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Abstract: In this paper, we propose a robust and computationally efficient pipeline for transcribing speech in noisy en-
vironments, such as workshops and industrial settings. The pipeline is designed to operate offline, making
it suitable for resource-constrained scenarios. It begins with a noise filtering module that preprocesses audio
recordings to suppress background noise and enhance speech clarity. The filtered audio is then passed to an
Automatic Speech Recognition (ASR) model, which generates initial transcription outputs. Given the potential
for transcription errors in challenging acoustic conditions, we incorporate a quantized Small Language Model
(SLM) trained on an ontology of defects related to the industrial environment to post-process and correct
these errors. The quantization of the SLM significantly reduces its computational footprint while maintain-
ing correction accuracy, enabling the pipeline to function effectively on low-resource devices. Experimental
evaluations demonstrate the effectiveness of the proposed approach in improving transcription quality in noisy
conditions, highlighting its practicality for offline and resource-limited applications. In fact, preliminary vali-
dation on a synthetic dataset of 200 sentences in Italian and English showed a consistent F1 score of 87.04%
for SNR as challenging as -5 dBW (Decibels Watt) in Italian sentences and 91.25% in English sentences, with
the least computationally expensive version of Whisper (Whisper Tiny) and the SLM correction.

1 INTRODUCTION

Automatic Speech Recognition (ASR) systems of-
ten struggle in noisy industrial environments like
workshops, where machinery sounds and reverbera-
tions lead to frequent transcription errors (Li et al.,
2014; Virtanen et al., 2017; Mehrish et al., 2023).
Furthermore, many state-of-the-art ASR systems
rely on cloud processing, which is often unfeasi-
ble for scenarios with limited hardware resources
or privacy-sensitive ones that require offline opera-
tion (Bodepudi et al., 2019). While noise suppression
and robust models have improved (Zhang et al., 2018;
Ephraim and Malah, 1984), a comprehensive solution
for accurate, offline transcription remains a critical
challenge for industrial applications in quality control
and safety compliance (Huang et al., 2014). To ad-
dress these challenges, we propose a robust and com-
putationally efficient pipeline for transcribing speech
commands in noisy settings. In collaboration with

Fontana Group, an Italian leader in automotive manu-
facturing, we developed a toolchain to help operators
recognize car body defects. The main challenges are
the noisy workshop environment and the need for a
solution that works locally on systems with limited
hardware, given the potential lack of a reliable inter-
net connection. Our pipeline integrates three compo-
nents: (i) a noise filtering module, (ii) an ASR model
for the transcription, and (iii) a quantized Small Lan-
guage Model (SLM) trained on a domain-specific de-
fect ontology to correct errors. This quantized SLM
ensures a reduced computational footprint, enabling
effective on-device performance. Preliminary valida-
tion on a synthetic test set demonstrates the effective-
ness of our approach, achieving F1-scores of 87.04%
for Italian and 91.25% for English sentences in sce-
narios with an SNR as low as -5 dBW.
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2 RELATED WORK

Robust ASR in noisy industrial settings (Orel and
Varol, 2023; Dua et al., 2023; Bandela et al.,
2023) has been addressed through various techniques.
Front-end approaches, ranging from traditional spec-
tral subtraction (Moore et al., 2017) and Wiener fil-
tering (Gomez and Kawahara, 2010) to modern deep
learning denoisers (G. et al., 2024), aim to enhance
speech intelligibility but can be computationally de-
manding for offline, resource-constrained contexts.
On the ASR side, while large models like the Whis-
per family (Radford et al., 2022) offer impressive
robustness, their computational cost remains a bar-
rier for edge deployment, and lightweight variants
like Whisper Tiny1 often lack accuracy in challeng-
ing conditions, especially with domain-specific ter-
minology. To bridge this gap, post-processing with
language models (LLMs/SLMs) has emerged as a
powerful error correction strategy (Ma et al., 2023;
Yang et al., 2023; Jiang and Poellabauer, 2021), with
domain-specific models showing particular promise
for adapting to specialized vocabularies (Suh et al.,
2024). Furthermore, optimizing SLMs via quanti-
zation techniques (Andreyev, 2025; Gholami et al.,
2022) is critical for deployment on low-power de-
vices. However, prior work has rarely focused on
the combined application of these components: noise
filtering, lightweight ASR, and quantized, domain-
specific SLM correction within a offline pipeline (Rao
et al., 2020; Kamahori et al., 2025). Our work bridges
this gap by proposing and validating such a pipeline
tailored for noise-robust, offline industrial applica-
tions.

3 BACKGROUND

3.1 The Targeted Task

Let S be the space of voice signals acquired during car
body inspection, where each signal s ∈ S is modeled
as:

s = v+n (1)
with v a spoken phrase containing a relevant term, and
n background noise.

The goal is to find the correct transcription t̂ of the
term in v given an observed signal s via a function:

t̂ = f (s) (2)
where f : S → T is a speech recognition and correc-
tion function, and T represents a finite set of domain-
specific terms belonging to a closed vocabulary.

1https://huggingface.co/openai/whisper-tiny

Each phrase includes exactly one term from T , in
either Italian or English:

• English: positive bulge, negative bulge, wavi-
ness, deformation, reworking traces, crack, fail-
ure, scratches, glue residues, orange peel effect

• Italian: bollo positivo, bollo negativo, ondu-
lazione, deformazione, tracce, buco, rottura, graf-
fio, residuo di colla, effetto buccia d’arancia

This is a single-label, multi-class classification
task, where each input must be assigned to one class
from the corresponding dictionary.

3.2 Material

Our pipeline leverages three key models, specifically
optimized for an efficient workflow. For noise sup-
pression, we employ DeepFilterNet2 (Schröter et al.,
2022), a speech enhancement framework. Initial tran-
scription is performed by Whisper3, using the op-
timized Faster-Whisper4 implementation integrated
with WhisperX (Bain et al., 2023) for fast inference
and accurate alignment. For the final correction step,
we use the lightweight SLM Gemma 2 2B-it5. To
ensure its suitability for on-device deployment, we
quantized the model to a 4-bit GGUF format6 and ran
it using Llama.cpp7 with its Python bindings8. This
setup significantly reduces the model’s memory foot-
print, making it suitable for on-device inference.

4 THE PROPOSED PIPELINE

The pipeline operates in three steps. First, incom-
ing audio, potentially containing background noise, is
processed by a Denoiser Module based on DeepFilter-
Net to enhance speech clarity. Second, the filtered au-
dio is passed to an ASR Module, which uses Whisper
to generate an initial text transcription. Finally, this
transcription is fed into a Corrector Module, which
leverages a fine-tuned Gemma SLM to identify and
extract the correct defect term from our predefined vo-
cabulary, refining the final output.

2https://github.com/Rikorose/DeepFilterNet
3https://github.com/openai/whisper
4https://github.com/SYSTRAN/faster-whisper
5https://huggingface.co/google/gemma-2-2b-it
6https://huggingface.co/docs/hub/en/gguf
7https://github.com/ggml-org/llama.cpp
8https://github.com/abetlen/llama-cpp-python
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5 DATASET

5.1 Training Set

To fine-tune the Gemma SLM as a corrector, we con-
structed a synthetic dataset to map potentially erro-
neous transcriptions to our domain-specific vocabu-
lary. The process began with the generation of a set
of clean base sentences using the Claude-Sonnet 3.5
LLM9. For each of the 10 English and 10 Italian de-
fect terms (see Section 3), we prompted the LLM
to create 30 unique example sentences relevant to a
car body inspection context (e.g., "I see a deforma-
tion in the hood of the car"), ensuring each sentence
contained only one vocabulary term. This resulted in
600 unique base sentences (300 per language), which
then served as the foundation for introducing pro-
grammatic perturbations.

Programmatic Perturbation for Realism

To ensure the SLM corrector is robust to real-world
ASR errors, its training data have to reflect such im-
perfections. Therefore, we programmatically per-
turbed our 600 clean base sentences to simulate typi-
cal transcription errors. With a custom Python script,
we introduced a set of perturbations, including char-
acter substitutions (e.g., deformation -> defomation),
character deletions (e.g., scratches -> scrtches), and
incorrect word splitting/merging. For each clean sen-
tence, we generated 12 perturbed variants with a de-
gree of distortion, from single minor alterations to
multiple, disruptive errors. This process yielded a fi-
nal training set of 7,200 noisy sentences (3,600 per
language), exposing the SLM to a wide spectrum of
potential input corruptions.

Final Dataset Structure

The complete training dataset comprises 7,800 sam-
ples (3,900 per language), consisting of the 600 clean
base sentences and their 7,200 perturbed variants.
Each sample is an input-output pair for fine-tuning
the SLM: the input is a (clean or perturbed) sentence
(e.g., "Inspeckt the dor panel..."), and the output is the
corresponding canonical defect term (e.g., deforma-
tion). This structure enables the SLM to learn robust
mappings from a wide range of corrupted inputs back
to the correct labels, equipping it to handle real-world
ASR transcription errors.

9https://www.anthropic.com/news/claude-3-5-sonnet

5.2 Test Set

The test set has been constructed by generating 20
new, distinct sentences for each term in the two vo-
cabularies using the same Claude-Sonnet 3.5 LLM
employed for the training set base sentences, ensur-
ing no overlap between training and test samples.
These sentences were then converted into speech us-
ing Bark, a text-to-speech model10. We also publicly
share the link containing the text files used for the
training set used for fine-tuning the SLM corrector
and the synthetic voice files of the test set for the eval-
uation step we performed11.

6 EXPERIMENTAL EVALUATION

6.1 Fine-Tuning

We carried out the fine-tuning of the SLM using the
structured prompt shown in Figure 1 that instructs
the model to extract the correct defect term from a
noisy input sentence, given the closed vocabulary.
During training, each input sentence (clean or per-
turbed) and its target term were embedded into this
prompt. During inference, the ASR’s output is placed
into the same template, and the SLM generates the
corresponding vocabulary term. Fine-tuning was car-
ried out on an L4 GPU using the Unsloth frame-
work12. We employed the Quantization-aware Low-
Rank Adaptation (QLoRA)(Dettmers et al., 2023)
PEFT technique(Mangrulkar et al., 2022). The model
was trained for one epoch with a learning rate of 2e-4,
a weight decay of 0.001, and the AdamW 8-bit opti-
mizer.

6.2 Noise Injection for Realistic
Evaluation

To evaluate the pipeline’s robustness, we mixed the
clean test audio with real-world environmental noise
(e.g., car interior recordings). The Signal-to-Noise
Ratio (SNR) was controlled at two levels, represent-
ing moderate (5 dB) and high (-5 dB) interference, al-
lowing for an accurate evaluation of performance un-
der varying acoustic conditions.

10https://huggingface.co/suno/bark
11https://github.com/Marcomurgia97/audios_NATTER

_evaluation
12https://unsloth.ai/
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Table 1: Examples of three defects.

(a) Deformation (b) Waviness (c) Glue Residue

Prompt

Given the transcribed voice phrase:
‘he deformaion is mre pronunced
towads th pane edges’ extract and
return only the correct term from the
following vocabulary:

[positive bulge, negative bulge,
waviness, deformation, reworking
traces, crack, failure, scratches,
glue residues, orange peel effect]

Note: There may be transcription
errors in the original phrase.
Identify the vocabulary term that best
matches the intended meaning in the
phrase, correcting any transcription
errors.

Return only the correct
term, without any additional
explanation.

Example: given the phrase ‘The
bidwark shows a dfomaton here’,
the correct term to return would be
‘deformation’. It may also happen that
there are words that are correct from a
lexical point of view but inappropriate
for the sentence. For example, given
the phrase ‘I can see a primitive
pulse’, the correct term to return
would be ‘positive bulge’.

Answer:‘Deformation’.

Figure 1: An example of a prompt used for fine-tuning with
the target answer Deformation.

6.3 Evaluation Metrics and System
Variants

We evaluate our pipeline as a single-label multi-class
classification task, where each defect term (e.g., de-
formation, waviness, see Table 1) is a distinct class.
To assess the impact of the SLM corrector, we com-

pare the performance of the pipeline with and without
it for both English and Italian. System performance
is measured using standard like Precision, Recall, and
F1-Score.

7 DISCUSSIONS

In this section, we analyze the pipeline’s performance
by comparing the baseline ASR output against the
results obtained with our SLM corrector. To assess
the performance-efficiency trade-off for resource-
constrained environments, we evaluate two ASR
model sizes: the lightweight Whisper Tiny (39M
parameters) and the more powerful Whisper Large
(1.5B parameters). The analysis is conducted for both
Italian (Tables 2, 3, 4) and English (Tables 5, 6, 7)
across three noise conditions: no added noise, SNR 5
dBW, and SNR -5 dBW. Performance is measured us-
ing Precision, Recall, and F1-Score, based on a strict
exact match criterion (case and singular/plural forms
are ignored).

The analysis of Italian language performance
(Tables 2-4) reveals two key findings. First, the
SLM corrector is crucial for the effectiveness of the
lightweight Whisper Tiny model. In noise-free con-
ditions, the SLM boosts Tiny’s F1-score from a poor
53.49 to an excellent 95.54, primarily by raising its
low Recall (42.50) to 95.50. This corrected per-
formance surpasses that of the uncorrected Whisper
Large (F1 91.64), establishing the Tiny+SLM combi-
nation as a computationally efficient alternative. Sec-
ond, as noise increases, the impact of SLM becomes
even more pronounced. Under moderate noise (SNR
5 dBW), it mitigates Tiny’s performance drop, raising
its F1 from 44.16 to 90.53. In the most challenging
scenario (SNR -5 dBW), where the Tiny model is un-
effective (F1 34.45), the SLM corrector restores sys-
tem usability, achieving a robust F1-score of 87.04.
Whisper Large results show a similar trend, whose
F1-score is maintained at near-perfect levels by the
SLM (99.50 at no noise, 97.99 at -5 dBW). In all con-
ditions, the SLM contribution allows a significant re-

ICINCO 2025 - 22nd International Conference on Informatics in Control, Automation and Robotics

482



Table 2: Italian Recognition Performance - No Noise.

Metric Global Defect Type

Bollo Negativo Bollo Positivo Buccia Di Arancia Buco Deformazione Graffio Ondulazione Residuo Di Colla Rottura Traccia

Size: Tiny
F1 SLM 95.54 95.00 95.00 97.44 90.91 97.56 97.56 95.00 94.74 94.74 97.44
F1 Whisper 53.49 0.00 26.09 62.07 85.71 94.74 40.00 57.14 18.18 62.07 88.89
Precision SLM 95.88 95.00 95.00 100.00 83.33 95.24 95.24 95.00 100.00 100.00 100.00
Precision Whisper 90.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Recall SLM 95.50 95.00 95.00 95.00 100.00 100.00 100.00 95.00 90.00 90.00 95.00
Recall Whisper 42.50 0.00 15.00 45.00 75.00 90.00 25.00 40.00 10.00 45.00 80.00

Size: Large
F1 SLM 99.50 100.00 100.00 100.00 97.56 100.00 100.00 100.00 97.44 100.00 100.00
F1 Whisper 91.64 85.71 85.71 91.89 97.44 97.44 85.71 85.71 97.44 91.89 97.44
Precision SLM 99.52 100.00 100.00 100.00 95.24 100.00 100.00 100.00 100.00 100.00 100.00
Precision Whisper 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Recall SLM 99.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 95.00 100.00 100.00
Recall Whisper 85.00 75.00 75.00 85.00 95.00 95.00 75.00 75.00 95.00 85.00 95.00

Table 3: Italian Recognition Performance - SNR 5.

Metric Global Defect Type

Bollo Negativo Bollo Positivo Buccia Di Arancia Buco Deformazione Graffio Ondulazione Residuo Di Colla Rottura Traccia

Size: Tiny
F1 SLM 90.53 92.31 90.91 92.68 79.17 97.56 91.89 82.35 85.71 97.44 95.24
F1 Whisper 44.16 0.00 0.00 62.07 78.79 88.89 40.00 46.15 0.00 40.00 85.71
Precision SLM 92.26 94.74 83.33 90.48 67.86 95.24 100.00 100.00 100.00 100.00 90.91
Precision Whisper 70.00 0.00 0.00 100.00 100.00 100.00 100.00 100.00 0.00 100.00 100.00
Recall SLM 90.50 90.00 100.00 95.00 95.00 100.00 85.00 70.00 75.00 95.00 100.00
Recall Whisper 34.50 0.00 0.00 45.00 65.00 80.00 25.00 30.00 0.00 25.00 75.00

Size: Large
F1 SLM 98.24 97.56 100.00 100.00 92.68 100.00 100.00 100.00 97.44 94.74 100.00
F1 Whisper 89.88 85.71 82.35 88.89 94.74 97.44 85.71 85.71 97.44 88.89 91.89
Precision SLM 98.57 95.24 100.00 100.00 90.48 100.00 100.00 100.00 100.00 100.00 100.00
Precision Whisper 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Recall SLM 98.00 100.00 100.00 100.00 95.00 100.00 100.00 100.00 95.00 90.00 100.00
Recall Whisper 82.00 75.00 70.00 80.00 90.00 95.00 75.00 75.00 95.00 80.00 85.00

Table 4: Italian Recognition Performance - SNR -5.

Metric Global Defect Type

Bollo Negativo Bollo Positivo Buccia Di Arancia Buco Deformazione Graffio Ondulazione Residuo Di Colla Rottura Traccia

Size: Tiny
F1 SLM 87.04 92.68 87.18 82.05 70.83 100.00 87.80 88.89 85.71 92.31 82.93
F1 Whisper 34.45 0.00 0.00 26.09 51.85 88.89 40.00 33.33 0.00 33.33 70.97
Precision SLM 88.63 90.48 89.47 84.21 60.71 100.00 85.71 100.00 100.00 94.74 80.95
Precision Whisper 70.00 0.00 0.00 100.00 100.00 100.00 100.00 100.00 0.00 100.00 100.00
Recall SLM 86.50 95.00 85.00 80.00 85.00 100.00 90.00 80.00 75.00 90.00 85.00
Recall Whisper 25.00 0.00 0.00 15.00 35.00 80.00 25.00 20.00 0.00 20.00 55.00

Size: Large
F1 SLM 97.99 100.00 97.56 100.00 95.00 100.00 97.56 100.00 100.00 94.74 95.00
F1 Whisper 77.88 62.07 57.14 62.07 66.67 97.44 85.71 75.00 91.89 88.89 91.89
Precision SLM 98.05 100.00 95.24 100.00 95.00 100.00 95.24 100.00 100.00 100.00 95.00
Precision Whisper 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Recall SLM 98.00 100.00 100.00 100.00 95.00 100.00 100.00 100.00 100.00 90.00 95.00
Recall Whisper 66.00 45.00 40.00 45.00 50.00 95.00 75.00 60.00 85.00 80.00 85.00

covery of the Recall, preserving system functionality
even in severe noise.

The results for English (Tables 5-7) mirror the
trends observed for Italian, confirming the SLM cor-

rector’s critical role. The baseline Whisper Tiny
starts with a higher F1-score than its Italian counter-
part (72.06 in no-noise conditions), but is still ham-
pered by low Recall (61.50). The SLM corrector el-
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Table 5: English Recognition Performance - No Noise.

Metric Global Defect Type

Negative Bulge Positive Bulge Orange Peel Effect Crack Deformation Scratch Waviness Glue Residue Failure Reworking Trace

Size: Tiny
F1 SLM 96.01 95.24 90.48 92.68 97.44 100.00 100.00 94.74 94.74 94.74 100.00
F1 Whisper 72.06 57.14 40.00 62.07 91.89 100.00 100.00 40.00 51.85 91.89 85.71
Precision SLM 96.78 90.91 86.36 90.48 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Precision Whisper 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Recall SLM 95.50 100.00 95.00 95.00 95.00 100.00 100.00 90.00 90.00 90.00 100.00
Recall Whisper 61.50 40.00 25.00 45.00 85.00 100.00 100.00 25.00 35.00 85.00 75.00

Size: Large
F1 SLM 99.00 100.00 100.00 100.00 95.00 100.00 100.00 100.00 97.44 100.00 97.56
F1 Whisper 88.54 62.07 78.79 94.74 94.74 97.44 100.00 91.89 70.97 100.00 94.74
Precision SLM 99.02 100.00 100.00 100.00 95.00 100.00 100.00 100.00 100.00 100.00 95.24
Precision Whisper 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Recall SLM 99.00 100.00 100.00 100.00 95.00 100.00 100.00 100.00 95.00 100.00 100.00
Recall Whisper 81.50 45.00 65.00 90.00 90.00 95.00 100.00 85.00 55.00 100.00 90.00

Table 6: English Recognition Performance - SNR 5.

Metric Global Defect Type

Negative Bulge Positive Bulge Orange Peel Effect Crack Deformation Scratch Waviness Glue Residue Failure Reworking Trace

Size: Tiny
F1 SLM 94.22 95.24 92.68 95.24 88.37 97.44 95.00 97.44 88.89 91.89 100.00
F1 Whisper 68.56 46.15 40.00 57.14 82.35 100.00 97.44 40.00 51.85 91.89 78.79
Precision SLM 94.99 90.91 90.48 90.91 82.61 100.00 95.00 100.00 100.00 100.00 100.00
Precision Whisper 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Recall SLM 94.00 100.00 95.00 100.00 95.00 95.00 95.00 95.00 80.00 85.00 100.00
Recall Whisper 57.00 30.00 25.00 40.00 70.00 100.00 95.00 25.00 35.00 85.00 65.00

Size: Large
F1 SLM 98.00 100.00 97.56 97.44 92.68 100.00 100.00 100.00 94.74 100.00 97.56
F1 Whisper 84.91 51.85 66.67 88.89 94.74 97.44 94.74 91.89 70.97 100.00 91.89
Precision SLM 98.10 100.00 95.24 100.00 90.48 100.00 100.00 100.00 100.00 100.00 95.24
Precision Whisper 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Recall SLM 98.00 100.00 100.00 95.00 95.00 100.00 100.00 100.00 90.00 100.00 100.00
Recall Whisper 76.50 35.00 50.00 80.00 90.00 95.00 90.00 85.00 55.00 100.00 85.00

Table 7: English Recognition Performance - SNR -5.

Metric Global Defect Type

Negative Bulge Positive Bulge Orange Peel Effect Crack Deformation Scratch Waviness Glue Residue Failure Reworking Trace

Size: Tiny
F1 SLM 91.25 97.56 88.89 95.24 85.71 100.00 94.74 97.44 85.71 78.79 88.37
F1 Whisper 52.83 40.00 18.18 51.85 62.07 97.44 82.35 18.18 33.33 78.79 46.15
Precision SLM 93.06 95.24 80.00 90.91 81.82 100.00 100.00 100.00 100.00 100.00 82.61
Precision Whisper 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Recall SLM 91.00 100.00 100.00 100.00 90.00 100.00 90.00 95.00 75.00 65.00 95.00
Recall Whisper 40.50 25.00 10.00 35.00 45.00 95.00 70.00 10.00 20.00 65.00 30.00

Size: Large
F1 SLM 95.98 95.00 93.02 100.00 92.68 100.00 97.44 97.44 91.89 92.31 100.00
F1 Whisper 73.42 40.00 40.00 66.67 88.89 97.44 91.89 82.35 46.15 91.89 88.89
Precision SLM 96.72 95.00 86.96 100.00 90.48 100.00 100.00 100.00 100.00 94.74 100.00
Precision Whisper 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Recall SLM 95.50 95.00 100.00 100.00 95.00 100.00 95.00 95.00 85.00 90.00 100.00
Recall Whisper 62.50 25.00 25.00 50.00 80.00 95.00 85.00 70.00 30.00 85.00 80.00

evates its performance to a competitive 96.01, once
again making the Tiny+SLM setup a powerful, low-
resource alternative to the uncorrected Whisper Large
(F1 88.54). As noise levels increase, the SLM’s cor-

rective power ensures system robustness. Under mod-
erate noise (SNR 5 dBW), it lifts Tiny’s F1-score from
68.56 to 94.22. In the high-noise scenario (SNR -
5 dBW), where the uncorrected performance of Tiny
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degrades significantly (F1 52.83), the SLM provides
a substantial boost to 91.25, effectively mitigating the
noise-induced errors. For Whisper Large, the SLM
consistently maintains near-perfect accuracy, raising
its F1 from 73.42 to 95.98 in the -5 dBW condition.
As with Italian, the primary mechanism for this im-
provement is a significant recovery in Recall (e.g., for
Tiny at -5 dBW, from 40.50 to 91.00), confirming that
the Tiny+SLM combination is a reliable and efficient
solution even under adverse conditions.

Our analysis consistently reveals three key trends
across both languages and all noise levels. First, as
expected, ASR performance degrades with increasing
noise. Second, the SLM corrector significantly en-
hances performance in all conditions, especially noisy
ones. Third, and most importantly, the SLM nar-
rows the performance gap between Whisper Tiny and
Whisper Large, establishing the Tiny+SLM combina-
tion as a computationally efficient alternative. For
instance, at SNR -5 dBW, the corrected Tiny model
processed samples in just 0.24 seconds, compared to
0.79 seconds for the corrected Large variant on our
test system (Intel i7, RTX 3070). This significant re-
duction in computational implies also lower energy
consumption, a critical factor for battery-powered de-
vices on the factory floor. While our work establishes
a strong proof-of-concept, future work will address
further real-world deployment challenges, including
on-device integration and user interface design.

Our choice to use an SLM for post-correction,
rather than fine-tuning the ASR model itself, is a prag-
matic one. Fine-tuning an ASR model requires exten-
sive and costly domain-specific audio data collection.
Our approach, which leverages a pre-trained ASR
and focuses adaptation on an SLM trained with eas-
ily generated synthetic text, is far more data-efficient.
The strong performance gains, especially with Whis-
per Tiny, validate this strategy. This modularity also
allows for rapid adaptation to new domains by simply
retraining the SLM corrector with a new text dataset,
a much simpler task than acquiring new audio record-
ings. An interesting phenomenon was observed: for
some terms, the F1-score was higher under severe
noise (SNR -5 dBW) than moderate noise (SNR 5
dBW). This counterintuitive result likely stems from
the nature of the ASR errors. At -5 dBW, the highly
corrupted output may paradoxically produce error
patterns that more closely match the synthetic pertur-
bations in the SLM’s training data (see Section 5), en-
abling more effective correction. Conversely, errors
at 5 dBW, though milder, might be of a type less rep-
resented in our training set, thus limiting the SLM’s
corrective ability. This highlights the critical role of
the training data’s composition in the SLM’s effec-

tiveness at mitigating specific types of noise-induced
errors.

8 CONCLUSIONS

We presented a three-stage pipeline for robust speech
transcription in noisy industrial settings, combining
noise filtering (DeepFilterNet), ASR (Whisper), and
a post-correction module. The core of our contribu-
tion is a lightweight fine-tuned SLM (Gemma 2 2B-it)
that refines ASR outputs based on a domain-specific
defect ontology. Our results show that this SLM
corrector substantially improves F1-scores across all
tested conditions, mitigating noise-induced transcrip-
tion errors. It enables the lightweight Whisper Tiny to
achieve performance comparable to the much larger
Whisper Large variant, confirming the pipeline’s suit-
ability for offline deployment on resource-limited
hardware. The evaluation was conducted on a syn-
thetic dataset, which, while allowing for rigorous test-
ing, does not capture the full complexity of real-world
scenarios. Key limitations include a lack of speaker
variability (e.g., accents, speaking rates) and environ-
mental noise diversity (e.g., impulsive sounds, over-
lapping speech). The strong performance observed
therefore establishes a promising proof-of-concept.
Our planned mitigation strategy is to conduct further
real-data validation in collaboration with our indus-
trial partner. This important next step, involving the
collection and testing of on-field data, will be essen-
tial for bridging the gap between our results and a
practical deployment.
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