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Abstract: Stock prices are a fundamental component of financial markets, encapsulating collective investor expectations 
and serving as a crucial basis for economic decision-making. The accurate prediction of price movements 
remains a longstanding challenge in financial research, driven by the complex, nonlinear, and dynamic nature 
of market behavior. With the proliferation of high-frequency financial data and advancements in 
computational methodologies, a diverse array of predictive models has been developed, ranging from 
traditional statistical techniques to sophisticated machine learning algorithms.  This paper aims to provide a 
comprehensive review of the principal methodologies and recent advancements in stock price forecasting. It 
covers traditional statistical approaches such as Support Vector Machines (SVM), Random Forests (RF), 
Long Short-Term Memory networks (LSTM), Convolutional Neural Networks (CNN), and Reinforcement 
Learning (RL). By examining the underlying mechanisms, performance metrics, and implementation 
challenges, this paper offers a structured perspective on the diverse methodologies employed in stock price 
prediction, which contributes to a deeper understanding of their theoretical foundations and key characteristics.

1 INTRODUCTION 

Stocks are a fundamental financial instrument that 
represents a share of ownership in a company. 
Investors holding stocks thereby become partial 
owners and are entitled to a proportional claim on the 
company’s assets and profits. In the stock market, 
prices are determined by a confluence of factors, 
including supply and demand dynamics, market 
sentiment, and corporate performance. In the global 
financial arena, forecasting stock prices has long been 
a central challenge in both theoretical and practical 
investment research, as prediction accuracy directly 
influences investment decisions, risk management, 
and capital allocation (Sun et al., 2020; Sun et al., 
2019; Raza et al., 2014). 

Traditional time series models, such as the 
AutoRegressive Integrated Moving Average 
(ARIMA) model, have historically provided robust 
tools for stock price forecasting. In recent years, the 
advent of big data, the exponential growth in 
computational power, and the rapid development of 
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Artificial Intelligence techniques have ushered in 
significant advancements in stock price prediction. 
Emerging methodologies are gradually dominating 
this field involving Support Vector Machines (SVM), 
Random Forests (RF), Long Short-Term Memory 
networks (LSTM), Convolutional Neural Networks 
(CNN), and Reinforcement Learning (RL). These 
models not only possess the capacity to automatically 
mine hidden patterns from vast datasets but also 
exhibit commendable flexibility and precision when 
processing long-term dependencies and non-
stationary data. 

This paper aims to present a summary of recent 
research developments in stock price prediction. This 
research meticulously examines the effectiveness and 
limitations of both traditional statistical approaches 
and contemporary methods from machine learning, 
deep learning, and reinforcement learning, evaluating 
and comparing each technique in practical 
applications. Furthermore, the paper will analyse the 
prevailing challenges and potential future directions 
in this rapidly evolving field. Through a critical 
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comparative discussion of these diverse approaches, 
the goal is to offer the academic community and 
industry practitioners a comprehensive and profound 
perspective, thereby fostering further innovation and 
application in the realm of stock price forecasting. 

2 STOCK PREDICTION BASED 
ON MACHINE LEARNING 
MODELS 

2.1 Stock prediction based on Machine 
Learning Models 

2.1.1 SVM Model 

SVM endeavor to find an optimal hyperplane in the 
feature space that maximizes the margin between 
itself and the nearest data points (the support vectors). 
For linearly separable cases, a straightforward linear 
boundary suffices; however, when dealing with 
nonlinearly separable data, kernel functions (such as 
the Radial Basis Function or polynomial kernels) are 
employed to map the data into a higher-dimensional 
space where a linear separation is achievable.  

In many stock prediction studies, researchers treat 
future price movements as a classification problem—

dividing outcomes into “upward” or “downward
” trends—by leveraging features such as technical 
indicators, trading volume, and fundamental data. 
This method is prized for its relative simplicity, 
interpretability, and its capacity to capture nonlinear 
signals. Alternatively, Support Vector Regression 
(SVR) is used to directly forecast stock returns or 
prices by minimizing prediction errors within a 
predefined tolerance, while the kernel trick allows it 
to effectively model nonlinear relationships. 
Compared to traditional linear regression, SVR 
generally exhibits enhanced robustness in noisy 
environments and complex data structures, yielding 
superior predictive performance. 

SVM is further acclaimed for its strong 
generalization ability, primarily due to its strategy of 
maximizing the classification margin. This approach 
minimizes training errors while bolstering 
performance on unseen data by reducing sensitivity to 
noise, thereby mitigating overfitting — an essential 
attribute given the inherent uncertainty in financial 
markets. The versatility of kernel methods makes 
SVM particularly apt for financial applications, as 
they enable the implicit mapping of data into higher-
dimensional spaces where nonlinear patterns become 
linearly separable. In addition, the SVM model was 

suggested to perform better than the Linear 
Regression model by a review study (Kontopoulou et 
al., 2023). 

On the downside, the effectiveness of SVM is 
highly contingent on the appropriate choice of kernel 
function and the fine-tuning of hyperparameters. 
Inadequate parameterization can severely impair 
model performance, and the tuning process can be 
both time-consuming and computationally intensive. 
The running efficiency is estimated to be affected by 
the training period and process of large amounts of 
data (Kontopoulou et al., 2023). Moreover, solving 
the quadratic programming problem intrinsic to SVM, 
especially with nonlinear kernels, escalates 
computational demands as data volumes increase, 
potentially necessitating distributed computing or 
approximation methods for efficiency. This 
computational overhead can present a bottleneck in 
real-time trading applications. Finally, despite partial 
interpretability through support vectors, the overall 
decision-making process in high-dimensional spaces 
often remains opaque, a “black-box” characteristic 
that is problematic in financial contexts where clear 
rationale is crucial for risk management and 
regulatory oversight. 

2.1.2 Random Forest Model 

RF employs a bootstrap sampling strategy, whereby 
multiple sub-samples are drawn with replacements 
from the original dataset. Each sub-sample is then 
used to train an individual decision tree. This 
approach ensures that each tree is trained on a slightly 
different subset of the data, which, when aggregated, 
reduces the overall model variance and mitigates the 
risk of overfitting. In the domain of stock price 
forecasting, Random Forest can be utilized to frame 
the prediction problem as a classification task – for 
instance, predicting whether a stock’s price will rise 
or fall. The RF classifier leverages a 
multidimensional feature set (including historical 
prices, trading volumes, technical indicators, and 
fundamental metrics) to discern the directional 
movement of stocks, thereby generating actionable 
buy and sell signals. Simultaneously, Random Forest 
is also applicable in a regression context, where it 
models historical data to produce continuous 
forecasts of future stock prices or returns, serving as 
quantitative inputs for investment decision-making. 

RF model offers an alternative approach by 
adeptly handling nonlinear relationships— a critical 
advantage given the multifactorial nature of stock 
prices. By constructing an ensemble of decision trees, 
each derived from a randomly selected subset of 
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features, RF can effectively capture diverse nonlinear 
patterns. This ensemble method not only enhances 
long-term predictive accuracy by identifying hidden 
patterns but also inherently performs feature selection 
through metrics (Majumder & Hossain, 2019). Such 
mechanisms diminish the impact of noisy or 
redundant variables and facilitate the extraction of the 
most predictive features, thereby streamlining the 
model. Additionally, the aggregation of predictions 
across multiple trees confers robustness, mitigating 
the influence of outliers and ensuring stability in 
volatile market conditions. 

Conversely, the computational complexity and 
resource demands of RF can hinder system 
responsiveness and deployment efficiency. Although 
parallel processing can alleviate some of these 
concerns, constructing, selecting features for, and 
aggregating predictions from numerous trees 
becomes computationally onerous with high-
dimensional and large-scale data. This challenge is 
particularly acute in real-time forecasting scenarios, 
where frequent model updates are required. 
Furthermore, while RF can output feature importance 
rankings, the composite nature of its decision-making 
process renders it less interpretable, thereby 
complicating risk assessment and undermining 
stakeholder confidence. In high-dimensional 
contexts, the presence of substantial noise or 
redundant features may further impair RF 
performance, despite its built-in random feature 
selection. 

2.2 Stock prediction based on Deep 
Learning Models 

2.2.1 LSTM Model 

LSTM networks capitalize on gated mechanisms—
specifically the input, forget, and output gates— to 
control information flow within each cell. This design 
allows LSTM to effectively propagate gradients 
across long sequences, thereby capturing long-term 
dependencies essential for forecasting in financial 
markets, where historical price trends, trading 
volumes, and volatility may have prolonged effects 
on future movements.  

LSTM ’ s capacity for automatic feature 
extraction obviates the need for elaborate manual 
engineering, enabling it to discern critical patterns 
from raw time series data, and a study proposed that 
the prediction error can be reduced by incorporating 
feature-attention mechanisms (Xavier, 2019). 
Through successive layers of nonlinear 
transformation, LSTM can convert raw inputs into 

deep, predictive representations that underpin 
subsequent forecasting or decision-making tasks. 
Moreover, its ability to dynamically adjust hidden 
states in response to evolving market conditions 
enhances its robustness during periods of heightened 
volatility. 

Nonetheless, research has demonstrated that 
relying solely on historical closing prices as a singular 
feature is insufficient for forecasting stock trends, 
causing LSTM networks typically require a large 
volume of data to effectively extract relevant 
features, and insufficient or noisy datasets may hinder 
their ability to capture complex temporal dynamics 
(Yan & Yang, 2021). Rigorous data preprocessing 
including normalization, denoising, and stabilization 
is often necessary to optimize performance, thereby 
imposing higher demands on data quality and 
processing. Furthermore, the computational and 
training costs associated with deep LSTM 
architectures are significant, often necessitating 
Graphics Processing Unit (GPU)acceleration and 
distributed computing — especially when high-
frequency data are involved. Extended training cycles 
can thus become a bottleneck for real-time 
applications. Hyperparameter tuning in LSTM 
networks is equally challenging, as performance is 
highly sensitive to factors such as network depth, 
hidden unit count, learning rate, batch size, and 
regularization; suboptimal configurations can lead to 
overfitting and compromised generalization. Lastly, 
despite its strengths, the internal decision processes of 
LSTM remain relatively opaque compared to 
classical statistical models, which can be a critical 
drawback in financial settings where interpretability 
is paramount. 

2.2.2 CNN Model 

Convolutional Neural Networks (CNN) have also 
been applied to stock prediction by exploiting their 
ability to automatically extract local features via 
convolutional and pooling operations. In this context, 
CNNs can capture short-term volatility patterns from 
time series data. An innovative approach involves 
transforming time series data into visual formats—
such as candlestick charts or heat maps—and applying 
CNN-based image analysis to detect latent patterns 
that inform stock price forecasts. This methodology 
leverages CNNs’ well-established prowess in image 
processing to achieve effective predictive 
performance. Additionally, CNNs have been utilized 
in intelligent stock selection strategies, where 
multifactor features are extracted to classify or score 
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stocks, thereby aiding in the identification of 
promising investment opportunities. 

From an advantages perspective, CNNs benefit 
from parameter sharing and sparse connectivity 
(Zheng et al., 2024), which dramatically reduce the 
number of parameters, enhance training efficiency, 
and lower the risk of overfitting—especially in high-
dimensional settings. Their aptitude for discerning 
local patterns and short-term fluctuations is 
particularly valuable for capturing transient price 
trends relevant to short-term trading. CNN can be 
employed to predict stock prices by analyzing images 
that represent stock price trends (Zheng et al., 2024). 

However, CNNs are inherently limited in their 
ability to model long-term dependencies, as they are 
primarily designed for spatial rather than temporal 
data. Consequently, relying solely on CNNs may be 
insufficient for capturing the extended temporal 
dependencies characteristic of stock price 
movements. Moreover, deep CNN architectures 
demand extensive training data and substantial 
computational resources, and their “black-box” 
nature further complicates interpretability, potentially 
leading to challenges in aligning model outputs with 
sound investment decisions. 

2.3 Reinforcement Learning Model 

RL is a paradigm that learns optimal decision-making 
policies through continuous interaction with a 
dynamic environment. Its fundamental principle is to 
enable an agent to perform actions within an 
environment, receive corresponding rewards, and 
iteratively refine its strategy to maximize cumulative 
returns. In stock trading scenarios, the environment is 
typically constructed from historical prices, trading 
volumes, and technical indicators; actions may 
include buying, selling, or holding a stock; and the 
reward function is often defined in terms of realized 
profits (or losses). State space design involves 
assembling a state vector from historical stock data 
and relevant indicators, while the action space is 
frequently discretized (e.g., 0 for hold, 1 for buy, 2 for 
sell). Moreover, the reward function can be defined 
either in terms of single-trade profits or cumulative 
returns—often adjusted for risk using measures such as 
the Sharpe ratio. 

On the positive side, RL emphasizes the 
autonomous extraction of effective trading strategies 
from raw data, reducing the need for extensive 
manual intervention. Once trained, an RL model can 
rapidly adapt to real-time market conditions by 
evaluating the current state and executing appropriate 
buy or sell decisions, thus enhancing both the 

timeliness and efficiency of trade execution (Dang, 
2020). Furthermore, RL models have the capacity to 
dynamically update their strategies to accommodate 
evolving market volatility. By integrating risk control 
metrics (such as maximum drawdown or the Sharpe 
ratio) into the reward function, the agent is 
encouraged not only to maximize returns but also to 
maintain a prudent risk profile. In contrast to 
supervised learning approaches, RL does not require 
vast quantities of pre-labeled data and profitable 
trading strategies can be developed even with only a 
few hundred samples, which is an advantage when 
labeled data is scarce or costly to obtain (Dang, 2020). 

 
However, several challenges and limitations 

temper the application of RL in stock price prediction. 
Firstly, RL methods typically exhibit low sample 
efficiency, requiring a substantial number of 
interactions to converge on an optimal policy — a 
significant drawback in financial markets where 
effective samples may be limited. Training instability 
and the risk of overfitting further complicate the use 
of RL, as market noise, non-stationary data, and 
poorly designed reward functions can lead the model 
to overfit historical patterns, thereby undermining its 
performance in live trading (Sahu et al., 2023). 
Moreover, deep reinforcement learning models are 
computationally intensive, with large numbers of 
parameters and lengthy training periods that demand 
significant computational resources (e.g., GPUs), 
potentially impeding real-time application. 
Additionally, the design of a robust and balanced 
reward function — which accurately reflects real 
trading profits while incorporating risk management—
is inherently complex. An ill-conceived reward 
function may steer the agent away from desirable 
trading behavior (Sahu et al., 2023). Finally, the “
black-box”  nature of RL models often results in 
limited interpretability, which can reduce investor 
confidence and complicate regulatory oversight. 

3 COMPARISON AND 
EVALUATION 

Model evaluation is a critical component in stock 
price forecasting. Diverse evaluation criteria allow 
for a multidimensional assessment of a model’s 
performance, thereby guiding model fine-tuning and 
strategy enhancement.  
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Table 1: Evaluation method of selected studies. 

Model Citation Evaluation Method Year
ARIMA (Altan & Karasu, 2019) MPE, MAPE 2020
ARIMA (Budiharto, 2021) MSE, MAE, RMSE,MAPE 2021
ARIMA (Carapuço et al., 2018) Accuracy 2020

SVM (Chen & Huang, 2021) MSE, RMSE, MAE 2019
SVM (Dhyani et al., 2020) MSE, MAE, AUC, Accuracy, Recall 2020
SVM (Ganesan & Kannan, 2021) MSE, RMSE, MAE, Rଶ 2019 
RF (Ghosh et al., 2019) RMSE, MAPE, MBE 2020

LSTM (Gururaj et al., 2019) RMSE, MAE, Rଶ 2020 
LSTM (Khan & Alghulaiakh, 2020) Error Values 2019
LSTM (Nti et al., 2020) Accuracy, RMSE, 2021
CNN (Oncharoen & Vateekul, 2018) Accuracy, Precision, Recall, F1 Score 2021
CNN (Patil et al., 2020) RMSE, MAE, MAPE 2020
CNN (Qiu et al., 2020) F-measure, Return Rate, Sharpe Ratio 2018
RL (Shin et al., 2019) Return Rate 2018
RL (Tsantekidis et al., 2020) Sharpe Ratio 2019
RL (Vijh et al., 2020) Sharpe Ratio 2020

 
Figure 1: Occupation for each evaluation method of selected studies. (Picture credit: Original).

Table 1 and Figure 1 indicate that the vast 
majority of stock price forecasting models can be 
evaluated using conventional statistical metrics. In 
contrast, RL models are predominantly assessed by 
risk-adjusted performance indicators such as the 
Sharpe Ratio and Return Rate. The fundamental 
distinction lies in the training process: RL models 
iteratively refine their decision-making strategies 
through trial-and-error interactions with the 
environment rather than merely minimizing 
prediction error. Consequently, one may 
preliminarily infer that RL possesses certain 
advantages over other models. 

4 CONCLUSIONS 

Initially, this paper provides a systematic review of 
the theoretical underpinnings and practical 
applications of various forecasting models, 
elucidating their respective strengths and limitations. 
Subsequently, it consolidates several evaluation 
methodologies employed in prior studies, which 
tentatively demonstrate the superiority of RL-based 
approaches. Given the inherent complexity and 
nonlinearity of financial markets, as well as the 
specific constraints associated with individual 
models, this review advocates for future research to 
adopt hybrid and ensemble techniques — such as 
ARIMA-LSTM models—that can effectively capture 
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both linear trends and nonlinear dynamics. Moreover, 
future investigations should leverage big data and 
multimodal information to explore more adaptive 
dynamic strategies and efficient training methods, 
ultimately furnishing robust theoretical and empirical 
support for investment decision-making and risk 
management. 

By integrating these advancements, researchers 
and practitioners can develop more resilient and 
interpretable forecasting frameworks, enhancing 
predictive accuracy and robustness in real-world 
financial applications. As financial markets continue 
to evolve, a multidisciplinary approach that 
synergizes machine learning, econometrics, and 
domain-specific expertise will be crucial in shaping 
the next generation of intelligent financial forecasting 
systems. 
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