
value belongs to a given sort. For instance, assigning
(Good,0.9) to Quality indicates that for this particu-
lar instance, it is 0.9 certain that the Quality is Good.

2. Uncertainty in mapping attributes to atomic con-
cepts: When mapping a sort to a lattice concept, such
as associating Quality with the Status concept as
N(Quality — Status) =0.7.

3. Uncertainty of relationships: When defining rela-
tionships among rooted graph concepts, like the rela-
tionship between Rat ing and Feedback is associated
with N(isA(Rating,Feedback)) =0.9.

4. Uncertainty of datascape concepts: This
uncertainty arises when a concept is defined
in terms of data conditions that may them-
selves be uncertain. For example, consider
the datascape concept PositiveFeedback, de-
fined as PositiveFeedback = {a | t(a) €
CustomerService A a.Satisfaction > 0.6}.
Here, the condition (®(a) = a.Satisfaction > 0.6)
is the data-specializing predicate that character-
izes the concept. In our framework, the necessity
degree of the datascape concept itself, that is, the
degree to which the concept PositiveFeedback
holds in the presence of incomplete information, is
derived directly from the necessity with which its
data-specializing predicate is satisfied.

The first three types of uncertainty that are listed
above are given by the domain expert, while the last
one is calculated.

3.1 Uncertainty of Mapping Instances
to Sorts

In the traditional DIS framework, data records
(instances) are typically assigned to sorts (attributes)
through a certain mapping function. This assign-
ment is SV : V — U, where V is a finite set of
values assigned to the sort, and U is a finite set
of sorts (the universe). For example, consider a
customer service database presented in Figure 3,
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where the attribute Quality can take values such
as Good and Bad. The traditional mapping function
would assign these values to the Quality sort,
as SV(Good) = Quality and SV(Bad) = Quality.
However, uncertainty brings nondeterminism in this
mapping, as a value might be assigned to several
sorts with some degree of certainty. Hence, to
account for the uncertainty in these assignments,
we introduce a new relation called the instance
distribution relation, denoted SV?, and defined as
SVP CV x Ux[0,1]. The relation SV? relates a
data value to sorts and necessity degree that represent
the degree of certainty in the assignment. A data
value might be assigned to several sorts with varying
degrees of certainty. In the example, the instance
distribution relation could return values like: SV? =
{ (Good, (Quality,0.9)),(Bad,(Quality,0.9)),
(Bad, (Quality,0.4)),(Good, (Satisfaction,0.7))}.
Here, the data value Good is assigned to the Quality
sort with a certainty of 0.9, while the value Bad is
assigned to the same sort with two different certainty
degrees: 0.9 and 0.4. These reflect varying contexts,
such as different data records, where assignment
certainty differs. Although the notation does not
explicitly represent context, it is implicitly captured
through association with different instances. Addi-
tionally, Good is assigned to the Satisfaction sort
with a certainty of 0.7. This extension enables the
framework to better reflect uncertainty by accommo-
dating varying degrees of certainty in data-to-sort
assignments.

3.2 Uncertainty in Mapping Attributes
to Atomic Concepts

As previously discussed in subsection 2.3, the DIS
framework defines the helper mapping operator 1 :
U — L, which assigns each sort (attributes) in U to its
corresponding atomic concept in the Boolean lattice.
Similar to the uncertainty of instances, uncertainty in
attribute mapping introduces non-determinism when
associating sorts with atomic lattice concepts. To ac-
count for this, we define the mapping distribution re-
lationn®, which captures the uncertainty in this map-
ping. The relation n? C U x L x [0, 1] is provided
by a domain expert, and assigns a necessity degree to
each potential mapping.

Consider the customer service database presented
in Figure 3, where the mapping operators 1 are de-
fined as follows:

Mn(Quality) = Status,m(Satisfaction) =
Comfort,N(ResponseTime) = Duration.
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In this mapping, the sorts Quality, Satisfaction,
and ResponseTime correspond to the atomic con-
cepts Status, Comfort, and Duration, respectively.
To capture the uncertainty in these mappings, the
mapping distribution relation n? assigns a necessity
degree to each association:

n?(Quality) = (Status, 0.7),
n?(satisfaction) = (Comfort, 0.9),
N?(ResponseTime) = (Duration, 0.8).
These degrees indicate the degree of certainty in each
mapping, allowing the DIS framework to handle the
uncertainty in the alignment between data attributes
and ontology concepts.

3.3 Uncertainty of Relationships

Within the DIS framework, there are relationships be-
tween the concepts of rooted graphs and a parthood
relationship between the concepts of the Boolean lat-
tice. The parthood relationship C. forms the rela-
tionship between objective concepts given in the lat-
tice. The existence of this relationship among lat-
tice concepts is certain, as they are constructed by
a Cartesian construction from the atomic concepts.
In other terms, a concept k is considered a partOf
another concept k, if k; is a Cartesian projection of
k or if its atomic structure is a subset of that of k.
However, the relations among the concepts of the
rooted graph might be uncertain. Given a rooted
graph G;, = (Ci,Ri,1;), C;CC, RiCCixCy, t; €L,
its relation is transformed to give each edge a neces-
sity degree. We extend R; to a necessity-based R?.
Hence, Ri@ C R; x [0,1], which incorporates necessity
degrees to quantify the degree of certainty associated
with each relationship.

In the customer service database illustrated
in Figure 3, the relation of the rooted graph, denoted
by R;, is the following: R; =

{(isA(PositiveFeedback,CustomerService)),
(isA(Complaints,Feedback)),
(isA(Rating,Feedback)),
(isA(Feedback,CustomerService)),
(isA(Compliments,Feedback))}

Hence, the relations RiD is given as follows: Ri@ ={
(isA(PositiveFeedback,CustomerService),0.4),
(isA(Complaints,Feedback),1),
(isA(Rating,Feedback),0.9)
(isA(Feedback,CustomerService),0.5),
(isA(Compliments,Feedback),0.7)}
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These necessity degrees quantify the degree of cer-
tainty in each relationship, enabling the framework
DIS to systematically capture and reason about un-
certainty in relational structures.

3.4 Uncertainty of Datascape Concepts

If we examine the elementary predicate Q j(a),
which is used in building the data-specializing predi-
cate ®(a) of a datascape concept and which is equal
to (f(lj) (Cl . sort_name(,-J)), C(iv.f)) S R(iv.f)’ we find that
there are two sources of uncertainty. The first comes
from mapping a datum a to a sort due to the usage
of the term a - sort_name j), and the second comes
from the relator R(; ;) used in Q; j(a). Hence, by
capturing these two sources of uncertainty, we capture
the uncertainty of the datascape concept. For that, we
adopt the weighted minimum function, previously de-
fined in subsection 2.2. The weights of instance map-
ping winst, and the weight of the relationship wye)
assign relative importance to the necessity measures
SV?(a) and Ri@(a), with wi,st +wre1 = 1. Then, we
have the following inductive procedure for calculat-
ing the necessity degree Ng(,) of a datascape concept
having ® as its data-specializing predicate.

Procedure 3.1 (Necessity Degree of a Datascape
Predicate). Let D = (0, 4,1) be a given DIS. Let
Cqs={a|(a) € LA D(a)} be a datascape con-
cept that is defined within D, and has ® as its spe-
cializing predicate. For a given element a € A, let

8= (Winot = warez) V ((SV2(@) £ (1= wins)) A

(R(%)/)(a) < (1 B WWrel))).

N(®(a)) is computed inductively as follows:

The necessity degree

* Base cases:

1. N(true) = 1;

2. N(false) =0.

3. N(Qj)(a) =
min(sv@(a),jo) (a)),

min (max((l - Winst),SV@(a)> )

if & = true,

max((l - w,el),jo) (a)) ) , otherwise.
* Inductive cases:
1. Conjunction of atomic predicates:
N(®i(a)) = min(j | 1</ <M : N@a)))
2. Disjunction of conjunctive clauses:
N(@(a)) = max(i | 1<i<N: N(‘Pi(a)))
O



In the base case, the necessity degree of each
atomic predicate is considered. The necessity degree
of the ground terms true and false are, respectively,
1 and 0. For the elementary term Q; ;(a) forming
®(a), we have several cases:

* When we have equal weights of all the criteria, then
the weights are omitted in determining N(Q(a)).

* When both the certainty of a mapped to its sort
is below 1 minus the weight assigned to the map-
ping, and the certainty of the relator R?i),j) (a) used
in Q is also below 1 minus the weight assigned to
the relationship, then the weights are also omitted.
Hence, when (SV?(a) < (1 —wipst) and R(?j) (a) <
(1 — wyre1 ) means that the importance or influence of
the mapping of instances to sorts and the relator in the
overall-uncertainty determination outweighs the level
of uncertainty associated with it. That is why we ig-
nore the weights in this case.

We can extend the necessity degree function to the

datascape concepts as follows: N(Cy) &f N(®) =

max(a |acA: N(CID(a))), where Cy = {a| t(a) €
L A ®(a)} is a datascape concept that is defined
within a DIS 9. We take the max of the individual
necessity degrees due to the union property described
earlier in Equation 2.

For objective concepts in the lattice, the composi-
tion operator ¢ enables the formation of new concepts
by composing existing ones i.e., creating composite
concepts from the set of atomic concepts 7. Writing
k = ki @ k, means that concept k is constructed by
the Cartesian product of concepts k; and k». These
concepts are certain and carry no uncertainty. An al-
ternative way to consider uncertainty in an objective
concept is considering its specializing predicate that
is always true, hence its certainty degree is 1.

4 REASONING ON
POSSIBILISTIC DIS
FRAMEWORK

We discuss several reasoning tasks and their govern-
ing inference rules for deriving conclusions in differ-
ent reasoning scenarios. These tasks are concept sat-
isfiability and concept subsumption. Each of which is
explained in detail. We use N to denote the necessity
degree function.

4.1 Concept Satisfiability

In this subsection, we examine concept satisfiability
in necessity-based reasoning within the DIS frame-

Possibilistic Extension of Domain Information System (DIS) Framework

work, distinguishing between the objective and the
datascape concept satisfiability.

In the classical DIS framework, a datascape con-
cept is considered satisfiable if its corresponding data
values exist within the carrier set of the DDV. How-
ever, in the necessity-based extension of DIS, we in-
troduce the necessity degree to account for incom-
plete information of the data specializing predicate
(P(a)), which defines the datascape concept. In
this extended framework, a datascape concept Cy; is
deemed satisfiable if there exists at least one instance
a € Cy4 such that the necessity degree N(a,Cy) of this
instance is strictly greater than zero. Therefore, a
datascape concept is satisfiable if and only if its ne-
cessity degree is strictly greater than zero, indicating
that there is sufficient data support for the concept’s
existence.

Definition 3. Ler D = (0, 4,1) be a given DIS. Let
Cs={a|t(a) € L\ D(a)} be a datascape concept
that is defined within D, with ®(a) as its data spe-
cializing predicate. The datascape concept Cy is sat-
isfiable, denoted by stsfd(Cy), if and only if 3(a |
a€A:N(D(a)) >0).

For objective concepts within the Boolean lattice,
their certainty is inherently guaranteed, as they are
directly linked to the DDV of the DIS under con-
sideration. Thus, their satisfiability is inherently en-
sured, meaning they are both valid and certain to ex-
ist. The satisfiability of a composite concept is also
guaranteed, as its atomic components have a degree
of necessity of one. In this case, the combination of
their necessity degree results in the composite con-
cept also having a necessity degree of one, ensuring
its satisfiability. If, from another perspective, one sees
objective concepts as concepts that are independent
of datasets, which translates into a data specializing
predicate equivalent to true, then using Definition 3
and Procedure 3.1(item 1), one infers that its neces-
sity degree is also equal to one.

Claim 4.1. Let C;y and Cy, be datascape concepts
defined in a given DIS. Let ®1(a) and ®1(a) be their
data specializing predicates, respectively. We have

stsfd(Cq1 ®Cyn) = stsfd(Cyy) V ststd(Cyp).

Proof. The concepts Cz; and Cy, are two datas-
cape concepts. Hence, by Definition 1 and for D =
(0,4,7) is a given DIS, we can write Cy; and Cyp

as follows: Cyq &f {a | t(a) € L A ®Pi(a)}, and
Cor © {a | t(a) € L A Dy (a)}.

Then, we have sts£d(Cyz; ®Cy»)
=  (Definition 2 )
ststd{a | ©(a) e LA (P1(a) V Py(a))}
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( Definition 3: Satisfiability of datascape
concept )

dalacA:N(®@i(a)) >0 V N(Pz(a)) >0)
( Axiom Distributivity for /)

I alacA:N(®(a)) >0)

V d(alacA:N(Py(a)) >0)

=  ( Definition 3 )

stsfd(Cyy) V ststd(Cy)

O

Example 4.1 (Satisfiability of a Datas-
cape Concept). Consider the datascape con-
cept PositiveFeedback = {a | t(a) €
CustomerService ANa.Satisfaction> 0.6}.
Thus, this concept consists of a single atomic predi-
cate: Q(a) = (a.Satisfaction > 0.6). Assume
the following information is provided by a domain
expert:

e Instance distribution relation:
SVP(a)) = (Good, (Satisfaction,0.7))

* Relator necessity degree: R”(a)) = (Good >
0.6, 0.8)

o Wights of importance: winse = 0.4, Wyre; = 0.6

Then, using Procedure 3.1, we compute the necessity
degree of the atomic predicate:

min (max(l ~Winst,SVP(a))), max(1 warel,RD(al)))
=min(max(0.6,0.7), max(0.4,0.8)) = 0.7

Since ®(a) consists of just this atomic predicate, we
have:

N(Cq) = N(®(a)) = N(Q(a1)) = 0.7

By  Definition 3, the  concept is  satis-
fiable  because  N(®(a)) > 0.  Hence:
stsfd(PositiveFeedback)holds. O

4.2 Necessity-Based Subsumption

In general, we say that a concept C; subsumes a con-
cept C; if every instance of C; is in C;. In classical
DIS, we have an additional kind of subsumption re-
lationship. It is the partOf relationship, denoted by
C., that exists among the members of the Boolean
lattice. When we write C;C.C», it indicates that the
instances of C; are obtained through the projection of
corresponding instances of C; on the attributes defin-
ing C1. In this case, we say that C; subsumes C;. The
formal definition of DIS based subsumption is given
below:
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Definition 4. Given a DIS D = (0, 4,7). Let C) and
Cy be two concepts in the set of concepts of D. We
say that Cy C Cy iff one of the conditions holds:

1. CteLNGeL NGLE.C.

2. C1 and Cy are two datascape concepts with data
specializing predicates @1 and Py, respectively and
V(a|a€A: Py(a) = Pi(a)).

3. Cy € L and C, is a datascape concept. We have
(C1,C2) € R*, where R* is the reflexive transitive clo-
sure of a relation R of the graph rooted at C.

Definition 4 formalizes concept subsumption in
DIS, covering both objective and datascape concepts.
First, if C| and C; are objective concepts in the ontol-
ogy lattice, subsumption holds if C;C.C;, meaning
(> is structurally more specific than C; per the lat-
tice order, reflecting the traditional subclass relation
of the lattice hierarchical structure. Second, if both
are datascape concepts defined by data specializing
predicates ®@; and ®,, then (; C C; holds if Va € A,
the implication ®, — @ is satisfied. This ensures
all instances satisfying C, also satisfy C;. Third, if
C) is an objective concept and C; is a datascape, sub-
sumption holds if a path exists from Cj to C; in the
reflexive-transitive closure R* of relation R. Notably,
all concepts in the graph rooted at C; are considered
a specialization of C;. Subsumption is a partial order
(reflexive, antisymmetric, transitive) over concepts, as
stated in the following claim.

Claim 4.2. Given a DIS D = (0, 4,1), the subsump-
tion relation on the set of concepts in D is a partial
order.

Proof. We provide a proof for each case of the sub-
sumption relation as given in Definition 4.

1. In the first case, the subsumption relation is iden-
tical to the partOf (i.e., C.) relation. The latter sat-
isfies the properties required for subsumption (reflex-
ivity, transitivity, and anti-symmetry) because it is de-
fined on a Boolean lattice, which is itself a partially
ordered set (poset) (Marinache, 2025).

2. In the second case, the subsumption relation C
defines a partial order over the datascape concepts.
This is due to the properties of the logical —
operation that satisfies the properties of partial or-
der (Gries and Schneider, 1993, Pages 57-59).

3. In the third case, subsumption is interpreted as
membership to the reflexive transitive closure R*. It
is established that a reflexive transitive closure on an
acyclic graph is a partial order. Indeed, the rooted
graphs are acyclic, as furthermore each is a Directed
Acyclic Graph (DAG).

O



In the context of necessity-based subsumption,
the subsumption necessity degree is determined by a
domain expert. In addition, as the transitivity of sub-
sumption applies, the degree of transitive subsump-
tion is governed by the weakest link resolution rule,
presented previously in subsection 2.2. This approach
to possibilistic transitivity reasoning has been adopted
in prior research (e.g., (Mohamed et al., 2018;
Benferhat and Bouraoui, 2015)) and has shown effec-
tiveness in handling uncertainty within possibilistic
ontologies.

Claim 4.3. Ler D = (0,4,7) be a DIS. Let Cy, C,,
and C3 be concepts defined in D. Let

R :{(Cl,cz) | CieC NG eC NG ECz}
and Rg is its corresponding necessity relation. We
have:

((C1,G2),0) € RZ A ((C2,C3),B) € RE
= ((C1,C3),min(o,B)) € RZ

Proof. ((C1,62),) € RE A ((C2,C3),B) € RZ
= (Definition of RZ )
(C1,C2) ERE A (C,C3) € R?
/\N((Cl,CQ)) = /\N((CQ,C3)) =p
= ( Transitivity of R and the weakest link
resolution rule (Equation 3) )
(C1,C3) €RE A N((C1,C3)) =min(a,B)
( Definition of RZ')
((C1,C3),min(a, B)) € R?

O

The necessity-based subsumption between objec-

tive concepts (partOf relation) invariably assumes
a necessity degree of 1, since the parthood rela-
tion among lattice concepts is considered fully cer-
tain i.e., N(partOf) = 1, as indicated previously
in subsection 3.3. This certainty extends naturally to
the transitivity of partOf relation, whereby the mini-
mum necessity degree computed over a chain of part-
hood relations, among lattice concepts, gives a degree
of 1.
Example 4.2 (Transitivity of Concept Subsump-
tion in DIS). Let C; = Complaints, C; =
Feedback, C3 = CustomerService be three
concepts defined in given DIS. Suppose the following
necessity-based subsumption relationships are pro-
vided by the domain expert:

{((Complaints,Feedback),0.6),
((Feedback,CustomerService),0.8)} C Rg

By Claim 4.3, the transitive subsumption relation
holds with:

N(Complaints,CustomerService) =0.6

Possibilistic Extension of Domain Information System (DIS) Framework

S RELATED WORK AND
DISCUSSION

This section reviews ontology modelling approaches
that handle uncertainty using possibility theory, and
explains our choice of this formalism.

In possibilistic DL-based approaches, uncertainty
is modelled by assigning necessity or possibility
degrees to ontology axioms at different levels. For
instance, Pb-m-DL-Lite (Boutouhami et al., 2017)
assigns necessity degrees only to ABox assertions,
allowing uncertain instance membership such as
(Status,Good) = 0.9 in the CustomerService
domain, without modelling uncertainty at concept
or relationship levels. The work of (Sun,2013)
focuses on uncertainty at the TBox level, as-
signing necessity degrees to TBox axioms such
as N(isA(Rating,Feedback)) = 0.8, yet does
not support uncertain instance classification
or data-driven concept definitions. Similarly,
studies such as (Benferhat and Bouraoui, 2015;
Benferhat et al., 2014; Qi etal., 2011) extend pos-
sibilistic logic to both TBox and ABox axioms,
enriching the expressiveness by allowing weighted
axioms at multiple levels; however, their frameworks
still assume that concepts like PositiveFeedback
are defined and do not enable concept definitions
directly derived from data (i.e., datascape concepts).
The study of (Mohamed et al., 2018) further incor-
porates possibility distributions over interpretations,
adding expressiveness to represent uncertainty about
models themselves, but does not provide mechanisms
to ground concepts in uncertain data attributes or
integrate graded uncertainty at the attribute-concept
mapping level.

At the language level, (Safia and Aicha, 2014)
propose extending Web Ontology Language 2
(OWL2) with possibilistic annotations, enabling un-
certainty representation in both concepts and in-
stances. Using the CustomerService example, one
could annotate a concept like PositiveFeedback, or
an instances like Fast with possibility degrees, yet
the approach still requires concepts to be pre-defined
and does not support automatic or context-aware con-
struction of concepts from data conditions. Finally,
the work of (Ben Salem et al., 2018) assigns possibil-
ity degrees directly to concepts outside DL seman-
tics, like assigning possibility degree to the concept
PositiveFeedback, but does not address uncertainty
propagation from attribute data to instances or model
uncertainty in relationships or attribute mappings.

In contrast, our DIS-based framework uniquely in-
tegrates uncertainty at all levels: attributes, instances,
relationships, and data-driven concepts. For example,
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we model uncertain attribute-concept mappings such
as N(Quality — Status) = 0.7, uncertain instance-
concept classification like (Good,0.9), and relation-
ships such as N(isA(Rating,Feedback)) =0.9. Our
datascape concept PositiveFeedback is defined by
a data-specializing predicate reflecting the actual sat-
isfaction values, allowing uncertainty in satisfaction
data to propagate naturally to the membership degree
in PositiveFeedback concept. This unified, data-
grounded modelling allows more expressive, context-
aware reasoning about uncertain information com-
pared to existing possibilistic ontology methods.

From a methodological standpoint, choosing an
uncertainty formalism requires alignment with the
modelling goals and constraints of the framework.
While several candidates exist, including probabilis-
tic approaches and Dempster-Shafer Theory (DST),
we adopt possibility theory for its suitability to
our framework. Probability theory enforces the
additivity axiom, requiring the sum of probabil-
ities for mutually exclusive events in a universe
of discourse to equal one even under insufficient
data (Kovalerchuk, 2017), leading to challenges in ac-
curately representing uncertainty. In contrast, possi-
bility theory relaxes this constraint, making it more
suitable for the proposed approach. This ratio-
nale is supported by several possibilistic ontology
frameworks (e.g., (Bal-Bourai and Mokhtari, 2016;
Boutouhami et al., 2017)).  Regarding DST, it is
primarily designed for belief fusion from multi-
ple sources (McClean, 2003), whereas our approach
derives certainty from a single source. = More-
over, DST typically assigns belief to sets of hy-
potheses rather than individual ones, making it
more suitable for representing group-level uncer-
tainty. In contrast, the DIS framework demands fine-
grained certainty assignments to individual attributes,
values, and relationships (Sentz and Ferson, 2002;
Gordon and Shortliffe, 1984). Possibility theory di-
rectly supports this by enabling necessity degrees to
annotate specific elements, making it a natural fit for
our ontology-based model.

6 CONCLUSION AND FUTURE
WORK

This paper presents a principled extension of the
DIS framework to support reasoning under incom-
plete information using necessity-based possibilis-
tic logic. Unlike most ontology-based systems that
assume complete information, our approach mod-
els uncertainty across instances, attributes, relation-
ships, and concept definitions, enabling fine-grained,
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graded reasoning. A key advantage is replacing bi-
nary inferences with necessity-valued conclusions, al-
lowing cautious reasoning with partial information.
Overall, this approach provides a structured foun-
dation for possibilistic reasoning in ontology-based
systems advancing more expressive and uncertainty-
aware knowledge representations essential for robust
decision-making in complex, data-limited contexts.
We are currently automating necessity-
based reasoning tasks using the Domain Infor-
mation System Extended Language (DISEL)
tool (Wang et al., 2022). Future work will focus on
automating necessity degree assignment via machine
learning, integrating fuzzy logic to handle impreci-
sion, developing a scalable reasoning engine, and
applying the framework to real-world domains. Once
the automation is in place, we plan to use DISEL to
reason over data collected from network security pre-
vention mechanisms. This data is often uncertain and
originates from diverse sources with varying levels of
reliability. Furthermore, this data originates from log
files, whether structured or semi-structured, making
it well-suited for DIS modelling. The goal is to pre-
process and clean the data (Khedri et al., 2013), then
apply the proposed reasoning framework to facilitate
reliable and context-aware security decision-making
in highly dynamic and complex uncertain landscapes.

REFERENCES

Alola, A., Tunay, M., and Alola, U. (2013). Analysis of
possibility theory for reasoning under uncertainty. In-
ternational Journal of Statistics and Probability, 2:12.

Alomair, D. and Khedri, R. (2025). Towards a cartesian
theory of ontology domain adequacy. Synthese, pages
1-12. Submitted for publication on July. 25, 2025.

Alomair, D., Khedri, R., and MacCaull, W. (2025). A com-
prehensive review of uncertainty modelling in domain
ontologies. ACM Computing Surveys, pages 1-35.
Accepted with minor revision.

Anand, S. K. and Kumar, S. (2022). Uncertainty analysis in
ontology-based knowledge representation. New Gen-
eration Computing, 40(1):339-376.

Bal-Bourai, S. and Mokhtari, A. (2016). Poss-SROIQ(D):
Possibilistic description logic for uncertain geo-
graphic information. In Trends in Applied Knowledge-
Based Systems and Data Science, pages 818-829,
Cham. Springer International Publishing.

Ben Salem, Y., Idoudi, R., Ettabaa, K. S., Hamrouni, K.,
and Soleiman, B. (2018). Mammographie image
based possibilistic ontological representation. In (AT~
SIP) 4th International Conference, pages 1-6.

Benferhat, S. and Bouraoui, Z. (2015). Min-based possi-
bilistic DL-Lite. Journal of Logic and Computation,
27(1):261-297.



Benferhat, S., Bouraoui, Z., and Tabia, K. (2014). On
the revision of prioritized DL-Lite knowledge bases.
In Scalable Uncertainty Management, pages 22-36,
Cham. Springer International Publishing.

Bosc, P. and Prade, H. (1997). An Introduction to the Fuzzy
Set and Possibility Theory-Based Treatment of Flex-
ible Queries and Uncertain or Imprecise Databases,
pages 285-324. Springer US, Boston, MA.

Boutouhami, K., Benferhat, S., Khellaf, F., and Nouioua, F.
(2017). Uncertain lightweight ontologies in a product-
based possibility theory framework. International
Journal of Approximate Reasoning, 88:237-258.

Ceravolo, P., Damiani, E., and Leida, M. (2008). Which
role for an ontology of uncertainty? In International
Workshop on Uncertainty Reasoning for the Semantic
Web, volume 423.

Dubois, D., Lang, J., and Prade, H. (1994). Possibilistic
logic. Handbook of logic in artificial intelligence and
logic programming, pages 439-513.

Dubois, D. and Prade, H. (1986). Weighted minimum and
maximum operations in fuzzy set theory. Information
Sciences, 39(2):205-210.

Dubois, D. and Prade, H. (2014). Possibilistic logic—an
overview. Handbook of the History of Logic, 9:283—
342.

Dubois, D. and Prade, H. (2015). Possibility theory and its
applications: Where do we stand? Mathware and Soft
Computing Magazine, 18.

Gordon, J. and Shortliffe, E. H. (1984). The dempster-
shafer theory of evidence. Rule-Based Expert Sys-
tems: The MYCIN Experiments of the Stanford
Heuristic Programming Project, 3(832-838):3—4.

Grabisch, M. (1998). Fuzzy Integral as a Flexible and Inter-
pretable Tool of Aggregation, pages 51-72. Physica-
Verlag HD, Heidelberg.

Gries, D. and Schneider, F. B. (1993). A logical approach
to discrete math. Springer-Verlag, Berlin, Heidelberg.

Imielifiski, T. and Lipski, W. (1984). The relational model
of data and cylindric algebras. Journal of Computer
and System Sciences, 28(1):80-102.

Khedri, R., Chiang, F., and Sabri, K. E. (2013). An alge-
braic approach for data cleansing. In the 4th EUSPN,
volume 21 of Procedia Computer Science, pages 50 —
59. Procedia Computer Science.

Kovalerchuk, B. (2017). Relationships Between Probabil-
ity and Possibility Theories, pages 97-122. Springer
International Publishing, Cham.

Laha, R. G. and Rohatgi, V. K. (2020). Probability theory.
Courier Dover Publications.

Ma, Z. M., Zhang, F., Wang, H., and Yan, L. (2013).
An overview of fuzzy description logics for the se-
mantic web. The Knowledge Engineering Review,
28(1):1-34.

Marinache, A. (2025). Syntax and Semantics of Domain
Information System and its usage in conjecture verifi-
cation. PhD thesis, School of Graduate Studies, Mc-
Master University, Hamilton, Ontario, Canada.

Marinache, A., Khedri, R., LeClair, A., and MacCaull, W.
(2021). DIS: A data-centred knowledge representa-

Possibilistic Extension of Domain Information System (DIS) Framework

tion formalism. In (RDAAPS) 2021: A Big Data Chal-
lenge, pages 1-8.

McClean, S.I. (2003). Data mining and knowledge discov-
ery. In Encyclopedia of Physical Science and Technol-
ogy (Third Edition), pages 229-246. Academic Press,
New York, third edition edition.

Mohamed, R., Loukil, Z., and Bouraoui, Z. (2018).
Qualitative-based possibilistic el ontology. In PRIMA
2018: Principles and Practice of Multi-Agent Sys-
tems, pages 552-559, Cham. Springer International
Publishing.

Nieves, J. C., Osorio, M., and Cortés, U. (2007). Semantics
for possibilistic disjunctive programs. In LPNMR: 9th
International Conference, Tempe, AZ, USA, May 15-
17, 2007. Proceedings 9, pages 315-320. Springer.

Qi, G, Ji, Q., Pan, J. Z., and Du, J. (2011). Extending
description logics with uncertainty reasoning in possi-
bilistic logic. International Journal of Intelligent Sys-
tems, 26(4):353-381.

Safia, B.-B. and Aicha, M. (2014). Poss-OWL 2: Possibilis-
tic extension of OWL 2 for an uncertain geographic
ontology. Procedia Computer Science, 35:407-416.

Sentz, K. and Ferson, S. (2002). Combination of evidence
in Dempster-Shafer theory, volume 4015. Sandia Na-
tional Laboratories Albuquerque.

Straccia, U. (2013). Foundations of Fuzzy Logic and Se-
mantic Web Languages. Chapman & Hall/CRC.
Straccia, U. and Bobillo, F. (2017). From Fuzzy to An-
notated Semantic Web Languages, pages 203-240.

Springer International Publishing, Cham.

Sun, S. (2013). A novel semantic quantitative description
method based on possibilistic logic. Journal of Intel-
ligent & Fuzzy Systems, 25:931-940.

Wang, Y., Chen, Y., Alomair, D., and Khedri, R. (2022).
DISEL: A language for specifying DIS-based ontolo-
gies. In (KSEM) 2022, Lecture Notes in Artificial In-
telligence, pages 1-16, Singapore. Springer.

Zadeh, L. (1999). Fuzzy sets as a basis for a theory of pos-
sibility. Fuzzy Sets and Systems, 100:9-34.

119



