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Abstract: With the advancement of artificial intelligence, speech synthesis technology has been widely applied across 

multiple fields. Deep learning-based speech synthesis has gained significant attention due to its ability to 

automatically learn complex acoustic features, greatly improving speech fluency and naturalness. This paper 

reviews deep learning-based speech synthesis technology, with a particular focus on its applications in falsetto 

and voice transformation tasks. By exploring the principles of human speech production and the development 

of speech synthesis technology, this paper analyzes the advantages and limitations of current deep learning 

models and proposes an innovative method that integrates articulatory organ parameters with acoustic 

parameters. Furthermore, the paper discusses the potential of airflow simulation in physical modeling, 

especially its application prospects in generating personalized voices and handling voice transformation and 

falsetto tasks. Finally, this paper outlines future research directions, including optimizing deep learning 

models, integrating physical modeling techniques, and fostering interdisciplinary research, aiming to advance 

speech synthesis technology towards greater personalization and richer emotional expression.. 

1 INTRODUCTION 

Speech synthesis technology refers to the process of 

converting input text sequences into speech output 

with high naturalness, high audio quality, and rich 

expressiveness through appropriate prosodic 

processing and specific synthesizers. This enables 

computers and related systems to produce natural and 

fluent speech similar to human voices(Zhang, 2014). 

In recent years, with the continuous advancement 

of artificial intelligence (AI) technology, speech 

synthesis has become a crucial field in modern 

computer science. Its applications span various 

industries, from intelligent assistants and automatic 

speech recognition to virtual character dubbing in the 

entertainment industry. In these applications, 

generating natural and fluent speech is essential for 

enhancing user experience and system performance. 

As technology has progressed, speech synthesis has 

evolved from articulatory synthesis, which relies on 

mechanical physical modeling of speech production, 

to formant synthesis, which is based on source-filter 

models and resonance peak weighting. Due to 

technological limitations, both of these early methods 
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could only generate relatively simple speech sounds. 

Later, with rapid advancements in computer hardware, 

waveform concatenation emerged and gradually 

matured as a more effective method. 

Despite significant advancements in speech 

synthesis technology, challenges remain in 

generating highly natural and personalized speech. 

These challenges primarily involve synthesis speed, 

timbral naturalness, and speech diversity. To 

overcome the limitations of traditional methods, 

researchers have introduced Hidden Markov Models 

(HMMs) for parametric statistical speech synthesis 

and leveraged deep learning algorithms to address 

difficulties in discovering and modeling acoustic 

features. While deep learning models have achieved 

breakthroughs in the fidelity and coherence of speech 

generation, they still face notable limitations in 

specific tasks such as falsetto (fake voice) synthesis 

and voice conversion, particularly in timbral 

transformation, emotional expression, and voice 

imitation. 

This paper aims to review deep learning-based 

speech synthesis techniques, with a particular focus 

on their applications in falsetto and voice conversion 
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tasks. Specifically, we will explore how deep learning 

models simulate human timbral variations, especially 

in cases involving emotional fluctuations and voice 

mimicry. Additionally, we will analyze the 

limitations of current techniques in these tasks and 

discuss potential directions for future improvements. 

This paper is organized as follows: The second 

part introduces the principles of human vocalization 

and the development of speech synthesis technology; 

the third part discusses the advantages of 

unconditional speech synthesis and analyzes the 

limitations of unconditional speech generation 

technology in dealing with tasks such as voice 

changing and false voice; the fourth part proposes 

ideas based on computer physical modeling and 

airflow simulation and summarizes the advantages 

and disadvantages of this method; the fifth part 

summarizes the whole paper and puts forward 

prospects. 

2 DEVELOPMENT OF SPEECH 

SYNTHESIS TECHNOLOGY 

2.1 Principles of Human Phonation 

Human phonation is the result of the coordinated 

operation of multiple speech organs, which can be 

broadly categorized into respiratory organs, 

phonatory organs, articulatory organs, and resonating 

cavities. The primary steps of phonation involve the 

contraction of the lungs generating airflow, which 

then passes through the trachea into the larynx. The 

vocal cords located in the larynx vibrate according to 

the speed and pressure of the airflow. The airflow is 

further modulated by passing through the oral and 

nasal cavities, which act as resonators shaped by the 

structure and openings of these cavities. The 

frequency of vocal cord vibrations determines the 

fundamental pitch of the sound, while adjustments in 

the tension, shape, and vibration speed of the vocal 

cords can regulate pitch and volume. 

2.2 Mechanically and Electronically 
Based Speech Synthesis 

Research on speech synthesis dates back to the late 

18th century, with the earliest synthesis methods 

relying on physical devices to simulate human 

phonation. These methods attempted to replicate 

speech by mimicking the movement of speech organs 

and modeling airflow to produce simple sounds. With 

advancements in electronics, early physical synthesis 

devices were gradually replaced by the source-filter 

model. This method conceptualizes the speech 

generation process as a source simulating glottal 

states, which excites a time-varying digital filter that 

characterizes the resonant properties of the vocal tract. 

It primarily uses waveform superposition to simulate 

the vocal cords, oral cavity, and other organs (Jing, 

2012). Voiced sounds are generated using a pulse 

generator, while unvoiced sounds are produced by a 

noise generator, and after passing through a vocal 

tract filter and lip radiation process, the final speech 

signal is synthesized (Zhang, 2016). These early 

mechanical and electronic methods could only 

generate simple speech, with limited accuracy in 

vocal tract simulation, making them impractical for 

real-world applications. 

2.3 Phoneme Concept and Waveform 
Concatenation 

Although human languages are diverse, all are 

composed of phonemes. Phonemes are the 

fundamental units of synthesized speech, with all 

words and sentences formed by concatenating 

multiple phonemes. Speech synthesis can be achieved 

by assembling pre-recorded speech units from a 

speech database to generate complete utterances. This 

concatenation method retains the original speaker's 

timbre to the greatest extent, providing high 

naturalness and intelligibility, reaching an acceptable 

level for human listeners. 

Despite the high-quality synthesis achieved 

through concatenation, the generated speech often 

sounds artificial and rigid, with issues in prosody at 

concatenation points. The most direct solution to 

these problems is to record a large-scale speech 

corpus in various contexts, addressing the 

discontinuities at unit boundaries found in traditional 

waveform concatenation methods. However, such a 

large corpus requires significant storage space and is 

time-consuming to produce. Additionally, an 

efficient algorithm is needed to select the correct 

speech units for concatenation from the database. 

This approach involves two main processing 

modules: text processing and acoustic processing. 

The front-end module, responsible for text processing, 

converts input text into a symbolic phonetic 

description—determining what sounds to produce and 

how to produce them. The back-end module, 

responsible for acoustic processing, transforms these 

symbolic descriptions into the acoustic features of 

speech signals (Zhu, 2009). 
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2.4 Hidden Markov Model and 
Parametric Synthesis 

Although waveform concatenation and traditional 

synthesis methods partially address prosodic 

discontinuities, further optimization is needed. In 

practice, traditional concatenation methods often 

suffer from unstable synthesis quality and low 

robustness due to incorrect unit selection. To solve 

this issue, a superior speech unit selection algorithm 

is required to accurately predict the acoustic 

parameters corresponding to a given text under 

different conditions. 

The Hidden Markov Model (HMM) is a double-

stochastic process where the specific state sequence 

is unobservable, but its transition probabilities are 

known. That is, the state transitions are hidden, while 

the observable events are random functions of these 

hidden transitions (Jing, 2012). 

From a statistical perspective, human speech 

production is also a double-stochastic process. The 

brain, based on expressive needs, organizes language 

according to grammatical rules and generates a series 

of unobservable commands to control speech organs, 

ultimately producing observable acoustic parameters. 

This speech generation process is similar to the 

description of HMM, making HMM a cornerstone 

method in statistical parametric speech synthesis(Wu, 

2006). 

The HMM-based model primarily involves two 

phases: training and synthesis. The training phase 

consists of five steps: model initialization, HMM 

training, context-dependent HMM training, decision 

tree-based training, and duration modeling. Once the 

model is trained, it can generate state sequence 

feature vectors from input text. These vectors are then 

processed by a filter to convert them into speech 

signals (Wu, 2006). The HMM-based modeling 

approach offers greater flexibility, does not require an 

extensive speech corpus, and significantly reduces the 

time needed for model construction compared to 

traditional methods. As a result, it is more suitable for 

lightweight and embedded platforms. 

3 SPEECH SYNTHESIS 

TECHNOLOGY BASED ON 

DEEP LEARNING 

3.1 Speech synthesis technology based on 
deep learning 

Early speech synthesis technology represented by 

HMM-based speech synthesis will inevitably destroy 

the fine structure of natural speech spectrum while 

using statistical parameters. Moreover, due to the 

limitation of computing power, it can only consider 

the influence of one or two adjacent phonemes, 

resulting in the discard of potential meaningful 

information in the previous text, causing information 

loss(Pan, 2021). 

In end-to-end speech generation, the system 

consists of two parts: acoustic model and a vocoder. 

The acoustic model realizes the temporal alignment 

of text and speech, and the vocoder restores the output 

of the acoustic model into a speech waveform(Zhang, 

2021). The essence of speech generation is to 

simulate sound through a series of acoustic 

parameters. Acoustic parameters are a kind of 

complex data and are not easy to model manually. 

Deep learning can learn more useful features by 

building a machine learning model with many hidden 

layers and big data training, which just solves the 

problem that acoustic parameters are not easy to 

model and select features manually. DNN is a 

common model for modeling acoustic parameters. In 

training, the minimum mean square error criterion is 

usually used to train the DNN model, and the model 

parameters are continuously adjusted to minimize the 

error between the predicted acoustic parameters and 

the target acoustic parameters. In synthesis, after 

extracting text features, the trained DNN model is 

used to predict the acoustic parameters and the 

duration information provided by other systems (such 

as the PSOLA algorithm), and then input into the 

vocoder to obtain synthesized speech(Zhang, 2020). 

3.2 Processing and limitations of voice 
change 

Under ideal conditions, the above-mentioned deep 

learning-based speech synthesis algorithms can 

generate fluent and natural speech more accurately. 

However, in real life, acoustic parameters do not only 

include prosodic parameters. The same person can 

not only make one voice. The volume, pitch, voice 

emotion, and switching between true and false voices 

will affect the acoustic parameters. Moreover, 

emotions will also affect people's control over various 

parts of the body, including the vocal organs. These 

special control rules under emotional conditions will 

produce special emotional speech parameter changes. 

In the synthesis system, when the range of variation 

of the rhythmic acoustic parameters is large, the 

synergy between the articulatory organs will have a 

greater impact on the speech, and the spectrum and 

filter can no longer be simply treated as completely 

independent parameters (Wang, 2013). The sole use 
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of rhythmic acoustic parameters will lead to a single 

and unnatural result in the actual application of 

speech synthesis. In this regard, new parameters need 

to be introduced to solve such problems. 

3.3 Integration of Articulatory and 
Acoustic Parameters 

In HMM-based speech synthesis, the primary 

modeling targets are acoustic parameters and 

observable speech features. However, acoustic 

parameters are not the only way to represent speech 

characteristics; articulatory parameters also serve as 

effective descriptors. As mentioned earlier, human 

speech production involves multiple vocal organs, 

and various technologies such as X-ray imaging and 

ultrasound can capture articulatory organ parameters 

(Wang, 2008). Compared to acoustic parameters, 

articulatory parameters provide more fundamental 

speech representations, exhibit smoother and more 

gradual changes, and demonstrate better robustness, 

making them more suitable for HMM-based 

modeling. 

4. PHYSICAL MODELING, 

AIRFLOW SIMULATION, AND 

SPEECH SYNTHESIS 

4.1 Reflections and Innovations in 
Physical Methods 

Scientists have long recognized that human speech 

production results from the coordinated operation of 

multiple vocal organs. However, early physical 

devices were relatively simplistic and ineffective due 

to the lack of advanced computing technology. With 

the development of computer hardware and the 

maturation of computational physical simulation, it 

has become theoretically feasible to use computer 

modeling to simulate airflow within vocal organs. 

Furthermore, by adjusting parameters according to 

individual physiological differences, it is possible to 

generate more precise and personalized speech 

synthesis. 

4.2 Advantages and Limitations 

This method has the following advantages: most 

human vocal organs are similar, so simulating 

different human voices only requires fine-tuning of 

parameters, and does not require completely 

independent modeling for all situations; when 

simulating voice change and false voice, rapid 

construction can be performed based on the 

experience of physiological observations, and there is 

no need to completely rebuild the voice change or 

false voice library; the vocal organs are relatively 

stable and are rarely affected by acoustic noise and 

environmental noise. They can identify erroneous 

data to a certain extent and are more robust; physical 

modeling can well simulate the actions of humans 

when switching phonemes during pronunciation, and 

when synthesizing speech, the connection between 

different phonemes is more natural; 

At the same time, this method also has many 

problems. The following are some of the most 

representative ones: human pronunciation is not only 

determined by physiological structure but acquired 

learning and pronunciation habits are likely to affect 

the results. Therefore, when using physical models, 

some acoustic parameters need to be introduced; if 

the pronunciation organs of each audio provider are 

scanned, it will cost a lot of costs and resources, and 

it is necessary to develop an algorithm that can infer 

the structure of human pronunciation organs based on 

audio; although there is no need to model the original 

sound, this method will cost a lot of computing power 

in the physical simulation of airflow. 

4 CONCLUSIONS 

This paper reviewed deep learning-based speech 

synthesis technologies, with a particular focus on 

advancements in falsetto and voice transformation 

tasks. With the rapid progress of deep learning, 

traditional speech synthesis methods have gradually 

been replaced by more complex and precise deep 

neural networks (DNNs). By leveraging large 

datasets and deep learning models, speech synthesis 

systems can generate high-quality, natural, and fluent 

speech, significantly improving the user experience. 

However, despite these breakthroughs, existing 

technologies still face considerable challenges in 

handling tasks such as timbre variation, emotional 

expression, and voice imitation. 

Firstly, current deep learning models lack 

sufficient flexibility in voice transformation tasks, 

especially in timbre adjustment and emotional 

variation. Although strategies that integrate 

articulatory and acoustic parameters have been 

introduced, further research is needed to address the 

complexity of acoustic feature modeling. Secondly, 

physical modeling and airflow simulation methods 

have shown promising potential, particularly in 

accurately capturing the natural transitions and 
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variations of vocal organs, thus improving speech 

realism and robustness. However, physical modeling 

still faces challenges such as high computational 

resource consumption and difficulties in accurately 

capturing individual differences. 

To overcome these challenges, future research 

may focus on the following directions: On the one 

hand, enhancing the adaptability of deep learning 

models in voice transformation and falsetto tasks by 

incorporating finer-grained emotional and timbre 

parameters to achieve more precise personalized 

speech synthesis. On the other hand, optimizing 

physical modeling techniques to explore how to 

achieve realistic and personalized voice simulations 

with lower computational costs. Additionally, 

interdisciplinary research — such as integrating 

neuroscience, acoustic engineering, and artificial 

intelligence — may bring breakthroughs in speech 

synthesis technology. 

In conclusion, while speech synthesis technology 

has made significant strides across various fields, 

achieving high-quality voice transformation and 

falsetto synthesis still requires substantial 

technological innovation and interdisciplinary 

collaboration. As computing power continues to 

improve and algorithms become more refined, future 

speech synthesis systems are expected to make 

remarkable advancements in personalization, 

emotional expressiveness, and speech diversity, 

further driving the development of intelligent voice 

interaction technologies. 
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