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Abstract: This work presents a Fractional Order PID (FOPID) control strategy for trajectory tracking of an Unmanned 
Aerial Manipulator (UAM), proposed as an alternative to the conventional PID controller. Unlike classical 
integer-order controllers, the FOPID design enables more flexible tuning of the aerial manipulator’s kinematic 
response by introducing five independent tuning parameters. This added flexibility enhances system stability 
and improves robustness against abrupt reference changes. The controller parameters are optimized through 
Integral of Squared Error (ISE) minimization to ensure efficient performance. Simulation results confirm that 
the FOPID controller achieves superior trajectory tracking accuracy compared to the conventional PID. 
Specifically, the ISE values obtained with the FOPID reflect reductions of 23.46%, 24.99%, and 15.35% in 
the tracking errors along the 𝑥෤,𝑦෤ and 𝑧̃ directions, respectively. These results validate the effectiveness of the 
FOPID approach in improving the control performance of unmanned aerial manipulators.

1 INTRODUCTION 

Unmanned Aerial Manipulators (UAMs) integrate 
the mobility of Unmanned Aerial Vehicles (UAVs) 
with the manipulation capabilities of robotic arms, 
posing significant control challenges due to their high 
nonlinearities, strong couplings, and external 
disturbances. Although full dynamic models offer 
accuracy (Carvajal et al., 2024), their complexity 
restricts real-time implementation. Consequently, 
some approaches adopt decoupled dynamics  
(Sharma et al., 2025),  (Zhang et al., 2021) or treat the 
robotic arm as a disturbance (Zheng et al., 2023). 
Within this framework, kinematic models offer a 
suitable alternative for achieving precise trajectory 
tracking at low computational cost, particularly in 
low-speed operation scenarios. 

Classical integer-order PID controllers have been 
extensively applied in robotics due to their simplicity 
and ease of implementation (Moya et al., 2016; 
Mundheda et al., 2023), but they exhibit significant 
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limitations when dealing with external disturbances, 
parametric variations, and nonlinearities (Leica et al., 
2017), especially in systems such as UAMs. To 
address these shortcomings, various PID extensions 
have been proposed, including adaptive schemes 
(Ghamari et al., 2022), sliding mode controllers 
(Noordin et al., 2022), fuzzy logic-based controllers 
(Cao et al., 2022), and sigmoid-based control 
structures (Suid & Ahmad, 2022). Nonetheless, all of 
these strategies still operate under the constraints of 
integer-order dynamics. 

Fractional-order control theory generalizes the 
classical PID framework by allowing non-integer 
orders in the integral and derivative operators, thus 
introducing two additional degrees of freedom that 
enhance tuning flexibility and the ability to model 
real-world systems more accurately  (Torvik & 
Bagley, 1984). FOPID controllers have demonstrated 
superior performance in diverse robotic applications. 
For example, in robotic manipulators, FOPID 
schemes have been integrated with neural networks 
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(Mohamed et al., 2023), applied in iterative model-
free control (Zhang et al., 2021), combined with 
sliding mode control (Noordin et al., 2022), and tuned 
using nature-inspired algorithms such as the Bat 
algorithm (A. Faraj & Mohammed Abbood, 2021) or 
optimization-based methods (Ghamari et al., 2022). 
In the UAVs, FOPID controllers have been improved 
tracking precision and robustness against parametric 
uncertainties using micro-integral operators 
(Delgado-Reyes et al., 2024; Li et al., 2023). 
Experimental comparisons with adaptive schemes 
further confirm their superiority over classical PID 
(Timis et al., 2022). In UAMs, FOPID has been 
combined with predictive and sliding mode control 
strategies, yielding significant improvements in 
disturbance rejection and trajectory tracking  (Shao et 
al., 2025; Zheng et al., 2023). However, many of 
these approaches assume accurate knowledge of the 
system dynamics, which remains a practical 
limitation due to the inherent complexity of UAM 
platforms. Based on the literature, FOPID controllers 
have demonstrated significant advantages in 
precision and robustness against disturbances and 
uncertainties, with successful applications in aerial 
and ground robotics (UAVs and UGVs), particularly 
in scenarios with wind gusts, payload variations, 
friction, and model inaccuracies (Cajo et al., 2019). 
Nevertheless, their implementation in UAM systems 
remains limited, despite the high potential fractional-
order control offers for this domain. 

This work proposes the design and 
implementation of a fractional-order PID (FOPID) 
controller, formulated using the Caputo fractional 
derivative operator, applied to the kinematic model of 
a UAM composed of a quadrotor and a 3-DOF robotic 
arm. Unlike previous approaches that rely on 
complex dynamic models with high real-time 
computational costs, the proposed method enables 
efficient and precise trajectory tracking control under 
abrupt reference changes. The results demonstrate 
significant improvements over classical PID 
controllers, exhibiting smoother and more robust 
responses, thereby positioning the FOPID as an 
effective alternative for robust kinematic control of 
UAMs. The main contributions of this work are: i) a 
novel application of FOPID control in aerial 
manipulators, providing a foundation for future 
research; and ii) a control strategy that does not 
require an exact system model, making it particularly 
suitable for platforms like UAMs, whose dynamics 
are complex and highly coupled. 

The article is organized as follows: Section 1 
presents a review of FOPID controllers and the 
contributions of this work; Section 2 describes the 

modeling of the manipulator, the quadrotor and 
UAM; Section 3 details the PID and FOPID 
controllers along with the stability analysis; Section 4 
presents the obtained results; and Section 5 
summarizes the study’s conclusions. 

2 SYSTEM MODELING 

2.1 Quadrotor Modeling 

For this work, an aerial manipulator composed of a 
quadrotor equipped with a 3-DOF robotic arm is 
considered, as illustrated in Figure 1. Under the 
assumption of operation around equilibrium, it is 
assumed that the roll and pitch angles are negligible, 
which allows simplifying the quadrotor kinematics by 
considering only translations in the horizontal plane 
and a constant yaw orientation (Guayasamín et al., 
2018). 

 
Figure 1: Quadrotor Robot. 

൥𝑥ሶா𝑦ሶா𝑧ሶா ൩ ൌ ൥cos𝜓 −sin𝜓 0sin𝜓 cos𝜓 00 0 1൩ ቎𝑉௫𝑉௬𝑉௭቏ , ሺ1ሻ 
where 𝑉௫ , 𝑉௬  and 𝑉௭  are the linear velocities of the 
quadrotor, ሾ𝑥ா  ,𝑦ா  , 𝑧ாሿ் represents the position with 
respect to the quadrotor’s 𝑋, 𝑌 and 𝑍 axes, 𝜓 is the 
rotation angle of the quadrotor about the 𝑍-axis, and 𝑙௖ is the vertical distance from the quadrotor’s base to 
its center of mass. 

2.2 Robotic Arm Modeling 

A 3-DOF robotic arm is considered, as shown in 
Figure 2. By applying the Denavit-Hartenberg 
algorithm, the system’s forward kinematic model is 
determined (Guayasamín et al., 2018), which is 
expressed as follows: 
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Figure 2: 3-DOF Robotic Arm. 

൥𝑥௘𝑦௘𝑧௘൩ ൌ ቎ cos𝜃ଵ ሾ𝑙ଶ cos𝜃ଶ ൅ 𝑙ଷ cosሺ𝜃ଶ ൅ 𝜃ଷሻሿsin𝜃ଵ ሾ𝑙ଶ cos 𝜃ଶ ൅ 𝑙ଷ cosሺ𝜃ଶ ൅ 𝜃ଷሻሿ−𝑙ଵ sin𝜃ଵ − 𝑙ଶ sin𝜃ଶ ൅ 𝑙ଷ sinሺ𝜃ଶ ൅ 𝜃ଷሻ቏ .  ሺ2ሻ  

The parameters 𝑙ଵ , 𝑙ଶ , and 𝑙ଷ  denote the link 
lengths, 𝜃ଵ , 𝜃ଶ , and 𝜃ଷ  are the joint angles, and ሾ𝑥௘ ,𝑦௘ , 𝑧௘ሿ்  represents the position of the 
manipulator’s end-effector with respect to the 𝑋௘, 𝑌௘, 
and 𝑍௘ axes. 

2.3 Aerial Manipulator Modeling 

The robotic system is formed by coupling the 
quadrotor with the previously described robotic arm. 
To obtain the combined model, it is considered that 
the end-effector’s position is now influenced by the 
quadrotor’s position, such that the end-effector 
position is given by ሾ𝑥௘௘ ,𝑦௘௘  , 𝑧௘௘ሿ் ൌ ሾ𝑥ா ൅𝑥௘ ,𝑦ா ൅ 𝑦௘ ,   𝑧ா ൅ 𝑧௘ ൅ 𝑙௖ሿ் , where ሺ𝑥௘௘ ,𝑦௘௘ , 𝑧௘௘ሻ 
denotes the position of the aerial manipulator’s end-
effector in 𝑋, 𝑌, and 𝑍 axes. 

 
Figure 3: Unmanned Aerial Manipulator Robot. 

It is considered that there exists an angle 𝜃௔ 
influenced by the quadrotor’s yaw orientation 𝜓 and 
the angle 𝜃ଵ of the first joint of the robotic arm, such 

that 𝜃௔ ൌ 𝜃ଵ ൅ 𝜓 . Based on these considerations, the 
kinematic model of the UAM is given by:  ℎሶ ൌ 𝐽𝑈, ሺ3ሻ 

The vector ℎሶ ൌ ሾ𝑥ሶ௘௘ ,𝑦ሶ௘௘  , 𝑧ሶ௘௘ሿ்  represents the 
time derivative of the position of the end-effector of 
the aerial manipulator. The input vector of the system 
is defined as 𝑈 ൌ ൣ𝑉௫ ,𝑉௬ ,𝑉௭ ,𝜓ሶ  ,𝜃ሶଵ , 𝜃ሶଶ ,𝜃ሶଷ ൧்where  𝜓ሶ  is the angular velocity of the quadrotor around the 
Z-axis. The angular velocities of each joint of the 
robotic arm are 𝜃ሶଵ ,𝜃ሶଶ , and 𝜃ሶଷ. 

The matrix 𝐽  is the Jacobian of the complete 
system and is defined as: 

𝐽 ൌ
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡ 𝐶𝜓−𝑆𝜓0−𝑆𝜃1𝜓𝐿𝐶23 −𝑆𝜃1𝜓𝐿𝐶23 −𝐶𝜃1𝜓𝐿𝑆23−𝑙3𝐶𝜃1𝜓𝑆𝜃2𝜃3

   
𝑆𝜓𝐶𝜓0𝐶𝜃1𝜓𝐿𝐶23 𝐶𝜃1𝜓𝐿𝐶23 −𝑆𝜃1𝜓𝐿𝑆23−𝑙3𝑆𝜃1𝜓𝐶𝜃2𝜃3

   
00100𝐿′𝐶23𝑙3𝐶𝜃2𝜃3⎦⎥⎥

⎥⎥⎥
⎥⎥⎤
𝑻

. ሺ4ሻ 

The equivalent nomenclature is 𝐶ట ൌ cos𝜓 , 𝑆ట ൌ sin𝜓 , 𝑆ఏభట ൌ sinሺ𝜃ଵ ൅ 𝜓ሻ , 𝐶ఏమ ൌ cos𝜃ଶ , 𝑆ఏమ ൌ sin𝜃ଶ , 𝐶ఏమఏయ ൌ cosሺ𝜃ଶ ൅ 𝜃ଷሻ , 𝐶ఏభట ൌcosሺ𝜃ଵ ൅ 𝜓ሻ, 𝑆ఏమఏయ ൌ sinሺ𝜃ଶ ൅ 𝜃ଷሻ, 𝐿஼మయ ൌ 𝑙ଶ𝐶ఏమ ൅𝑙ଷ𝐶ఏమఏయ , 𝐿ௌమయ ൌ 𝑙ଶ𝑆ఏమ ൅ 𝑙ଷ𝑆ఏమఏయ , and  𝐿′஼మయ ൌ−𝑙ଶ𝐶ఏమ ൅ 𝑙ଷ𝐶ఏమఏయ. 

3 CONTROLLERS 

This section analyzes the stability of the control laws 
using Lyapunov functions. The tracking error is 
defined as ℎ෨ ൌ ℎௗ − ℎ , where ℎ ൌ ሾ𝑥௘௘ ,𝑦௘௘ , 𝑧௘௘ሿ் 
represents the actual position of the end-effector, and ℎௗ ൌ ሾ𝑥ௗ ,𝑦ௗ  , 𝑧ௗሿ்  denotes the desired position of 
the end-effector, which may vary over time. 

3.1 PID Controller 

The classical PID control scheme is illustrated in 
Figure 4. 

 
Figure 4: PID Control Scheme. 
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A PID-type control law is proposed for trajectory 
tracking of the UAM (Li et al., 2023), given by: 𝑈௉ூ஽ ൌ 𝐽# ൬ℎሶ ୢ ൅ 𝑘௣ℎ෨ ൅ 𝑘௜ නℎ෨  𝑑𝑡 ൅ 𝑘ௗℎ෨ሶ ൰ . ሺ5ሻ 

The gains 𝑘௣, 𝑘௜ , 𝑘ௗ ൐ 0  represent the PID 
controller parameters, respectively, and ℎ෨ ൌ ℎௗ − ℎ 
is the tracking error. Defining the integral term as 𝑧 ൌ׬ℎ෨  𝑑𝑡 , with 𝑧ሶ ൌ ℎ෨ , the above expression can be 
rewritten as: 𝑈௉ூ஽ ൌ 𝐽# ቀℎሶ ௗ ൅ 𝑘௣ℎ෨ ൅ 𝑘௜𝑧 ൅ 𝑘ௗℎ෨ሶ ቁ .       ሺ6ሻ 
The time derivative of the tracking error is ℎ෨ሶ ൌ ℎሶ ௗ − ℎሶ , 
and combining this with the kinematic model (3), we 
obtain: ℎ෨ሶ ൌ ℎሶ ௗ − 𝐽𝑈. ሺ7ሻ 
Assuming perfect velocity tracking, i.e., 𝑈 ൌ 𝑈௉ூ஽ , 
and substituting (6) into (7), the closed-loop system 
becomes: ℎ෨ሶ ൌ −𝑘௣ℎ෨ − 𝑘௜𝑧 − 𝑘ௗℎ෨ሶ . ሺ8ሻ 

Solving for ℎ෨ሶ , we obtain: ℎ෨ሶ ൌ −𝑘௣ℎ෨ ൅ 𝑘௜𝑧ሺ1 ൅ 𝑘ௗሻ , ሺ9ሻ 
The following Lyapunov candidate function is 

proposed: 𝑉 ൌ 12ℎ෨்ℎ෨ ൅ 𝑘௜2ሺ1 ൅ 𝑘ௗሻ 𝑧்𝑧. ሺ10ሻ 
Its time derivative is given by: 𝑉ሶ ൌ ℎ෩𝑇ℎ෩ሶ ൅ 𝑘𝑖൫1൅𝑘𝑑൯ 𝑧𝑇𝑧ሶ . ሺ11ሻ           
Substituting (9) into (11) and expanding the terms 

yields:  𝑉ሶ ൌ − 𝑘௣1 ൅ 𝑘ௗ ℎ෨்ℎ෨ − 𝑘௜1 ൅ 𝑘ௗ ℎ෨்𝑧 ൅ 𝑘௜1 ൅ 𝑘ௗ 𝑧்ℎ෨ . ሺ12ሻ 
Since ℎ෨்𝑧 ൌ 𝑧்ℎ෨ , the cross terms cancel out, 

resulting in:  𝑉ሶ ൌ − 𝑘௣1 ൅ 𝑘ௗ ℎ෨்ℎ෨ . ሺ13ሻ 
This expression guarantees that  ℎ෨  and z are 

bounded, i.e., ℎ෨ ∈ 𝐿ஶ  and 𝑧 ∈ 𝐿ஶ.  To demonstrate 
that the errors converge to zero, LaSalle’s invariance 
principle is applied. The invariant set is defined as: 𝑆 ൌ ൛൫ℎ෨ , 𝑧൯ ∈ ℝଷ𝑥ℝଷ: 𝑉ሶ ൌ 0ൟ → ℎ෨ ൌ 0.  (14) 

Thus, ℎ෨ ൌ 0 , and since 𝑧ሶ ൌ ℎ෨ ൌ 0, it follows that 𝑧 ൌ 𝑐𝑜𝑛𝑠𝑡.  Therefore, the system’s solutions 
converge to the largest invariant set contained in 𝑆, 
namely: 𝑀 ൌ ൛൫ℎ෨ , 𝑧൯: ℎ෨ ൌ 0, 𝑧 ൌ 𝑐𝑜𝑛𝑠𝑡ൟ. (15) 

Given that ௞೔ଶ(ଵା௞೏) 𝑧்𝑧 → 𝑐𝑜𝑛𝑠𝑡,  and considering 

that 𝑉 is decreasing, it is concluded that ℎ෨ → 0 as 𝑡 →∞. This result demonstrates the asymptotic stability 
of the system under the proposed PID control law. 

3.2 Fopid Controller 

For the design of the fractional-order PID controller 
(FOPID), the Caputo definition is adopted (Shah & 
Agashe, 2016), as it enables the derivative and 
integral actions of the controller to be represented 
through fractional-order operators applied to the 
tracking error. The proposed control scheme is 
illustrated in Figure 5.  

 
Figure 5: FOPID control scheme. 

The proposed control law is defined as (A. Faraj 
& Mohammed Abbood, 2021): 𝑈ிை ൌ 𝐽#൫ℎሶ ௗ ൅ 𝑘௣ℎ෨ ൅ 𝑘௜𝐷ିఒℎ෨ ൅ 𝑘ௗ𝐷ఓℎ෨൯.   (16) 

The gains 𝑘௣, 𝑘௜ ,𝑘ௗ ൐ 0  represent the PID 
controller parameters, and 𝐷௡ denotes the fractional 
differential or integral operator of order  𝑛 , and ℎ෨ is 
the tracking error. The state 𝑧௜ ൌ 𝐷ିఒℎ෨ is defined as 
the fractional integral of order 𝜆 ∈ ሾ0,1ሿ, such that ℎ෨ ൌ 𝐷ఒ𝑧௜, while the state 𝑧ௗ ൌ 𝐷ఓℎ෨    corresponds to 
the fractional derivative of order 𝜇 ∈ ሾ0,1ሿ with ℎ෨ሶ ൌ𝐷ଵିఓ𝑧ௗ. By substituting these expressions into (15), 
the control law can be rewritten as:  𝑈ிை ൌ 𝐽#൫ℎௗሶ ൅ 𝑘௣ℎ෨ ൅ 𝑘௜𝑧௜ ൅ 𝑘ௗ𝑧ௗ൯. (17) 

Assuming perfect velocity tracking, we have 𝑈 ൌ𝑈ிை. Replacing (17) into the kinematic model (3), the 
closed-loop dynamics are obtained as: ℎ෩ሶ ൌ −𝑘𝑝ℎ෩ − 𝑘𝑖𝑧𝑖 − 𝑘𝑑𝑧𝑑. (18) 
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To analyze stability, the following Lyapunov 
candidate function is proposed: 𝑉௅ = 12ℎ෨்ℎ෨ + 𝑘௜2 𝑧௜் 𝑧௜ + 𝑘ௗ2 𝑧ௗ்𝑧ௗ. (19) 

By differentiating (19) with respect to time, we 
obtain: 𝑉ሶ௅ = ℎ෨்ℎ෨ሶ + 𝑘௜𝑧௜் 𝑧ሶ௜ + 𝑘ௗ𝑧ௗ்𝑧ሶௗ. (20) 

Considering the fractional relationships:: 𝑧ሶ௜ =ௗௗ௧ ൫׬ ℎ෨  𝑑𝑡൯ = ℎ෨ = 𝐷ఒ𝑧௜, and  𝑧ሶௗ = ௗௗ௧ ൫ℎ෨൯ = ℎ෨ሶ =𝐷ଵିఓ𝑧ௗ; and substituting into (20), we get:  𝑉ሶ௅ = ℎ෨்ℎ෨ሶ + 𝑘௜𝑧௜் 𝐷ఒ𝑧௜ + 𝑘ௗ𝑧ௗ்𝐷ଵିఓ𝑧ௗ . (21) 

Given the previously defined state variables, the 
Lyapunov derivative can be rewritten as: 𝑉ሶ௅ = ℎ෨்ℎ෨ሶ + 𝑘௜𝑧௜் ℎ෨ + 𝑘ௗ𝑧ௗ்ℎ෨ሶ . (22) 

Substituting (18) into (22) and expanding, we obtain: 𝑉ሶ௅ = −𝑘௣ℎ෨்ℎ෨ − 𝑘ௗଶ𝑧ௗ்𝑧ௗ − 𝑘ௗ൫1 + 𝑘௣൯𝑧ௗ்ℎ෨−𝑘௜𝑘ௗ𝑧ௗ்𝑧௜ . (23) 

Applying Young's inequality to bound the cross 
terms: ห𝑧ௗ்ℎ෨ห ≤ 12 ൫𝑧ௗ்𝑧ௗ + ℎ෨்ℎ෨൯. (24) 

ห𝑧ௗ் 𝑧௜ห ≤ 12 ൫𝑧ௗ்𝑧ௗ + 𝑧௜் 𝑧௜൯. (25) 

Rewriting (23) in terms of inequalities, we obtain: 𝑉ሶ௅ ≤ −𝑘௣ℎ෨்ℎ෨ − 𝑘ௗଶ𝑧ௗ்𝑧ௗ − ௞೏ଶ ൫1 + 𝑘௣൯൫𝑧ௗ்𝑧ௗ + ℎ෨்ℎ෨൯ −௞೔௞೏ଶ ൫𝑧ௗ்𝑧ௗ + 𝑧௜் 𝑧௜൯.      (26) 

Developing (26) leads to: 𝑉ሶ௅ ≤ −𝐾௛෩ℎ෨்ℎ෨ − 𝐾௭೏𝑧ௗ்𝑧ௗ  − 𝐾௭೔𝑧௜் 𝑧௜ , (27) 

where 𝐾௛෩ = ቂ𝑘௣ + ௞೏ଶ ൫1 + 𝑘௣൯ቃ , 𝐾௭೏ = ቂ𝑘ௗଶ +௞೏ଶ ൫1 + 𝑘௣൯ + ௞೔௞೏ଶ ቃ , and 𝐾௭೔ = ௞೔௞೏ଶ , are strictly 
positive constants. 

Since 𝑉ሶ௅ ≤ 0 , the system is Lyapunov stable. 
Furthermore, the positivity of the coefficients 
guarantees that ൫ℎ෨ , 𝑧௜ , 𝑧ௗ൯ → 0 as 𝑡 → ∞, confirming 
the asymptotic convergence of the tracking error 
under the proposed FOPID controller. 

4 TESTS AND RESULTS 

This section presents the simulation results 
corresponding to the two proposed control 
algorithms: classical PID and fractional-order PID 
(FOPID). The objective is to compare the 
performance of each controller under identical 
operating conditions. Quantitative evaluation is 
carried out using the Integral of Squared Error (ISE) 
performance index applied to the tracking error in 
each coordinate of the aerial manipulator’s end-
effector. 

The desired trajectory for the end-effector was 
defined as: ℎௗ(𝑡) = ሾ𝑥ௗ ,𝑦ௗ , 𝑧ௗሿ் = ሾ𝑐𝑜𝑠(𝑡/2) + 2,𝑠𝑖𝑛(𝑡/2) + 2  , 𝑡/2  ሿ். The simulation was run for 
60 s. Additionally, to assess the controllers' 
adaptability to abrupt changes, a disturbance was 
introduced in the desired trajectory between 20 s and 
40 s, consisting of a constant increment of 2 m applied 
to each coordinate. 

Both controllers employed the same PID gains, 
with values 𝑘௣ = 3 , 𝑘௜ = 0.1 , and 𝑘ௗ = 1 , which 
were obtained through a tuning process based on the 
minimization of the ISE index. For the FOPID 
controller, the fractional orders 𝜆 and 𝜇 , associated 
with the integral and derivative actions respectively, 
were incorporated. These values were selected using 
heuristic methods aimed at improving performance 
relative to the classical PID. The values used were 𝜆 = 0.1  and 𝜇 = 0.8 . Under these conditions, 
simulations were conducted for both control schemes, 
comparing the tracking errors and the resulting ISE 
indices across the three coordinates. 

 
Figure 6: End-Effector Trajectory under PID and FOPID 
Control. 

Figure 6 shows the evolution of the end-effector 
trajectories under classical PID and FOPID control, 
compared to the desired trajectory. It can be observed 
that both controllers are capable of achieving the 
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desired trajectory; however, the FOPID exhibits 
faster convergence and a smoother response, 
especially when facing abrupt changes in the 
reference. 

Figure 7 depicts the temporal evolution of the 
position error in each coordinate of the end-effector 
under classical PID and FOPID control. The errors 
are displayed within a bounded range of  േ 0.3 m to 
facilitate comparison of the dynamic behavior of the 
controllers. Peaks in the error occur simultaneously in 
both strategies and correspond to the abrupt changes 
in the desired trajectory applied between 20 s and 40 
s, with magnitudes being practically equal. 
Nonetheless, the FOPID demonstrates a significantly 
superior ability to correct the error. While the PID 
requires approximately 10 s to nullify the error after 
the reference change, the FOPID achieves the desired 
tracking within about 1 s. Overall, the PID controller 
exhibits an underdamped behavior with error 
overshoots and longer settling times. In contrast, the 
FOPID provides a faster and smoother response, 
effectively eliminating the error without notable 
overshoot. 

 
Figure 7: Position errors. 

Figure 8 shows three of the seven control signals 
generated by each controller, corresponding to the 
linear velocities of the aerial manipulator. These 
signals are plotted within a േ2 m/s range to facilitate 
a clearer comparison of their dynamic differences. It 
can be observed that, at steady state, both control 
strategies reach similar values, indicating that the 
control signals converge to the same regime. 
However, during the transients caused by the 
reference changes at 20 s and 40 s, slight differences 
appear. The FOPID tends to generate smoother and 
less oscillatory signals, whereas the PID exhibits 
more abrupt responses, consistent with its less 
damped behavior observed in the position error. 

 
Figure 8: Linear velocity control signals.  

5 DISCUSSION 

The results obtained show that the FOPID controller 
implemented performs better than the PID controller, 
considering that the calibration parameters 
(proportional, derivative, and integrator) were the 
same for both controllers. Table 1 presents the 
performance indices ISE derived from the position 
errors in the three coordinates (𝑥,𝑦, 𝑧)  for both 
controllers, along with the relative percentage 
improvement achieved by the FOPID. The 
quantitative analysis reveals that the FOPID 
consistently reduces the ISE values across all 
coordinates, indicating more accurate tracking of the 
desired trajectory. On average, the FOPID improves 
performance by 21.27 %, relative to the PID, which 
supports its faster and smoother response, as also 
observed in the trajectories shown in Figure 6 and the 
error evolution in Figure 7. 

Table 1: ISE Resulting ISE for Each Controller. 

ISE  PID FOPID % Improvement 𝑥෤ 1.5526 1.1884 23.46% 𝑦෤ 1.9318 1.4490 24.99% 𝑧̃ 2.5807 2.1846 15.35% 
 

These results validate the effectiveness of the 
fractional orders 𝜆 and 𝜇 in enhancing the dynamic 
behavior of the system by enabling finer tuning of the 
controller, particularly in scenarios involving abrupt 
changes in the reference trajectory. The 
implementation of the FOPID controller entails 
increased complexity in tuning, as it requires 
adjusting five parameters instead of the three used in 
the classical PID controller. To simplify this process, 
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an efficient sequential tuning strategy was applied: 
first, the PID parameters were tuned, followed by the 
optimization of the fractional orders. This approach 
reduces the search space and facilitates improved 
system performance. While these results confirm the 
efficacy of the kinematic approach under ideal 
conditions, it is acknowledged that its performance 
may degrade in scenarios where the payload or 
manipulator arm dynamics significantly influence the 
UAV's behavior. In such cases, future work should 
consider extending the approach to incorporate 
coupled dynamic models or robust control. 

6 CONCLUSIONS 

Based on the obtained results, it is evident that the 
FOPID controller demonstrated superior performance 
compared to the classical PID, achieving faster and 
more precise trajectory tracking with reduced 
oscillations. This improvement was also observed in 
response to abrupt changes in the reference trajectory, 
to which both controllers were subjected. The FOPID 
achieved a 21.27% improvement in the ISE compared 
to the classical PID. Although the FOPID requires 
tuning of five parameters compared to three in the 
classical controller, this provides greater flexibility in 
the adjustment process. Overall, the results validate 
the use of the FOPID as an efficient solution for 
trajectory tracking control of aerial manipulators 
under demanding conditions. Furthermore, since this 
control approach is model-free, it opens a future 
research avenue for aerial manipulators, focusing on 
robust and adaptive FOPID strategies to compensate 
for the complex dynamics of these robots.  

As future work, we propose to extend the 
approach to schemes that incorporate coupled 
dynamics of the aerial manipulator, in order to 
evaluate how the dynamics of the arm affect the 
robotic system. The implementation of robust 
controllers based on FOPID will be analyzed. 
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