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Abstract: Brain tumors present a considerable health challenge, dramatically impacting both survival and quality of life. 
This study introduces a improved deep learning approach for segmenting brain tumors in MRI scans, 
intending to overcome the constraints of those existing approaches. The proposed model builds upon the 
conventional U-Net architecture by incorporating the Convolutional Block Attention Module (CBAM), 
designed to enhance the feature extraction capabilities. By integrating both channel-wise and spatial attention 
mechanisms, this approach emphasizes relevant tumor regions while preserving structural detail. Experiments 
evaluations on the TCGA Brain Tumor MRI dataset confirm the remarkable advantages of our UNet+CBAM 
model compared to baseline approaches, achieving a Dice coefficient of 0.936 and an IoU of 0.882. This 
proposed model successfully captures tumor boundaries with high precision and provides detailed 
segmentation maps that could assist clinical diagnosis. While acknowledging the challenges posed by 
computational complexity, this study makes a significant contribution to the advancement of automated brain 
tumor segmentation technology, which holds considerable potential for practical applications in medical 
settings. Subsequent studies will prioritize the optimization of the model for real-time applications and the 
enhancement of its generalizability across a range of clinical settings.

1 INTRODUCTION 

Brain tumors refer to the uncontrolled growth of cells 
within brain tissue and its surrounding structures, 
greatly impacting both survival rates and patients’ 
quality of life. Their incidence is on the rise globally, 
especially in developed countries. Due to the 
significant differences in biological characteristics, 
clinical manifestations and treatment responses, early 
and accurate diagnosis and precise treatment are 
always a challenge. MRI has become a major tool for 
brain tumor detection and evaluation due to its 
advantages in soft tissue imaging, which can present 
rich tumor information through different sequences, 
such as T1, T2, FLAIR, etc., but the complexity and 
heterogeneity of brain tumors in images still pose a 
challenge in accurate segmentation and analysis. 
segmentation and analysis difficulties (Litjens & van 
Ginneken, 2017). 

Traditional methods (e.g., threshold segmentation, 
edge detection, region growing, etc.) are often 
difficult to balance accuracy and stability when 
dealing with brain tumors with different 
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morphologies; machine learning can improve some of 
the performance, but it relies too much on hand-
designed features, making it difficult to fully explore 
high-level information (Ronneberger & Brox, 2015). 
Deep learning has achieved breakthroughs in the field 
of medical image analysis by leveraging the 
automatic feature extraction and pattern recognition 
capabilities of multi-layer neural networks recently. 
Among these, U-Net and its 3D variant have largely 
improved segmentation accuracy and spatial detail 
capture of biomedical images by virtue of the 
advantages of multi-scale feature extraction, hopping 
connectivity and 3D convolution (Çiçek & 
Ronneberger, 2016). Related studies, such as the 
work of DeepSeg and Amin et al (Amin & Hassan, 
2023), have not only excelled in automated 
segmentation of brain tumors, but also promoted the 
application of multi-classification and segmentation 
of MRI images (Zeineldin & Burgert, 2020). 

This study aims to propose an efficient and 
accurate brain tumor image segmentation approach 
utilizing deep learning. Firstly, advantages and 
disadvantages of existing mainstream models are 
systematically sorted out and compared through 
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literature research to provide a theoretical basis for 
subsequent model design (Ronneberger & Brox, 
2015). Secondly, by combining multi-scale feature 
extraction with multi-modal information fusion, the 
paper proposes an improved network structure and 
training strategy to adapt to complex tumor 
morphology and improve robustness, while exploring 
lightweight and modular design to enhance real-time 
performance (Gupta & Dayal, 2023). Again, data 
augmentation, migration learning and semi-
supervised learningare helped address the issues 
regarding limited labelled data, enhancing the 
model’s generalization capacities (Litjens & van 
Ginneken, 2017). Finally, large-scale experimental 
validation is conducted on different datasets and 
analysed in comparison with existing methods in 
order to deeply explore its potential in clinical 
applications (Isensee & Maier-Hein, 2019). 

Key contributions of this research are mainly 
manifested as follows: 

1. Model Improvement: The number of layers and 
parameters of the traditional U-Net architecture are 
adjusted to enhance the recognition ability of 
complex morphology of brain tumors by adding 
convolutional and pooling layers. 

2. Data experiments: Using the public brain tumor 
MRI dataset, after data preprocessing and 
enhancement, the improved U-Net is used for image 
segmentation experiments. 

3. Performance Comparison: The enhanced model 
is compared to the original U-Net in brain tumor 
segmentation, with evaluation metrics including 
segmentation accuracy, Dice coefficient and 
intersection ratio. 

4. Discussion of results: experimental outcomes 
are thoroughly analyzed, summarizing this model’s 
advantages and shortcomings in terms of practical 
applications, which provides a reference basis for 
subsequent research. 

2 RELATED WORKS 

2.1 Overview of Traditional Methods 
for Brain Tumor Segmentation 

Early approaches to brain tumor segmentation over 
the past few decades mostly depended on traditional 
image processing techniques, including edge 
detection, region growth, threshold segmentation, and 
segmentation methods based on graph theory. These 
methods use manual features such as image grayscale 
and texture to analyze the brain structure, which can 
achieve a certain degree of segmentation effect in 

simple cases, but when the tumor morphology is 
complex or the tissue structure is more ambiguous, it 
is often difficult for traditional methods to meet the 
requirements of high precision. In addition, 
traditional methods are more sensitive to the noise in 
the image and are easily disturbed, resulting in 
unstable segmentation results (Litjens & van 
Ginneken, 2017). Therefore, in practical applications, 
the robustness and automation level of these methods 
need to be improved. 

2.2 Discussion of Recent Advancements 
Using Deep Learning 

The advancement of deep learning technology have 
triggered more researchers to begin to adopt 
convolutional neural networks to address brain tumor 
segmentation. Since U-Net was proposed, its 
symmetric encoder-decoder structure and jump 
connection design have greatly improved the 
accuracy of image segmentation (Ronneberger & 
Brox, 2015). To further process 3D medical images, 
its variation has also been proposed and successfully 
applied to volumetric data segmentation (Çiçek & 
Ronneberger, 2016). Building on this, many scholars 
have extensively explored the role of multi-scale 
feature extraction along with attention mechanism 
they have play in enhancing segmentation 
performance. For example, the DeepSeg framework 
developed by Zeineldin et al. achieved automatic 
segmentation using FLAIR images (Zeineldin & 
Burgert, 2020); Amin et al. and Gupta et al. put forth 
a new network architecture for multiclass 
segmentation of brain tumors (Amin & Hassan, 2023) 
(Gupta & Dayal, 2023); meanwhile, Díaz-Pernas et al. 
further optimized the segmentation accuracy using 
multiscale convolutional neural networks. In addition, 
Roy et al, Woo et al., and Fu et al.  Improved the 
network's ability to focus on key features by 
introducing an attention module (Roy et al. 2018) 
(Woo & Kweon, 2018) (Fu & Lu, 2019); while No 
New-Net proposed by Isensee et al still maintains 
high segmentation performance while simplifying the 
network structure (Isensee & Maier-Hein, 2019). 
These works show that deep learning-based methods 
have achieved some huge progresses in the field of 
brain tumor segmentation, demonstrating a strong 
capacity to access fine lesion details. 

2.3 Limitations of Existing Methods 

However, despite their excellent performance in 
segmentation accuracy, deep learning methods still 
have some shortcomings. First, existing approaches 
typically require an extensive amount of high-quality 
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labelled data, which is often scarce and expensive to 
obtain in clinical practice (Litjens & van Ginneken, 
2017). Second, some of the network structures are too 
complex and computationally intensive, resulting in 
long training time and high hardware requirements, 
which is not conducive to generalization to practical 
applications (Isensee & Maier-Hein, 2019). In 
addition, although the attention mechanism can 
improve the segmentation effect, it also increases the 
parameters of the model and the training difficulty 
(Roy et al. 2018; Woo & Kweon, 2018; Fu & Lu, 
2019). There are also methods that are prone to miss 
or missegmentation when dealing with edge details 
and small-sized lesions (Zeineldin & Burgert, 2020; 
Amin & Hassan, 2023; Gupta & Dayal, 2023). 
Overall, how to improve this new model’s 
lightweight and generalization capacities, and also 
ensure the segmentation accuracy is still a difficult 
problem to be solved. 

2.4 Highlighting the Research Gap that 
the Paper Addresses 

This paper centers on improving current brain tumor 
segmentation methods. Firstly, data enhancement 
strategies (e.g. random horizontal flipping and 
rotation) are used to extend the labelled data and 
improve the model robustness (Feng & Wu, 2021). 
Second, an improved U-Net network is designed to 
combine multi-scale feature fusion and attention 
mechanisms to enhance detail capture and maintain 
lightweight (Ronneberger & Brox, 2015). The cross-
entropy loss function, Adam optimiser, and the 
combination of pixel accuracy and IOU metrics are 
used in training to evaluate the model, balancing 
segmentation effect and computational efficiency 
(Zeineldin & Burgert, 2020). In conclusion, this paper 
fills the gap of brain tumor segmentation in terms of 
data utilization, model design and application, 
improves accuracy and efficiency, and is helpful for 
clinical diagnosis (Isensee & Maier-Hein, 2019). 

3 METHOD 

3.1 Description of the Proposed Deep 
Learning Approach 

The method of deep learning proposed is mainly 
developed based upon the improved U-Net 
architecture, which realizes the fine segmentation of 
medical images (e.g., brain MRI images) by 
constructing a symmetric encoder-decoder network. 

In the encoder part, a series of downsampling 
modules consisting of convolution and ReLU 
activation are utilized to gradually extract the multi-
scale features in the image, and at the same time, the 
maximum pooling operation is used to reduce the 
spatial size of the feature map; and in the decoder 
section, the corresponding layers in the encoder are 
fused with the up-sampled features in the decoder 
through hopping connection, and then the image 
resolution is recovered gradually by using the 
transposed convolution, so as to retain more spatial 
detail information. Additionally, to improve this new 
model’s generalization ability and robust traits, data 
enhancement strategies, for example, random level 
flipping and random rotation, are introduced during 
the training process, so as to expand the diversity of 
training samples. Whole network is trained with the 
cross-entropy loss function; besides the Adam 
optimizer is used to continuously update the 
parameters, which ultimately achieves high-precision 
segmentation of the target region in medical images. 

3.2 Network Architecture (U-Net) 

The foundational UNet architecture is a widely 
recognized and utilized model in the domain of 
medical image segmentation. Introduced by 
Ronneberger et al. (2015), UNet features a symmetric 
encoder-decoder structure, which comprises a 
symmetric extending pathway for accurate 
positioning and a contracted pathway for contextual 
acquisition. The encoder path uses convolutional 
layers with ReLU activation, followed by max-
pooling for downsampling, whereas the decoder path 
recovers the spatial dimensions using  convolutional 
layers and upsampling, as seen in Table 1. 
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Table 1: The UNet model. 

Layer Name Type Kernel 
Size

Stride Padding Output 
Channels 

Activatio
n

Input - - - - 3 -
Downsample 1 Conv + ReLU + Conv + ReLU 3x3 1 1 64 ReLU
Downsample 2 Conv + ReLU + Conv + ReLU 3x3 1 1 128 ReLU
Downsample 3 Conv + ReLU + Conv + ReLU 3x3 1 1 256 ReLU
Downsample 4 Conv + ReLU + Conv + ReLU 3x3 1 1 512 ReLU
Downsample 5 Conv + ReLU + Conv + ReLU 3x3 1 1 1024 ReLU

Upsample Transpose Conv + ReLU 3x3 2 1 512 ReLU
Upsample 1 Conv + ReLU + Conv + ReLU 3x3 1 1 512 ReLU
Upsample 2 Conv + ReLU + Conv + ReLU 3x3 1 1 256 ReLU
Upsample 3 Conv + ReLU + Conv + ReLU 3x3 1 1 128 ReLU

Output Conv 1x1 1 0 2 Softmax

A sophisticated attention mechanism known the 
Convolutional Block Attention Module (CBAM) 
improves feature representation by using channel and 
spatial attention in an orderly way. The Channel 
Attention Module (CAM) and Spatial Attention 
Module (SAM) are the two major parts of CBAM. As 
illustrated in Figure 1, the spatial attention 
mechanism works on “where” an essential feature is 
situated, but the channel attention mechanism 
concentrates on “what” is significant in a particular 
feature map. 

 
Figure 1: CAM framework (Picture credit: Original).  

Mathematically, the Channel Attention Module 
(CAM) can be described as formula (1):  𝑀௖ሺ𝐹ሻ = 𝜎 ቀ𝑀𝐿𝑃൫𝐴𝑣𝑔𝑃𝑜𝑜𝑙ሺ𝐹ሻ൯൅ 𝑀𝐿𝑃൫𝑀𝑎𝑥𝑃𝑜𝑜𝑙ሺ𝐹ሻ൯ቁ (1)

 
The input feature map is represented by ( 𝐹), the 

sigmoid function is shown by ( 𝜎), and the multi-
layer perceptron is referred to as MLP. The 
operations for average-pooling and max-pooling are 
denoted by AvgPool and MaxPool, respectively. 
 

The Spatial Attention Module (SAM) can be 
described as formula (2): 
 𝑀௦ሺ𝐹ሻ= 𝜎൫𝑓଻×଻ሺሾ𝐴𝑣𝑔𝑃𝑜𝑜𝑙ሺ𝐹ሻ; 𝑀𝑎𝑥𝑃𝑜𝑜𝑙ሺ𝐹ሻሿሻ൯ (2)

 
Notably, (𝑓଻×଻ ) denotes a convolution operation 

with a filter size of 7x7, and [;] here represents the 
operation of concatenation.

Table 2: The structure of the CBAM module. 
Layer Name Type Kernel 

Size
Stride Padding Output Channels Activation 

Channel 
Attention 

AdaptiveAvgPool + Conv + 
ReLU + Conv 

1x1 1 0 in_channels // ratio, 
in_channels 

Sigmoid 

Spatial 
Attention 

Conv 7x7 or 
3x3

1 3 or 1 2, 1 Sigmoid 

The integration of the CBAM module into the 
UNet architecture involves embedding the CBAM 
module after each convolutional block in both the 
downsampling and upsampling paths. Such an 
integration allows the network to refine its focus on 
the most informative features and regions at multiple 
stages of the learning process. The CBAM module’s 
structure is displayed in Table 2. 

In the improved UNet+CBAM model, each 
downsampling block involves convolutional layers 

followed by a CBAM module, and similarly, each 
upsampling block includes convolutional layers 
followed by a CBAM module. Through this 
connection, this model’s capacity to recognise 
intricate correlations and characteristics in the 
medical images becomes stronger, and this leads to an 
increase in the precision of segmentation, as shown in 
the data below in Table 3.
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Table 3: This caption needs to be modified to justify as it includes many lines. 

Layer Name Type Kernel 
Size

Stride Padding Output 
Channels 

Activation

Input - - - - 3 - 
Downsample 1 Conv + ReLU + Conv + ReLU + CBAM 3x3 1 1 64 ReLU 
Downsample 2 Conv + ReLU + Conv + ReLU + CBAM 3x3 1 1 128 ReLU 
Downsample 3 Conv + ReLU + Conv + ReLU + CBAM 3x3 1 1 256 ReLU 
Downsample 4 Conv + ReLU + Conv + ReLU + CBAM 3x3 1 1 512 ReLU 
Downsample 5 Conv + ReLU + Conv + ReLU + CBAM 3x3 1 1 1024 ReLU 

Upsample Transpose Conv + ReLU 3x3 2 1 512 ReLU 
Upsample 1 Conv + ReLU + Conv + ReLU + CBAM 3x3 1 1 512 ReLU 
Upsample 2 Conv + ReLU + Conv + ReLU + CBAM 3x3 1 1 256 ReLU 
Upsample 3 Conv + ReLU + Conv + ReLU + CBAM 3x3 1 1 128 ReLU 

Output Conv 1x1 1 0 2 Softmax 

3.3 Preprocessing Techniques 

Before feeding the images into the network, this work 
employs multiple types of methods for preprocessing 
steps to standardize the input data. Images are first 
resized to a fixed dimension (e.g., 256×256). In 
addition, intensity normalization is applied to adjust 
the pixel values to contain zero mean and unit 
variance. The normalization formula is as formula (3): 
 𝑥ො = 𝑥 − 𝜇𝜎  (3)

 
In this equation,  𝑥  is the original pixel value, 𝜇 is 

the mean, and 𝜎 is the standard deviation computed 
over all pixels of the image. This normalization step 
improves the convergence of the network during 
training. 
segmentation masks. The dataset is denoted by 
formula (4): 
 𝐷 = ሺ𝑥௜, 𝑦௜ሻ௜ୀଵே  (4)
 

Where  𝑥௜  represents the  𝑖 th input image;  𝑦௜  its 
related ground truth mask, with N being the total 
number of samples. The training process is guided by 
the cross-entropy loss function, being defined as 
formula (5): 
 𝐿 = − 1𝑁 ෍ே

௜ୀଵ ෍஼
௖ୀଵ 𝑦௜ሺ௖ሻ 𝑙𝑜𝑔 𝑙𝑜𝑔 ൫𝑝௜ሺ௖ሻ൯  

(5)

 
Notably,  𝐶denotes the number of classes, 𝑦௜ሺ௖ሻ  is 

the true label for class  𝑐  (usually 0 or 1), and  𝑝௜ሺ௖ሻ  is 
the predicted probability for that class. The paper 
optimizes the network parameters by means of the 

Adam optimizer with a learning rate typically set 
to  1 × 10ିସ. This combination of loss function and 
optimizer has proven effective in training deep 
segmentation models. 

3.4 Dataset Description 

The TCGA Brain Tumor MRI dataset is derived from 
the TCGA (The Cancer Genome Atlas) project. 
Which collects brain MRI images from real clinics 
and provides the corresponding tumor segmentation. 
Due to the wide range of data sources, the samples 
cover different types, sizes and morphologies of brain 
tumors, making this dataset an important benchmark 
data in the segmentation of medical images. The 
diversity of the data also contributes to this model’s 
increased resilience and generalization performance. 
Researchers can use this dataset to train and verify 
deep learning models for better automatic 
identification and fine segmentation of brain tumor 
lesions.  

3.5 Loss Function, Optimizer, and 
Learning Rate 

In this study, the paper uses the cross-entropy loss 
function as the optimization objective for the 
segmentation task. The cross-entropy loss measures 
the discrepancy between the predicted probability 
distribution and the true label distribution. Its formula 
is given by equation (6): 
 𝐿 = − 1𝑁 ෍ே

௜ୀଵ ෍஼
௖ୀଵ 𝑦௜ሺ௖ሻ 𝑙𝑜𝑔 𝑙𝑜𝑔 ൫𝑝௜ሺ௖ሻ൯  (6)

 
Here, N denotes the total number of samples, C 

represents the number of classes, 𝑦௜ሺ௖ሻis the true label 
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(either 0 or 1) for class c in the ith sample, and 𝑝௜ሺ௖ሻ is 
the probability predicted by the model for that class. 
To efficiently update the model parameters, this paper 
resorts to the Adam optimizer, which adaptively 
adjusts learning rate during training. This paper’s 
experiments reveal that the initial learning rate is 
designed to 𝑏𝑒 1 × 10ିସ and is fine-tuned based on 
validation results to balance training stability and 
model performance. 

3.6 Evaluation Metrics for 
Segmentation Performance 

The Dice coefficient is used through the paper to 
assess our segmentation model’s performance. The 
area that overlaps between the ground truth and the 
predicted segmentation zone is measured by this 
statistic. Formulas (7) and (8) are applied to calculate 
the dice coefficient: 
 𝐼𝑜𝑈 = |𝑃 ∩ 𝐺||𝑃 ∪ 𝐺| (7)

𝐷𝑖𝑐𝑒 = 2 × |𝑃 ∩ 𝐺||𝑃| ൅ |𝐺|  (8)

 
The number of pixels in each set is indicated by the 
formula, where P stands for the set of pixels in the 
predicted segmentation and G for the set of pixels in 
the ground truth mask. A greater match between the 
forecast and the ground truth is demonstrated by a 
larger value of the Dice coefficient, which spans from 
0 to 1. 

4 RESULTS 

4.1 Performance Metrics Compared 
with State-of-the-art Methods 

Comparative tests on several popular models for the 
brain tumor segmentation had been carried out in the 
paper. The experiments compared the traditional 
UNet base model, DeepLabV3, PSPNet, and MA-Net, 
and on the basis of which the CBAM module was 
embedded into UNet to form the UNet+CBAM (Full) 
model. According to the experimental findings, the 
IoU is 0.854 and the Dice coefficient of the UNet base 
model is 0.915, respectively; the Dice coefficient of 
DeepLabV3 is 0.924, and the IoU is 0.866; the Dice 
coefficient of PSPNet is 0.920, and the IoU is 0.861; 
the Dice coefficient of MA-Net is 0.928, and the IoU 
is 0.873; while our proposed UNet+CBAM (Full) 
model achieves a Dice coefficient of 0.936 and an 

IoU of 0.882. From those data, it is evident that the 
model’s segmentation effect has greatly enhanced 
when the CBAM module is integrated. Table 4 below 
summarizes the findings of the comparison 
experiments: 

Table 4: Main results. 

Model Dice Score IoU
UNet Base 0.915 0.854

DeepLabV3 0.924 0.866
PSPNet 0.920 0.861
MA-Net 0.928 0.873

UNet+CBAM (Full) 0.936 0.882

4.2 Visualizations of Segmentation 
Outputs 

The segmentation findings of the final model are 
illustrated in this paper. The model can precisely 
identify the region of the brain tumor with distinct 
segmentation borders and detailed features, as shown 
in Figure 2 below. Both the overall contour of the 
tumor and the internal structural details are well 
captured by the model and restored on the output 
image. These visualization results fully demonstrate 
the good performance of the model in the actual 
segmentation task, as well as providing intuitive 
support for subsequent clinical aid diagnosis, as 
shown in Figure 2. 

 
Figure 2: Main result (Picture credit: Original). 

Deep Learning-Based Medical Image Segmentation for Brain Tumors

345



4.3 Analysis and Interpretation of 
Results 

From the indicators of the segmentation results, the 
final model shows high accuracy and robustness. The 
model’s ability to precisely identify and segment the 
tumor region under a range of conditions is 
demonstrated by the high degree of overlap between 
the actual annotations and predicted findings shown 
in the images. By observing the segmentation results, 
the paper find that the model is particularly 
meticulous in processing the edges of the tumor 
region, and is able to effectively capture the subtle 
changes of the lesion. This fully demonstrates that the 
designed network structure and attention module play 
an active role in feature extraction and information 
fusion, making this model highly effective and 
reliable in segmentation in practical applications. 

4.4 Discussion of Potential limitations 

Although the final model performs exceptionally well 
in the segmentation task, there might still be 
limitations. First, although the dataset used is highly 
representative, more cases with different scanning 
devices, different imaging parameters and variable 
image quality may be encountered in practical 
applications, which may have some impact on the 
model performance. Secondly, the computational 
complexity of the model is high, and although it runs 
smoothly in the experimental environment, the real-
time and hardware requirements still need to be 
further considered in practical clinical applications. 
The adaptability and operational efficiency of the 
model can be further improved in future work through 
model pruning, lightweight design, and more data 
enhancement means. 

5 CONCLUSIONS 

A brain tumor segmentation method based on 
improved U-Net and attention mechanism is 
proposed in this paper. Experiments show that the 
new model has significant improvement in both Dice 
coefficient and IoU, and the segmented tumor region 
has clear edges and rich details. The method not only 
reduces the workload of manual labelling, but also 
provides an intuitive segmentation reference for 
doctors, which has certain clinical application 
potential. 

Meanwhile, the study also exposed some 
shortcomings. The current dataset has limited sample 

sources and the model is computationally large, 
which may require further optimisation in real 
scenarios. In the future, the paper can try to introduce 
more data, adopt semi-supervised or migration 
learning methods, or design a more lightweight 
network structure to boost the stability and operation 
efficiency of this model. 

Overall, this paper provides a new idea for 
automatic brain tumor segmentation, and the paper 
expect that it will play a greater role in clinical 
practical applications in the future. 
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