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Abstract: This paper presents the design and control of a cost-effective wrist rehabilitation robot with the aim of 
providing an accessible and scalable solution for patients in need of upper-limb motor recovery. The primary 
goal is to create a compact system that can support repetitive and controlled wrist movements, particularly for 
individuals recovering from stroke. The robot’s mechanical structure, forward kinematic model and dynamic 
model were defined to minimize cost without compromising essential therapeutic functionality. Three control 
strategies were implemented and evaluated in simulation, including Independent Joint Control, Linear 
Quadratic Regulator, and an observer-based version using a Luenberger estimator for situations where only 
position sensors are available. These simulations serve to assess the feasibility of each control method in terms 
of performance, complexity, and compatibility with low-cost components for future hardware development. 

1 INTRODUCTION 

The use of robotic systems in physical rehabilitation, 
particularly for upper-limb therapy (Pollock, et al., 
2014), (Basteris, et al., 2014), (Tucan, et al., 2022), 
(Tohanean, et al., 2023),  has seen substantial growth 
in recent years. Robotic devices (Guozheng, et al., 
2014) for wrist rehabilitation are increasingly being 
incorporated into therapy programs (Wu Chuang, et 
al., 2011) due to their ability to deliver consistent, 
repetitive, and quantifiable movements - crucial 
factors in the recovery of fine motor skills. Several 
commercially available systems, such as MIT-Manus 
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(Krebs, et al., 1999), WristBot (Squeri, et al., 2014), 
or Reharob (Toth, et al., 2005), have demonstrated the 
feasibility of robotic-assisted therapy for post-stroke 
(Parisi, et al., 2022) patients. These systems generally 
employ complex mechanical structures and control 
algorithms, such as impedance control, adaptive 
control, or model predictive control, to guide patient 
movement. However, many solutions come with 
significant trade-offs in terms of cost, size, and 
system complexity (Akdogan, 2016), which limit 
their accessibility outside specialized clinical 
environments. Moreover, a large part of the literature 
focuses on multi-DOF exoskeletons (Vaida, et al., 
2018) or hybrid systems, which may be excessive for 
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specific rehabilitation needs such as isolated wrist 
joint therapy. As noted in (Omarkulov, et al., 2016), 
simpler, task-specific devices can often achieve 
comparable outcomes if paired with efficient control 
strategies, while also being more adaptable to home-
based therapy. The study in (Masiero, et al., 2011) 
demonstrates that early robot-assisted therapy can 
significantly improve upper-limb motor recovery in 
stroke patients. The present work proposes a cost-
effective robotic solution dedicated to wrist 
rehabilitation. Additionally, unlike the NeReBot 
(Rosati, et al., 2007) trial which centers on clinical 
protocol evaluation, this paper focuses on the 
comparison of three control strategies 1) Independent 
Joint Control (IJC), 2) Linear Quadratic Regulator 
(LQR), and 3) Luenberger observer-based LQR 
controller - highlighting how different control 
methods impact performance, robustness, and the 
feasibility of developing rehabilitation devices. 

Therefore, this paper proposes a new wrist 
rehabilitation robot, with a focus on simplicity, 
compactness, and cost-efficiency, aiming to provide 
accessible therapeutic support for patients in need of 
upper-limb motor recovery. The device is developed 
to allow repetitive and controlled wrist movements, 
such as flexion and extension (Major, et al., 2021), 
(Tarnita, et al., 2022), which are commonly required 
in post-stroke. 

To evaluate the feasibility of various control 
solutions for such a system, three strategies were 
implemented and tested in simulation. IJC was 
considered as a baseline method, leveraging its 
simplicity and ease of implementation. A more 
advanced approach based on linearization followed 
by LQR control was also explored, enabling better 
tracking performance and disturbance rejection by 
accounting for system nonlinearities. In addition, a 
Luenberger observer was integrated to estimate the 
full state vector in scenarios where only joint position 
measurements are available - a common situation in 
low-cost hardware implementations. Even if 
additional sensors are introduced, they are likely to be 
low-cost and less accurate, which would require 
further filtering and increase system complexity. 

To enable effective and affordable wrist 
rehabilitation solutions, this study investigates three 
control strategies implemented on a custom-designed 
robotic platform. Each method offers distinct 
advantages, making them suitable for different 
application contexts. In particular, the LQR + 
Observer demonstrates strong potential for 
maintaining control performance while reducing 
sensor requirements, addressing a challenge in the 
development of low-cost rehabilitation devices. It 

also investigates whether control performance can 
still be maintained using lightweight design and 
standard components - without sacrificing precision. 
The findings will guide future development of 
accessible robotic therapy platforms that balance 
performance, cost, and usability. 

This paper is organized as follows: Section 2 
presents the mechanical design of the wrist 
rehabilitation robot, outlining its purpose, intended 
use, and functional relevance. This section also 
includes the forward kinematic and dynamic model of 
the system. Section 3 introduces three control 
strategies - 1) IJC, 2) LQR, and 3) Luenberger 
observer-based LQR controller - each discussed with 
respect to its specific advantages and applicability. In 
Section 4, the simulation results obtained using these 
control methods are analysed. Finally, Section 5 
summarizes the main conclusions of the study and 
outlines directions for future development. 

2 ROBOT DESIGN AND 
DYNAMIC MODELING 

The robot proposed within this paper (WRIST-X) is a 
novel 3-DOF rehabilitation robot, able to perform 
flexion, extension, adduction, abduction, pronation 
and supination of the wrist (Mehrez, et al., 2025). The 
main wrist rehabilitation movements targeted in this 
study are flexion/extension, adduction/abduction, and 
pronation/supination. 

The virtual model of the rehabilitation robot is 
presented in Figure 2. The final prototype can be seen 
in Figure 3. The robot has 5 major components: the 
forearm rest responsible for anchoring the arm of the 
patient in such manner that the centre of the wrist joint 
falls at the intersection point of the robot’s motion 
axis (point O). The adduction/abduction mechanism 
performs the revolute motion around the OZ axis, the 
flexion/extension mechanism performs revolute 
motion around the OY axis and the 
pronation/supination mechanism performs the 
revolute motion around the OX axis. During the 
rehabilitation procedure the patient grabs the handle 
of the robot and all the rehabilitation motions are 
performed with the closed fist.  

Basically, the robot consists of three revolute 
joints performing the rehabilitation motions 
individually and several adjustment passive/lockable 
mechanisms to allow the configuration of the robot to 
comply to different anthropometric characteristics of 
the patient. 
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Figure 1: Design and prototype of the robot. 

The joint angles are denoted as: 𝑞ଵ = 𝜓 , 𝑞ଶ = 𝜃, 𝑞ଷ = 𝜑 (1)

where q1, q2, q3 represent the active joints of the 
mechanism, ψ represents the adduction/abduction 
angle, θ represents the flexion/extension angle and φ 
represents the pronation/supination angle.  

The explicit rotation matrix of the system is 
obtained as: 𝑅 = 𝑅௫(𝜑)𝑅௬(𝜃)𝑅௭(𝜓) (2)

where Rx, Ry, Rz are standard rotation on 𝑥/𝑦/𝑧-axis, 
(Spong, Hutchinson, & Vidyasagar, 2005) matrices.  

The angular velocity expressed in the space frame 
is computed using (4): 

( )J q qω = ⋅   (3)

where 𝐽(𝑞) = ൥0 𝑐𝑜𝑠 𝜓 𝑐𝑜𝑠 𝜓 𝑐𝑜𝑠 𝜃0 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜃1 0 − 𝑠𝑖𝑛 𝜃 ൩ denotes the 

Jacobian. The accelerations are determined as:  

( ) ( )J q q J q qα = ⋅ +     (4)
where:  

0 sin sin cos cos sin
( ) 0 cos cos cos sin sin

0 0 cos
J q

ψψ ψ θψ ψ θθ
ψψ ψ θψ ψ θθ

θθ

 − − −
 = − 
 − 

 
  


 (5)

To implement and validate control strategies, a 
dynamic model of the system is necessary. For this 
robot, the wrist joint dynamics can be approximated 
using the classical Euler-Lagrange modelling 
approach (Spong, et al., 2005). 

The dynamic modelling of the robot was 
performed by excluding the detailed characteristics of 
the motors. The torque and power requirements were 
estimated independently of motor dynamics to 
evaluate the suitability of different motor types for 
achieving the desired performance. Additionally, 
frictional effects were neglected at this stage to 
simplify the model and focus on the core mechanical 
dynamics. These assumptions serve as a preliminary 
step in the design process, with the understanding that 
motor behaviour and friction will be incorporated in 
future developments for more accurate simulation 

and control. The general equation of motion for an 𝑛-
degree of freedom (DOF) manipulator is given by: 𝐷(𝑞)𝑞ሷ + 𝐶(𝑞, 𝑞ሶ )𝑞ሶ + 𝐺(𝑞) = 𝜏 (6)

where 𝑞 𝜖 ℝ௡  is the vector of generalized joint 
coordinates, 𝑞ሶ , 𝑞ሷ  are the joint velocities and 
accelerations, 𝐷(𝑞) 𝜖 ℝ௡ ௫ ௡  is the inertia matrix, 𝐶(𝑞, 𝑞ሶ ) 𝜖 ℝ௡ ௫ ௡  is the Coriolis and centrifugal 
matrix, 𝐺(𝑞)𝜖 ℝ௡ is the gravity vector and τ 𝜖 ℝ௡   is 
the vector of applied joint torques. 

For the wrist rehabilitation robot presented in this 
paper, the configuration consists of three rotational 
DOF (i.e. 𝑛 = 3). The parameters of the model, such 
as link masses, lengths, and moments of inertia, were 
defined based on the mechanical design using the 3D 
virtual model designed using Siemens NX. 

The matrices in (8) are: 𝐷 = ൭𝑑1 − 𝑑2 · (𝑠(2))2 𝑑3 · s(2) −𝑑4  · s (2)𝑑3 · s(2) 𝑑5 0−𝑑4 · s (2) 0 𝑑4 ൱ 

 

where𝑑ଵ  =  0.088, 𝑑ଶ = 0.006 , 𝑑ଷ =  0.034,  𝑑ସ  =0.0027, 𝑑ହ = 0.0209, 𝑠(𝑖) = sin(𝑞௜) , 𝑐(𝑖) =cos(𝑞௜) , 𝑖 = 1,3തതതത.   
𝐶 =  ቌ−𝑞ሶ2(2𝑐1 s(2) 𝑐(2)) 0 00 𝑐2 · 𝑞1ሶ · c(2) 𝑐3 · 𝑞1 · c(2)0 𝑐3 · 𝑞1 · c(2) 0 ቍ  

where 𝑐ଵ = 0.0031, 𝑐ଶ = 0.0339, 𝑐ଷ = −0.00135 𝐺 = (0, 1.3029 · c(2) , 0)். 

The dynamic model provides the base for the 
control strategies in the following sections and allows 
for torque estimation necessary for future motor 
selection. In addition, a saturation limit of ±10 𝑁 · 𝑚 
was applied to the control input to reflect the 
limitations of the motors, for ensuring that the 
simulated control efforts remain within realistic 
actuator capabilities. 

3 CONTROL STRATEGIES 

Three control approaches (output feedback and state 
feedback) for wrist rehabilitation robots, were 
developed and tested in simulation.  The control 
strategies feed into a microprocessor. The 
microprocessor communicates bidirectionally with a 
user interface that allows a therapist to monitor, 
evaluate, and adjust treatment parameters in real time. 
Simultaneously, the microprocessor sends commands 
to three DC motors that drive the robotic arm. The 
robotic arm, in contact with the patient, performs 
therapeutic movements. Feedback from the robot is 
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captured by encoders and sensors. This feedback is 
relayed back to the microprocessor to adjust control 
outputs dynamically, ensuring tracking position. 

All control strategies presented in this work were 
initially designed and applied to the linearized model 
of the system, and their performance was 
subsequently validated by testing them on the full 
nonlinear model. Starting from the dynamic model 
(6) we want to achieve the linearized form:  

 𝑥ሶ = ൤𝑥௔ሶ𝑥௕ሶ ൨ = ൤𝑓௔𝑓௕൨ ; 𝑓௔ = 𝑥௕ 𝑓௕ = 𝑞ሷ = 𝐷ିଵ(𝑞)(𝜏 − 𝐶(𝑞, 𝑞ሶ )𝑞ሶ − 𝐺(𝑞)) (7)

 

where 𝑥௔ = [𝑞ଵ, 𝑞ଶ, 𝑞ଷ]்  represents the joint 
positions and 𝑥௕ = [𝑞ሶଵ, 𝑞ሶଶ, 𝑞ሶଷ]் the velocities. 

Following the linearization of the nonlinear 
dynamic model, the system was reduced to a linear, 
controllable it is an double integrator for each joint 
considering the state vector 𝑥 =[𝑞ଵ, 𝑞ଶ, 𝑞ଷ, 𝑞ଵሶ , 𝑞ଶሶ , 𝑞ଷሶ ]். The system was linearized 
around the equilibrium point 𝑥଴ = [0, 0, 0, 0, 0, 0]் 
and 𝑢଴ = 𝜏଴ = [0, 1.3029, 0]் which represents the 
wrist being at rest in the neutral (horizontal) position. 

The resulting system is controllable and is 
described below: 

 𝑥ሶ = 𝐴 ∙ 𝑥 + 𝐵 ∙ ⍙𝑢 𝑦 = 𝐶 ∙ 𝑥 + 𝐷 ∙ ⍙𝑢 (8)𝐴 = ൬𝑂ଷ 𝐼ଷ𝑂ଷ 𝑂ଷ൰ ; 𝐶 = (𝐼ଷ 𝑂ଷ); 𝐷 = 𝑂ଷ (9)

𝐵 = ⎝⎜⎜
⎛ 0 0 00 0 00 0 011.41 0 00 47.84 00 0 370.37⎠⎟⎟

⎞
 (10)

 

where 𝑥 is the state vector (joint positions and 
velocities), ⍙𝑢 = 𝑢 − 𝑢0  is the control input vector 
(joint torques). 𝑂ଷ denotes the 3𝑥3 zero matrix, and 𝐼ଷrepresents the 3𝑥3 identity matrix.  

The first method implemented was IJC (Spong, et 
al., 2005), a straightforward strategy based on 
classical PID, commonly used for systems with 
minimal coupling and well-understood dynamics.  

Subsequently, an optimal control strategy - the 
LQR (Spong, et al., 2005) was implemented, 
improving tracking performance and disturbance 
rejection by explicitly accounting for the system's 
state and optimizing control effort. 

Finally, to address the practical limitation of not 
having full state measurement in real-world 
applications, a Luenberger observer (Levine, 2011) 
was designed and implemented to estimate 

unmeasured state variables (e.g., angular velocity) 
based on available position feedback. 

3.1 Independent Joint Control (IJC) 

IJC is one of the most intuitive and widely used 
control strategies in robotics, especially when dealing 
with systems where dynamic coupling between joints 
is minimal (Spong, et al., 2005) or deliberately 
neglected. Given the nature of the rehabilitation 
robot, the IJC approach is suitable and provides a 
baseline for performance evaluation. 

In this method, each joint 𝑞௜  is controlled 
separately, typically using a Proportional-Derivative 
(PD: 𝐾௣ + 𝐾ௗ ∙ 𝑠 ) controller as it can be seen in 
Figure 2 where 𝑞ௗ௜ is the desired reference value. The 
simplified model assumes the robot behaves like a 
second-order system with torque input and angular 
position output. 

Figure 2: Control structure for IJC. 

This method is advantageous due to its ease of 
implementation and minimal computational 
requirements. However, it does not take into account 
nonlinearities or external disturbances explicitly, and 
performance may degrade in scenarios involving 
interaction with a variable load (Prewett, at al., 2010) 
(e.g., patient effort during therapy). The IJC strategy 
(Spong, et al., 2005) starts from the idea of 
simplifying the nonlinear, coupled dynamics of the 
robot by reducing it to a set of three decoupled 
second-order linear systems. This is achieved by 
treating the dynamic interactions between joints and 
other nonlinear effects as external disturbances. Once 
the system is expressed in this simplified second 
order (11) form for each joint, the control design 
proceeds by imposing the denominator of the closed-
loop (13) performance specifications directly.  𝑠ଶ + 2ζ𝜔௡𝑠 + 𝜔௡ଶ (11)

Specifically for our robot, the desired damping 
ratio 𝜁 =1 and natural frequency 𝜔௡ = 10 𝑟𝑎𝑑/𝑠𝑒𝑐  
are selected to define the transient behavior, such as 
small settling time and no overshoot. 

The closed-loop transfer function results: 
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𝐻(𝑠) =  𝐾ௗ௜ ⋅ 𝐾௤௜ ⋅ 𝑠 + 𝐾௣௜ ⋅ 𝐾௤௜𝑠ଶ + 𝐾ௗ௜ ⋅ 𝐾௤௜𝑠 + 𝐾௣௜ ⋅ 𝐾௤௜ (12)

The resulting control law is: 𝜏௜(𝑡) = 𝐾௣೔ ⋅ 𝑒௜(𝑡) + 𝐾ௗ೔ ⋅ 𝑒పሶ (𝑡)  (13)

where 𝑒(𝑡)  is the position tracking error, 𝐾௣  is the 
proportional gain, 𝐾ௗ  is derivative gain of the 
controller, 𝐾௤ = [11.4;  47.84;  370.37]  is the 
proportional constant of the individual transfer 
function for each joint and 𝑖 = 1,3തതതത corresponding to 
the joint position. 

By matching the characteristic equation of the 
closed-loop system (12) to the standard second-order 
form (11), the controller gains are computed 
analytically. In practice, the choice of 𝜔௡ is limited 
by the physical constraints of the system, particularly 
actuator saturation. Therefore, the highest feasible 𝜔௡ 
is selected to balance performance and input 
limitations. This allows the designer to systematically 
tune the controller based on clear performance 
objectives that can be easily implemented on each 
joint 𝑞௜ (i.e. 𝑖 = 1,3തതതത ) independently. 

3.2 LQR Control 

To enhance control performance, particularly in terms 
of precision and energy efficiency, a Linear Quadratic 
Regulator (LQR) (Levine, 2011) is considered. 

The LQR control law is given by: 𝑢(𝑡) = −𝐾𝑥(𝑡) + 𝑢଴ (14)

where 𝑢(𝑡) is the input, 𝑥(𝑡) is the state vector of the 
system and 𝐾 is the optimal gain matrix computed to 
minimize the quadratic cost function: 𝐽 =  න (𝑥்𝑄𝑥 + 𝑢்𝑅𝑢)𝑑𝑡ஶ

଴  (15)

where 𝑄 𝜖 ℝ଺ ௫ ଺  and 𝑅 𝜖 ℝଷ௫ଷ   are symmetric 
positive semi-definite matrices that penalize 
deviations, respectively the control effort. 

The tracking problem in LQR is defined as the 
requirement for the system output to follow a given 
reference trajectory 𝑞௥.  Specifically, the position 
tracking error, defined as 𝑞௥ − 𝑞  must converge to 
zero. The reference state vector 𝑥௥ is defined to 
include the desired joint positions 𝑞௥ and 
corresponding zero velocities, resulting in 𝑥௥ =[𝑞௥, 0]். The control law is then applied in the form: 𝑢(𝑡) = −𝐾(𝑥(𝑡) − 𝑥௥(𝑡)) + 𝑢଴ (16)
where 𝑢଴  corresponds to the equilibrium condition 
used during the linearization process. 

3.3 State Estimation 

In practical applications, it is often not feasible to 
measure all state variables directly due to sensor 
limitations or cost constraints. To enable the 
implementation of state-feedback control, it is 
therefore necessary to estimate the full state vector 
from the available measurements. To this end, a 
Luenberger observer was designed based on the 
linearized model of the system, following the 
methodology described in (Levine, 2011) and applied 
on the nonlinear process. The observer reconstructs 
the unmeasured states by using the system’s model 
and correcting the estimation based on the error 
between the measured and estimated outputs. 

The linear observer has the following structure: 𝑥௘ሶ (𝑡) = 𝐴 · 𝑥௘ + 𝐵 · 𝑢 + 𝐿(𝑦(𝑡) − 𝑦௘(𝑡)) (17)

After computing 𝐿, the nonlinear observer is: 𝑥௘ሶ (𝑡) = 𝑓(𝑥௘, 𝑢) + 𝐿(𝑦(𝑡) − 𝑦௘(𝑡)) (18)

where 𝑥௘(𝑡) is the estimated state vector, 𝑓(𝑥௘, 𝑢) 
represents the nonlinear system as presented in (7), 𝐿 
is the observer gain matrix designed for the linear 
model, 𝑦(𝑡) is the measured output (in this case, joint 
position) and 𝑦௘(𝑡) = 𝐶𝑥௘(𝑡) is the estimated output. 

4 RESULTS 

To evaluate the performance of the three 
implemented control strategies - 1) IJC, 2) LQR, 3) 
LQR and Luenberger observer - simulations were 
conducted in Matlab/Simulink using the previously 
defined dynamic model in (8). All the results are 
presented for the nonlinear system, with white 
measurement noise added to the joint position signals 
to simulate realistic sensing conditions. The 
evaluation focused on trajectory tracking 
performance (𝑥ଵ for adduction and abduction motion, 𝑥ଶ  for flexion and extension motion and 𝑥ଷ  for 
pronation and supination motion), disturbance 
rejection, and control effort. 

The initial conditions were set to  𝑥଴ =[0.3,  −0.3,   0.4,   0,   0,   0]்  and the reference 
position is 𝑥௥ = [−0.2,    −0.1,  −0.2,   0,   0,   0]். 

Following the tuning guidelines mentioned above, 
the controller gains used for the joints in the IJC 
approach are 𝐾௣  = [ 8.76, 2.09, 0.001], 𝐾ௗ =[1.75, 0.41, 0.0001].  

These values were found to provide acceptable 
tracking performance and stable response for the 
desired reference. Figure 3 illustrates the response of 
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the system states under the IJC strategy, alongside the 
reference signals (with red colour - the reference and 
with blue - the joints positions). The measured 
settling times are approximately 0.64 sec for joint 𝑥ଵ, 0.7 sec for joint 𝑥ଶ, and significantly lower at 0.3 sec 
for joint 𝑥ଷ. A small steady-state position error of 
approximately is present for joint 𝑥ଷ, indicating the 
limitations of this decoupled control approach in fully 
compensating for system nonlinearities and 
interactions. Additionally, an overshoot was observed 
for joint 𝑥ଶ. Despite these limitations, the controller 
maintains stable behaviour across all joints, making it 
a viable solution for applications where cost and 
simplicity are prioritized over high precision. 

Moving to LQR simulations, multiple 
combinations of 𝑄 and 𝑅 (Franklin, et al., 2014) were 
tested through iterative tuning using the linearized 
system to identify a configuration that provides a 
balance between control effort, settling time, 
overshoot, and tracking accuracy. Lower values in 𝑅 
favor aggressive control with faster response, while 
higher weights in 𝑄 emphasize precise state tracking. 
Higher weights were assigned to the position states in 
matrix 𝑄 to prioritize trajectory tracking, while lower 
weights were set for the velocity states to reduce 
sensitivity to noise and avoid aggressive control 
actions. The final selected values achieved smooth 
and accurate tracking with moderate control inputs, 
making the controller viable for real-time 
implementation. The chosen configuration is also 
suitable for low-cost implementations, as it does not 
require high-speed computation or complex hardware 
resources. The final values for Q, R and K are: 
 𝑄 = ൬300 ∙ 𝐼ଷ 𝑂ଷ𝑂ଷ 3 ∙ 𝐼ଷ൰ ;  𝑅 = 2 · 𝐼ଷ (19)

𝐾 =  ൭12.247 0 0 1.909 0 00 12.247 0 0 1.418 00 0 12.247 0 0 1.251൱ (20)

Figure 3: State and reference tracking under IJC. 

This control strategy provided accurate tracking 
for most of the states, with fast convergence and 

minimal overshoot. Once the corresponding feedback 
gain 𝐾 was obtained, the same controller was applied 
to the original nonlinear model. The results confirm 
that the control law remained effective, with the 
system maintaining stability and accurate trajectory 
tracking despite the presence of nonlinearities. 

The state responses obtained using the LQR are 
illustrated in Figure 4. The state trajectories are 
plotted in blue, while the position reference signals 
are in red. The IJC results show slower responses 
compared to the LQR. All states converge to the 
reference, with no overshoot and no steady state error, 
confirming the effectiveness of the LQR design. The 
settling times for each joint are about 0.47 sec for 𝑥ଵ, 
0.43 sec for 𝑥ଶ, and 0.46 sec for 𝑥ଷ. 

After the LQR design, the next step was to 
compute the observer gain 𝐿 , based on the pole 
placement. Specifically, the poles of the closed-loop 
system with the state-feedback controller were 
multiplied by a factor of 2 in magnitude. This pole 
placement strategy ensures that the observer responds 
relatively quickly to any deviations between the 
measured and estimated outputs. Excessively fast 
poles would increase estimation speed but also 
demand high sampling rates and computational 
power, which may not be feasible in a low-cost 
implementation. The chosen configuration ensures 
reliable state estimation while maintaining 
compatibility with practical hardware constraints. 

 
Figure 4: LQR-State trajectories and position reference. 

As a result, the final poles of the observer are 𝑝 =10ଶ · [−9.07; −1.15; −0.20; −0.20; −0.21; 0.09𝑖;   −0.21 +  0.09𝑖]. The gain observer matrix is: 

𝐿 = 10ଷ ·
⎝⎜⎜
⎛0.033 0.047 −0.6510.086 0.098 0.5740.068 0 0.9750.111 0.886 −15.6591.852 1.610 13.8411.399 0.001 19.564 ⎠⎟⎟

⎞
 (21)

The results using the LQR controller together with 
the Luenberger state observer are presented in Figure 
6. The same feedback gain 𝐾, as a full state LQR, was 
used with the same initial conditions.  
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In Figure 5, the positions (𝑥ଵ, 𝑥ଶ, 𝑥ଷ) are plotted in 
blue, the corresponding estimated states are shown in 
red (coincide with the estimated states), and the 
reference signals are displayed in magenta. The 
simulation results show that the positions 
successfully converge to the reference values without 
steady-state error, and that the estimated states match 
the true states, confirming the effectiveness of the 
overall controller-observer structure. The closed-loop 
performance achieved using the LQR controller in 
combination with the Luenberger observer 
demonstrates accuracy across all controlled joints. 
The settling times are approximately 0.46 sec for 𝑥ଵ, 0.41 sec for 𝑥ଶ, and 0.47 sec for 𝑥ଷ. Throughout the 
simulation, none of the joint responses exhibited 
overshoot or steady-state error. 

The estimation error (𝑥 − 𝑥௘) generated by the 
Luenberger observer is on the order of 10ିଶ . The 
estimation error in all state components converges 
toward zero. Figure 6 shows the control signals for 
the three joints under each control strategy: the IJC 
command is shown in red, the LQR command in blue, 
and the LQR with observer in magenta (considered 
best result in terms of noise reduction), with the last 
two overlapping almost entirely. All signals remain 
within the ±10 𝑁𝑚  range, which represents the 
considered torque limit for the actuators. 

 
Figure 5: System and estimated states and reference 
trajectories for Luenberger observer. 
 

Figure 6: Control signals for the system with the IJC, LQR
controller and LQR with Luenberger observer. 

The IJC method stands out for its simplicity and 
ease of implementation, providing fast response for 
joint 𝑥ଷ. However, it shows a significant overshoot 
for 𝑥ଶ and a small steady-state position error for 𝑥ଷ, 
highlighting the limitations of decoupled control. 

The LQR achieves excellent overall performance, 
with fast convergence, no overshoot, and zero steady-
state error, but it relies on full state feedback, which 
may not be feasible in low-cost implementations.  

In contrast, the LQR controller combined with a 
Luenberger observer maintains similar performance 
levels while using only joint position measurements. 
This approach proves effective not only in reducing 
sensor requirements but also in dealing with 
modelling uncertainties and measurement noise, 
making it highly suitable for practical, low-cost 
rehabilitation systems.  

5 CONCLUSIONS 

This work presents the design, modeling, and control 
simulation of a wrist rehabilitation robot developed 
from scratch with emphasis on simplicity, low cost, 
and compactness. The device is intended to support 
repetitive wrist rehabilitation exercises, and to serve 
as a practical solution for both clinical and home-
based rehabilitation.  

Three control strategies were implemented in 
simulation: IJC, LQR, and an observer-based LQR. 
All proved feasible within the robot’s simplified 
structure and intended use. IJC offers a 
straightforward and accessible approach, while LQR 
provides superior tracking accuracy and disturbance 
rejection. The observer-enhanced LQR further 
increases practicality by relying only on position 
sensors, reducing hardware requirements while 
maintaining performance.  

These results establish a foundation for selecting 
suitable control methods depending on application 
priorities such as simplicity, precision, or sensor 
economy. The findings will guide prototype 
development, including the choice of motors, sensors, 
and embedded hardware. They also highlight the 
trade-offs between ease of implementation (IJC), high 
control performance (LQR), and cost efficiency 
(LQR + Observer). The next step is to build the 
physical prototype and perform real-time testing, 
initially with healthy users and later with patients 
under clinical supervision.  

Future work will expand the system’s capabilities 
by including additional degrees of freedom and 
modeling human–robot interaction forces to better 
mimic realistic therapy. Integrating physiological 
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feedback, such as electromyographic (EMG) signals, 
could enable adaptive control strategies that adjust to 
patient effort and fatigue. Long-term clinical studies 
with healthcare professionals will also be pursued to 
evaluate therapeutic outcomes and refine 
rehabilitation protocols. Overall, the proposed system 
demonstrates strong potential for becoming an 
affordable and effective rehabilitation tool suitable 
for deployment in hospitals and home-based recovery 
programs. 

ACKNOWLEDGEMENTS 

This research was supported by the project New 
frontiers in adaptive modular robotics for patient-
centered medical rehabilitation–ASKLEPIOS, 
funded by European Union – NextGenerationEU and 
Romanian Government, under National Recovery 
and Resilience Plan for Romania, contract no. 
760071/23.05.2023, code CF 121/15.11.2022, with 
Romanian Ministry of Research, Innovation and 
Digitalization, within Component 9, investment I8. 

REFERENCES 

Akdogan, E. (2016). Upper limb rehabilitation robot for 
physical therapy: design, control, and testing. Turkish 
Journal of Electrical Engineering and Computer 
Sciences, 24(3), 911-934. 

Basteris, A., et al (2014). Training modalities in robot-
mediated upper limb rehabilitation in stroke: a 
framework for classification based on a systematic 
review. J Neuroeng Rehabil, 11 111. doi:10.1186/1743-
0003-11-111 

Franklin, G., Powell, J. D., & Emami-Naeini, A. (2014). 
Feedback Control Of Dynamic Systems (7th ed.). 
Prentice Hall Press. 

Guozheng, X., et al (2014). Clinical experimental research 
on adaptive robot-aided therapy control methods for 
upper-limb rehabilitation. Robotica, 32(7), 1081–1100. 

Krebs, H., et al (1999). Overview of clinical trials with 
MIT-MANUS: a robot-aided neuro-rehabilitation 
facility. Technology and Health Care, 419-423. 

Levine, W. S. (2011). The Control Systems Handbook: 
Control System Advanced Methods (2nd ed). CRC Press. 

Major, Z. Z., et al (2021). Comparative Assessment of 
Robotic versus Classical Physical Therapy Using 
Muscle Strength and Ranges of Motion Testing in 
Neurological Diseases. Journal of Personalized 
Medicine, 11(10), 953. 

Masiero, S., Armani, M., & Giulio, R. (2011). Upper-limb 
robot-assisted therapy in rehabilitation of acute stroke 
patients: Focused review and results of new randomized 

controlled trial. Journal of Rehabilitation Research and 
Development, 48(4), 355-366. 

Mehrez, O., et al (2025). Development of an exoskeleton 
for wrist-joint rehabilitation: modeling, identification, 
and control. Multibody System Dynamics. 
doi:10.1007/s11044-025-10066-0 

Omarkulov, N., et al  (2016). Preliminary mechanical 
design of NU-Wrist: A 3-DOF self-aligning Wrist 
rehabilitation robot. 2016 6th IEEE International 
Conference on Biomedical Robotics and 
Biomechatronics (BioRob), (pp. 962-967). Singapore. 

Parisi, A., et al (2022). Efficacy of Multisensory 
Technology in Post-Stroke Cognitive Rehabilitation: A 
Systematic Review. Journal of Clinical Medicine, 
11(21), 6324. 

Pollock, A., et al (2014). Interventions for improving upper 
limb function after stroke. Cochrane Database of 
Systematic Reviews, 11(1). 

Prewett, M. S., et al  (2010). Managing workload in human–
robot interaction: A review of empirical studies. 
Computers in Human Behavior, 26(5), 840-856. 

Rosati, G., Gallina, P., & Masiero, S. (2007). Design, 
Implementation and Clinical Tests of a Wire-Based 
Robot for Neurorehabilitation. IEEE Trans. on Neural 
Systems and Rehabilitation Eng., 15(4), 560-569. 

Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2005). 
Robot Modeling and Control (First ed.). Wiley. 

Squeri, V., et al (2014). Wrist rehabilitation in chronic 
stroke patients by means of adaptive, progressive robot-
aided therapy. IEEE Transactions on Neural Systems 
and Rehabilitation Engineering, 22(2), 312-325. 

Tarnita, D., et al (2022). Analysis of Dynamic Behavior of 
ParReEx Robot Used in Upper Limb Rehabilitation. 
Applied Sciences, 12(15), 7907. 

Tohanean, N., et al (2023). The Efficacity of the 
NeuroAssist Robotic System for Motor Rehabilitation 
of the Upper Limb—Promising Results from a Pilot 
Study. Journal of Clinical Medicine, 12(2), 425. 

Toth, A., et al (2005). Passive robotic movement therapy of 
the spastic hemiparetic arm with REHAROB: report of 
the first clinical test and the follow-up system 
improvement. 9th International Conference on 
Rehabilitation Robotics, 127-130. Chicago, IL, USA. 

Tucan, P., et al (2022) Design and Experimental Setup of a 
Robotic Medical Instrument for Brachytherapy in Non-
Resectable Liver Tumors. Cancers 2022, 14, 5841. 
https://doi.org/10.3390/cancers14235841 

Vaida C., et al (2018) Innovative development of a 
spherical parallel robot for upper limb rehabilitation. 
Int. J. Mech. Robot. Syst. 2018;4:256. doi: 
10.1504/IJMRS.2018.096302. 

Wu, C., et al (2011). Randomized Trial of Distributed 
Constraint-Induced Therapy Versus Bilateral Arm 
Training for the Rehabilitation of Upper-Limb Motor 
Control and Function After Stroke. Neurorehabilitation 
& Neural Repair, 25(2), 130-139. 

 

ICINCO 2025 - 22nd International Conference on Informatics in Control, Automation and Robotics

226


