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Artificial Intelligence (Al) is revolutionizing sports by enhancing performance, improving safety, and creating
richer fan experiences. This paper focuses on leveraging Al in Tackwondo, specifically in assessing athlete
performance during Poomsae movements, which are foundational to the sport and crucial for success in
competitions. Traditionally, the evaluation of Poomsae has been subjective and heavily reliant on human
judgment. This study addresses this issue by automating the assessment process. We propose a deep learning
approach that utilizes computer vision to analyse athletes’ movements captured in video clips of Poomsae.
The proposed approach is based on a model that emphasizes the use of autoencoders for training data
representing skeleton body points of correct movements. This model can effectively identify anomalies, i.e.,
incorrect movements by athletes. The SportLand platform implements the proposed approach, providing
coaches and athletes with precise and actionable insights into their performance. This platform can serve as

an assistant for self-evaluation, allowing Tackwondo athletes to enhance their skills at their own pace.

1 INTRODUCTION

Nowadays, the use of Al-driven systems in sports,
including machine learning (ML), computer vision,
and data analytics, has led to a significant paradigm
shift in athlete management. These systems transform
the landscape of sports science, significantly
supporting real-time decision-making in coaching
(Pisaniello, 2024). Recently, integrating Al
technologies to enhance athlete performance has
become a key focus of research (Hong et al., 2021;
Michalski et al., 2022).

Taekwondo is a widely practiced martial art, with
Poomsae as a fundamental component that consists of
choreographed patterns embodying the core
techniques and principles of the art. Traditionally,
Poomsea movement evaluation relies mainly on
subjective visual observation, which can lead to
errors and bias in judgment. As a result, there is a
growing demand for automated solutions that offer
effective and objective methods to assess the quality
and accuracy of athletes' Poomsae movements.
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Computer vision has emerged as a promising
solution to address the subjectivity often associated
with manual evaluation methods. Specifically, human
action/activity recognition (HAR) plays a crucial role
in identifying and labelling activities from videos that
capture complete actions (Kong & Fu, 2022) by
utilizing Al and various hardware devices, such as
cameras. Due to its cost-effectiveness, Sun et al.
(2022) argue that skeleton point detection is a more
effective data modality for HAR than other
modalities, such as red-green-blue (RGB) depth
images. The authors also assert that deep learning DL
methods, such as convolutional neural networks
(CNNs), autoencoders, and long short-term memory
(LSTM) networks, have demonstrated significant
potential in HAR tasks.

HAR has been widely researched in sports, with its
use to analyze and evaluate various athletic performan-
ces (Host & Ivasi¢-Kos, 2022). This paper proposes an
Al-based approach to assessing Taekwondo
movements, thereby avoiding the subjectivity inherent
in traditional evaluation methods. This approach can
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significantly enhance athlete performance by
providing real-time insights into movement accuracy
and kinematic features, such as force and speed.

More precisely, the proposed approach leverages
the power of deep learning autoencoder models and
utilizes variations in skeleton point data to evaluate
Poomsae movements, effectively distinguishing
between correct and incorrect movements. To achieve
this, we created a dataset of videos showcasing the
correct execution of Poomsae by skilled athletes. This
dataset was then used to train and evaluate the
autoencoder model, which achieved an impressive
average accuracy of 99%.

The SportLand platform is a specific tool that
implements our DL approach. It assists athletes in
enhancing their performance by offering a self-
training service designed to sharpen their skills.

The remainder of this paper is organized as
follows: Section 2 provides a comprehensive
overview of the general context and prior research in
the field, delving into the background and existing
literature. Following this, Section 3 outlines our deep
learning approach for evaluating Poomsae. Section 4
introduces the SportLand platform, designed for
delay training to enhance athletes' performance.
Finally, Section 5 summarizes the study's key
findings and offers directions for future work.

2 BACKGROUND AND RELATED
WORKS

2.1 Poomsae in Taeckwondo Sports

In Taekwondo, a poomsae is a sequence of basic
movements that encompasses both offensive and
defensive techniques suitable for competition. Figure
1 depicts the movements of Taegeuk I Jang, one of
the foundational poomsae in Tackwondo. This form
includes essential actions such as walking and basic
techniques like Makki (block) and Chagi (kick).
Taegeuk I Jang consists of 18 movements, numbered
from 1 to 18, as shown in Figure 1.

Furthermore, to characterize a Poomsae movement
as correct, the World Taekwondo Federation (WTF,
2014) provides a set of guidelines, including:

e Pause Between Movements: Athletes should
incorporate a brief pause between movements to
emphasize control and precision, allowing for a
clear distinction between each movement.

o Symmetrical Pattern of Poomsae Line: The
Poomsae should follow a symmetrical pattern,
ensuring that movements are executed evenly on

both sides, reflecting the balance and harmony
inherent in Taekwondo.

e Balance of Each Movement: Maintaining balance
throughout each movement is crucial, as it ensures
stability and effectiveness in techniques, allowing
for powerful and controlled execution.

Walkiag Stance
High Block left

13

Walking Stance ‘alking Stance Walking Stance Front Sasce at
Middle Punch right  High Block right Middle Punch left Low Block Midd)

Figure 1: Taegeuk I Jang Poomsae movements.

2.2 Athlete Performance Assessment in
Literature

According to the literature review based on HAR for
martial arts performance evaluation, several existing
approaches utilize video analysis to assess athletes'
movements based on skeleton points data.

A paper by Lee and Jung (2020) introduces a
reliable Taekwondo Poomsae movement dataset
called TUHAD and proposes a key-frame-based
CNN architecture for recognizing Taekwondo actions
using this dataset.

Barbosa et al. (2021) compare four different deep
learning models to classify Tackwondo movements,
aiming to identify which model yields the best results.
The study found that convolutional layer models,
including CNN combined with LSTM and
Convolutional  Long  Short-Term  Memory
(ConvLSTM) models, achieved over 90% accuracy in
classification.

Emad et al. (2020) propose a smart coaching
system called iKarate for Karate training, which tracks
players' movements using an infrared camera sensor.
After a preprocessing phase, the system classifies the
data using the fast dynamic time warping algorithm. As
a result, the proposed system generates a detailed
report outlining each action performed by the player,
identifying mistakes in every movement, and
providing suggestions for improvement.
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Fernando et al. (2023) evaluate Taeckwondo
movements using an LSTM-based machine learning
model, with a focus on classification performance. In
their evaluation, the LSTM model achieved an
accuracy of 96% on the test dataset and 61% on the
validation dataset.

After a thorough analysis of the literature review,
several limitations within the current systems have
been identified. On one hand, the proposed
approaches often involve costly logistical
preparations, such as specialized hardware (sensors,
infrared trackers, Kinect cameras) or dedicated
laboratory environments. On the other hand, these
contributions  primarily focus on classifying
sequences of actions using classification models to
evaluate athletes' movements. While these models are
well-suited for sequence-based tasks and effectively
leverage their memory capabilities to learn from time-
dependent data, they are less effective at learning
efficient data representations. This is crucial for
accurately evaluating movements and distinguishing
between correct and incorrect actions.

3 AUTOENCODER FOR
POOMSAE MOVEMENTS
ASSESSMENT

This section outlines the deep learning approach we
propose for assessing athlete performance. Figure 2
illustrates the general process for implementing our
deep learning approach to evaluate Poomsae sequences.

In the following subsections, we will detail each
step of this process.

3.1 Data Collection

The Data Collection step aims to create the dataset that
the proposed model uses. To do so, we collect Poomsae
sequences from diverse online sources. This includes
videos available on platforms such as YouTube and
martial arts websites that are carefully chosen to cover
a comprehensive range of movements necessary for
Poomsae sequences. In addition, we record video
sequences during training sessions supervised by
renowned professional trainers. These videos provide
examples of movements performed by skilled athletes
and offer high-quality data. Specific conditions, such
as lighting and camera angles, were adhered to while

MediaPipe is a robust and highly accurate open-source
framework for real-time pose detection, which allows for
precise identification of the human body's critical
anatomical landmarks.
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recording the videos, ensuring the consistent and
superior capture of the athletes' movements.
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Figure 2: Overview of the Steps Involved in Implementing
the Autoencoder approach for Assessing Athlete
movement.

3.2 Data Pre-Processing

Data Preprocessing is crucial in transforming and
preparing the data collected for effective utilization
by the autoencoder model. It involves the following
steps, which are detailed in the following sub-
sections: Frame Extraction, Body Point Detection,
Angle Calculation, Data Storage and Augmentation,
and Data Scaling.

3.2.1 Frame Extraction

Each collected video was manually segmented into
short video clips containing only one movement.
Then, key frames were extracted from the segmented
videos to define representative images of each
movement in the Poomsae sequences.

It is mandatory to bring all the video clips into the
same frame rate during extraction. More precisely,
the approach involved using a video processing
library to standardize the frame rate and duration of
the video clip. Specifically, the frame rate was
adjusted to 30 frames per second (fps) with a
consistent one-second duration per video clip. This
process ensured temporal uniformity, facilitating
precise and systematic analysis of the video content,
which allows for the precise identification and
analysis of specific movements.

3.2.2 Body Point Detection

Once the video frames are extracted, we leverage the
MediaPipe! library to detect and map each frame's
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key body joints and limb positions. Figure 3 shows an
example of a body landmark driven by the MediaPipe
library. From this figure, we highlight that MediaPipe
provides a total of 33 landmarks for the human body,
including major joints and body parts, such as
shoulders, elbows, wrists, hips, knees, and ankles.
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Figure 3: Example of Body Landmark Visualization driven
by MediaPipe library.

3.2.3 Angle Calculation

We have developed an algorithm to calculate precise
angles between various body landmarks for each
extracted frame. For example, in Figure 4, parts (a)
and (b) illustrate the angle BAC, representing the
angle between the right arm and forearm. Here, points
A, B, and C correspond to landmarks 13, 11, and 15,
respectively (Cf. Figure 3). Part (c) of the figure
depicts the angle FEG, which represents the angle
between the right upper leg and lower leg, with points
E, F, and G corresponding to landmarks 25, 23, and
27, respectively.

3.2.4 Data Storage and Augmentation

The calculated angles serve as features that describe
the input variables from which our autoencoder
model learns. These angles were stored in a CSV file,
ensuring easy access and facilitating in-depth analysis
of the athlete's kinematic information. Additionally,
this dataset can be utilized to train and evaluate deep
learning models for automated movement analysis
and assessment.

Once the initial CSV dataset is created, it is
important to enhance the stored kinematic data using
data augmentation techniques. Specifically, we

Figure 4: Example of Calculated Angles.

employ linear interpolation to generate additional
data points between each pair of adjacent rows in the
dataset. More precisely, we propose to add Gaussian
noise to support small random variations to our
numerical data. This is accomplished by adding
values drawn from a normal distribution (Gaussian
distribution) centred around zero to each data point.

This augmentation process increases the overall
size and diversity of the dataset, which can improve
the performance of any DL models trained on this
data.

3.2.5 Data Scaling

To ensure consistency across the dataset and
improve the performance of any DL model trained
on this data, we scaled the athlete kinematic features
using the MinMaxScaler module from the scikit-
learn preprocessing library. This scaling technique
normalizes the data to a common numerical range,
typically between 0 and 1. This data normalization
process helps to achieve better convergence and
stability during the training of deep learning models,
as it ensures that all features are on a similar scale
and have a comparable influence on the learning
process.

3.3 Data Splitting

The dataset was divided into training and testing sets.
We typically use 70% of the data for training and 30%
for testing. This division enables the model to acquire
knowledge from most of the data while being
evaluated on a subset.

3.4 Model Training

3.4.1 Model Building

The deep learning approach we propose leverages
autoencoders to detect incorrect movements of
athletes. Specifically, we define and train an
autoencoder model on data representing correct
movements, enabling it to reconstruct athlete
movements accurately.
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The architecture of the proposed autoencoder
model is given in Figure 5. The autoencoder contains
three main components: the Encoder, the latent space,
and the Decoder. The architecture diagram illustrates
the flow from input to output through these
components. More precisely, the Encoder component
encompasses the following layers:

= Input Layer: The model begins with an input
layer that accepts data with features
corresponding to calculated angles.

= First Dense Layer (256): The input data is
processed through a dense layer of 256
neurons. This layer applies L2 regularization
with a coefficient of 0.01, followed by batch
normalization to stabilize and accelerate the
training process. LeakyReLU's activation
function introduces non-linearity while
allowing a small gradient when the unit is not
active.

= First Dropout Layer (0.3): A dropout layer
with a rate of 0.3 is applied to randomly set
30% of the input units to zero during training.
This will further help to prevent overfitting.

= Second Dense Layer (128): This is followed
by a dense layer with 128 neurons, which
again applies L2 regularization, batch
normalization, and LeakyReLU activation.

= Second Dropout Layer (0.3): A second
dropout layer with a rate of 0.3 is included.

= Third Dense Layer (64): The final layer of the
encoder has 64 neurons, with the same
regularization and activation techniques as the
previous layers. This reduces the input to a
smaller dimensional space.

Latent Space (code representation): The latent
space representation captures the essential features of
the input data in a lower-dimensional form.

The decoder is composed of the following layers:

= First Dense Layer (128): The latent space is
redirected through a dense layer comprising
128 neurons, utilizing the identical L2
regularization, batch normalization, and
LeakyReLU activation.

= Second Dense Layer (64): The next layer
further decreases the dimensionality with 64
neurons, continuing with regularization and
activation techniques.

= Final Dense Layer (4): The final dense layer
contains 4 neurons, matching the input
dimension. It uses the sigmoid activation
function to ensure that the output values are
normalized between 0 and 1.
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Figure 5: Architecture of the Autoencoder model.

3.4.2 Reconstruction Algorithm

The reconstruction algorithm's first step is to
decompose the Poomsae video into individual
movements for evaluation. The algorithm receives an
initial set of 30 frames representing one movement,
extracts key points for each frame, and calculates the
corresponding angles. All calculated angles, along
with their respective frame numbers, are then input
into the autoencoder model. The model subsequently
performs the reconstruction task. This process is
repeated for the entire video.

3.4.3 Model Compilation

The autoencoder model is compiled using the Adam
optimizer along with a Mean Squared Error (MSE)
loss function. The Adam optimizer was chosen for its
efficient performance with large datasets and its
adaptive learning rate mechanism, which adjusts the
learning rate for each parameter. The MSE loss
function is particularly well-suited for regression
tasks, as it minimizes the reconstruction error. This
minimization is crucial for effective anomaly
detection, allowing the model to accurately
reconstruct normal data patterns and identify
deviations representing incorrect movements.
Furthermore, to prevent overfitting and optimize
training, we implemented the following callbacks:
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= EarlyStopping: This callback monitors the
validation loss during training and stops the
training process if the validation loss does not
improve for a specified number of epochs. This
helps to avoid overfitting and ensures that the
model maintains its best performance.

= ModelCheckpoint: The model with the lowest
validation loss is saved by this callback. The
saved model can then be used for further
evaluation and testing.

3.4.4 Training Results

The autoencoder models were trained using the
training dataset with the following parameters: 100
epochs, a batch size of 32, and a learning rate of
0.002. The model was trained with the objective of
minimizing the reconstruction error. Furthermore, to
ensure the effectiveness of the training process, the
loss and validation loss performance measures were
monitored and plotted over the epochs. This revealed
how well the model was learning and whether it was
over-fitting or under-fitting.

Figure 6 illustrates the training results of the first
four movements of Taegeuk I Jang Poomsae. The
interpretation of the results is as follows: Initially,
both training and validation losses went down quickly
in the beginning, which showed that the model was
learning well from the input data. The loss error
stabilized and reached near-zero values, showing that
the models could reconstruct the input data with
minimal error. The best epoch, marked by the lowest
validation loss, was identified for each movement,
making sure that optimal weights were saved for later
evaluation.

Taegeuk I Jang Poomsae Taegeuk I Jang Poomsae

(Movement1)

(Movement2)

Taegeuk I Jang Poomsae Taegeuk I Jang Poomsae

(Movement3) (Movementd)

Figure 6: Training and Validation Loss Over Epochs for
three different movements of Taegeuk I Jang Poomsae.

2 https://www.sportland.ai

The overall training results were highly
satisfactory, with each movement achieving low
reconstruction errors and demonstrating robust
generalization capabilities. The model's ability to
accurately reconstruct the input data while
maintaining low validation loss highlights its
effectiveness in capturing the correct patterns for each
movement in Taegeuk I Jang Poomsae.

3.5 Model Evaluation

The model's effectiveness is assessed using the Mean
Squared Error (MSE) and the -coefficient of
determination (R2) for both the training and testing
datasets. Results for the first three movements related
to Taegeuk I Jang Poomsae are summarized in Table
1, presented below.

According to the presented results, the train and
test MSE values are consistently low, indicating that
the model performs well on both training and test
datasets. The Train and Test R? values are close to 1,
indicating that the model explains a large proportion
of the variance in the data, both for training and
testing. The performance metrics across different
movements are consistent, indicating that the model
can adapt to various types of movements.

Table 1: Results of model evaluation.

Taegeuk I A
(= \.I 211r;gems F]l\“/;;l]g ;;Iessé Train R* | Test R?
Movementl | 0.00025 = 0.00025 = 0.99451 = 0.99442
Movement2 | 0.00026 = 0.00026 = 0.99225 = 0.99216
Movement3 = 0.00022 = 0.00023 = 0.99464 = 0.99445

4 SPORTLAND PLATFORM

SportLand? is a sports tech platform that connects
athletes across various disciplines, particularly in
martial arts such as Tackwondo, karate, kung fu, and
kickboxing. The platform features SportLandaicoach
module, which is an Al-powered tool designed to
evaluate athlete performance. It analyses an athlete's
movements during training, providing actionable
insights to optimize technique and maximize
performance gains. This tool serves as a self-
evaluation assistant, enabling Taeckwondo athletes to
enhance their skills at their own pace.
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More precisely, the SportLandaiceach module
offers two distinct methods for evaluating athlete
performance: Single-Movement Evaluation and Full-
Sequence Evaluation

The next subsections provide detailed
information on how these evaluations are conducted
within the SportLand platform. We also provide an
online demonstration video 3 illustrating these
evaluations.

4.1 Single-Movement Evaluation

The SportLandaiceach platform provides a
comprehensive interface for uploading, displaying,
and analyzing videos, offering real-time feedback on
movement correctness and instantaneous speed and
force metrics. Athletes can upload pre-recorded
videos or use their webcam to capture live footage.

Once a video is uploaded or recorded, it is
decomposed into 30 frames representing the
movement to be evaluated. Next, body landmarks are
extracted, and angles are calculated from each frame.
All calculated angles and their respective frame
numbers are input into the trained model to compute
the reconstruction error. If this error exceeds a
predetermined threshold, the movement is flagged as
incorrect. Conversely, if the error is within acceptable
limits, the movement is deemed correct, and the
algorithm subsequently calculates the athlete's speed
and force. Figure 7 illustrates an example of a
correctly evaluated movement.

4.2 Full-Sequence Evaluation

SportLandaiceacn offers the ability to analyze the
complete sequence of movements in a Poomsae. To
achieve this, the athlete must upload a video, like the
method used for evaluating individual movements.
The uploaded video is then broken down into
individual movements for assessment, and the
previously described steps for assessing a single
movement are applied to all segments.

The athlete’s score increases with each correctly
identified movement, while incorrectly identified
movements receive 0 points. Additionally, performing
the movements in the correct order is essential, as each
movement must accurately follow its predecessor. A
movement is marked as incorrect if it is not detected
within 60 frames, ensuring timely execution and
thorough evaluation. Each correct movement adds 2
points to the athlete's score, while incorrect movements
or those performed out of sequence score 0 points. The

3 https://www.youtube.com/watch?v=cOXxqcG1v8A
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Figure 7: Example of evaluation result.

total score, which reflects the athlete's accuracy and
performance, is calculated by summing the individual
scores for each movement.

Figure 8 below illustrates the interface displaying
a Poomsae score. The interface provides athletes with
their total score and features a comprehensive table
detailing each movement performed. This table
displays the results for every individual movement,
indicating whether each movement was assessed as
correct or incorrect, along with the corresponding
score for each movement.

S CONCLUSION

The primary research problem addressed in this study
was the subjectivity inherent in traditional methods of
evaluating Taekwondo Poomsae. This paper
proposed a deep learning approach based on an
autoencoder model, which effectively mitigates
human intervention and demonstrates the potential
for a systematic evaluation of Poomsae.

The proposed autoencoder model identified
anomalies in an athlete's movements by analyzing a
sequence of frames and considering movement
behavior through skeleton point data, rather than
focusing solely on the final pose. Additionally, the
model was tested on a diverse set of video data to
evaluate its generalizability to real-world scenarios.
In this assessment, the autoencoder exhibited
remarkable performance, achieving a coefficient of
determination (R?) close to 99% and a very low Mean
Squared Error (MSE) of approximately 0.0006.

Furthermore, the absence of self-evaluation
methods was identified as another challenge this
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Movement Correct Score
Movement 1 Yes 2
Movement 2 No 0
Movement 3 Yes 2
Movement 4 Yes 2
Movement 5 Yes 2
Movement 6 Yes 2
Movement 7 Yes 2
Movement 8 Yes 2
Movement 9 Yes 2
Movement 10 Yes 2
Movement 11 Yes 2
Movement 12 Yes 2
Movement 13 Yes 2
Movement 14 Yes 2 ‘ ‘
Movement 15 Yes 2

Figure 8: Interface displaying the total score and detailed
results for each Poomsae movement.

study aimed to address. To resolve this issue, we
successfully developed the SportLandaicoach, a
reliable and objective self-paced evaluation tool. This
tool leverages the autoencoder model, significantly
advancing the field of Poomsae evaluation.

While this study primarily focused on the
accuracy of Poomsae movements, future research
could extend to evaluating player movements during
Tackwondo combat. The goal of this evaluation
would be to assist judges in more accurately
computing athletes' scores during matches. By
leveraging skeleton point data, researchers could
analyze movement patterns in real-time to ensure that
scoring reflects the precision and effectiveness of
techniques used in combat. This approach could
enhance the fairness and accuracy of scoring and
contribute to a deeper understanding of performance
dynamics in competitive Taekwondo.
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