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Abstract: Partial differential equations (PDEs), as a core tool for mathematical modelling, have demonstrated 
remarkable universality in science and engineering by describing the spatio-temporal evolution laws of 
multivariate dynamical systems. From fluid motion (Navier-Stokes equations) and heat conduction (Fourier 
equations) in classical mechanics, to pricing of financial derivatives (Black-Scholes model), and prediction 
of tumor growth (reaction-diffusion equations) in biomedicine, PDEs provide a unifying theoretical 
framework for interdisciplinary complex problems. However, their applications face two core challenges: first, 
high-dimensional PDEs (e.g., the quantum many-body problem) lead to ‘dimensional catastrophe’, where the 
computational complexity of traditional numerical methods grows exponentially with the dimensionality; 
second, the deviation of the idealised physical assumptions (e.g., homogeneous medium, linear eigenstructure 
relationship) from the actual scenarios leads to the limitation of the accuracy of the model predictions. The 
study shows that interdisciplinary collaboration and algorithmic innovation are the keys to breaking through 
the existing limitations, and future research needs to find a balance between theoretical rigor, computational 
efficiency and engineering applicability, in order to promote the paradigm change of PDEs in the era of 
artificial intelligence and quantum. 

1 INTRODUCTION 

Partial Differential Equations (PDEs), as a 
mathematical tool for describing the spatio-temporal 
evolution of a continuous medium, have always been 
the central bridge connecting physical phenomena 
and mathematical theories since Fourier proposed the 
heat conduction equation in the 18th century. The 
parabolic equations established by Fourier in The 
Analytic Theory of Heat: 

It is not only reveals the mathematical nature of 
thermal diffusion, but also creates a modelling 
paradigm for coupling spatial and temporal variables 
with differential operators. In the following two 
centuries, the application of PDE has been extended 
from classical mechanics to quantum mechanics, 
financial engineering and biomedicine, etc., and it has 
become a ‘universal language’ for describing multi-
scale dynamical systems. Their mathematical forms 
can be classified as elliptic (e.g., Poisson equation for 
electrostatic field), parabolic (e.g., heat conduction 
equation), and hyperbolic (e.g., fluctuation equation), 
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which can be distinguished by discriminant B2-4AC, 
corresponding to steady state equilibrium, diffusion-
dissipation, and fluctuation-propagation, 
respectively. Unlike ordinary differential equations 
(ODEs), the solution space of PDEs is an infinite 
dimensional function space, which needs to be 
combined with the initial margin conditions to 
construct the adapted problem, a property that enables 
it to express the non-local interactions of complex 
systems. 

In engineering and science, the universality of 
PDE is reflected in interdisciplinary scenarios. For 
example, the Navier-Stokes equation can directly 
help to optimise aircraft performance by balancing 
viscous and inertial terms (Chau & Zingg, 2021); the 
Black-Scholes equation transforms financial 
derivative pricing into a stochastic differential 
equation problem, and its extended models (e.g., 
jump-diffusion processes) significantly improve 
prediction accuracy in the presence of extreme market 
risks (Marengo et al., 2021). Among emerging 
applications, reaction-diffusion equations quantify 
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the spatial dynamics of ecological invasions and 
outbreaks spread by coupling species competition or 
viral transmission mechanisms. 

However, there are two major challenges in 
solving PDEs: firstly, high-dimensional problems 
(e.g., quantum many-body systems) lead to a 
‘dimensional catastrophe’, where the computational 
complexity of traditional numerical methods (finite 
element, Monte Carlo) increases exponentially with 
the dimensionality; and secondly, the deviation of 
idealised physical assumptions (e.g., homogeneous 
media, linear eigenstructure relations) from the actual 
scenarios causes the model prediction errors.  

This paper systematically sort out the key 
applications of PDEs in modern science and 
engineering, compare the differences in the solution 
paradigms between classical methods and emerging 
technologies (quantum computing, data-driven), and 
aim to reveal their core strengths and common 
challenges, so as to provide theoretical frameworks 
and methodological references for cross-disciplinary 
research. 

2 TYPICAL AREAS OF 
APPLICATION OF PARTIAL 
DIFFERENTIAL EQUATIONS 

2.1 Black-Scholes Equation in 
American Option Pricing 

The Black-Scholes equation is a core partial 
differential equation (parabolic) used in financial 
mathematics for option pricing, proposed by Fischer 
Black, Myron Scholes and Robert Merton in 1973, 
which laid the theoretical foundations for derivatives 
pricing and for which he was awarded the 1997 Nobel 
Prize in Economics. The Black-Scholes equation can 
provide an efficient numerical framework for pricing 
American options through an extended application of 
the finite difference method. 

2.1.1 Theoretical Framework and 
Mathematical Modeling 

The Black-Scholes equation, the classical parabolic 
partial differential equation (PDE) for option pricing, 
Its standard form is shown as follows. 

 𝜕𝑉𝜕𝑡 + 12 𝜎ଶ𝑆ଶ 𝜕ଶ𝑉𝜕𝑆ଶ + 𝑟𝑆 𝜕𝑉𝜕𝑆 − 𝑟𝑉 = 0 (1) 

 V(S, t) ≥ max(K − S, 0) , ∀S > 0, t ∈ [0, T] (2) 

Where V(S,t) is the option price, S is the 
underlying asset price,σ is the volatility, and r is the 
risk-free rate. For the American put option, since the 
holder is allowed to exercise the option at any 
moment before expiration, the pricing problem is 
transformed into a free boundary problem, which 
needs to satisfy the following variational inequality: 

if the PDE is valid: 
 𝜕𝑉𝜕𝑡 + 𝐿, 𝑉 ≤ 0 (3) 

complement each other: 
 (V − max(K − S, 0)) ൬𝜕𝑉𝜕𝑡 + LV൰ = 0 (4) 

 
Here L is a Black-Scholes differential operator 

and the free boundary 𝑆∗(𝑡) is defined as a critical 
price satisfying V(𝑆∗(𝑡), 𝑡) = 𝐾 − 𝑆∗(𝑡). 

2.1.2 Numerical Implementation of the 
Finite Difference Method 

To solve the above free boundary problem, a 
discretisation in Crank-Nicolson format is used: 

Introducing the log-price transformation x = lnS, 
the equation is rewritten as: 

 𝜕𝑉𝜕𝑡 + 𝜎ଶ2 𝜕ଶ𝑉𝜕𝑥ଶ + ቆ𝑟 − 𝜎ଶ2 ቇ 𝜕𝑉𝜕𝑥 − 𝑟𝑉 (5) 

 
Truncate the computational domain to x ∈[𝑥௠௜௡, 𝑥௠௔௫] and divide it into a uniform grid: 
 𝑥௜ = 𝑥௠௜௡ + 𝑖∆𝑥, 𝑡௡ = 𝑛∆𝑡,∆𝑥 = 𝑥௠௔௫ − 𝑥௠௜௡𝑀 , ∆𝑡 = 𝑇𝑁 (6) 

 
The Crank-Nicolson format combines implicit 

and explicit time integration with discrete equations: 
 𝑉௜௡ାଵ − 𝑉௜௡∆𝑡 = 12 (𝐿௛𝑉௜௡ାଵ + 𝐿௛𝑉௜௡) (7) 

 
Where the spatial discrete operator Lh is defined 

as: 
 𝐿௛𝑉௜ = 𝜎ଶ2 𝑉௜ାଵ − 2𝑉௜ + 𝑉௜ିଵ(∆𝑥)ଶ +ቆ𝑟 − 𝜎ଶ2 ቇ 𝑉௜ାଵ − 𝑉௜ିଵ2∆𝑥 − r𝑉௜ (8) 

 
Dirichlet Boundary: 
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x → −∞(S → 0): V(0, t) = K𝑒ି௥(்ି௧) (9) 
 X → +∞(S → ∞): V(S, t) → 0 (10) 

 
Each time step is forced to satisfy by the 

projection method: 𝑉௜௡ = max (𝑉௜௡, 𝐾 − 𝑒௫೔). 
The discrete equations can be constructed as a 

tridiagonal linear system A𝑉௡ାଵ = B𝑉௡ + b, which 
is solved iteratively using the projected successive 
over-relaxation method (PSOR) to ensure that the 
solution satisfies the advance exercise constraint 
(Marengo et al., 2021). 

This study constructs a variational inequality 
model for American option pricing based on the 
Black-Scholes equation, and reveals the essential 
features of the free boundary through mathematical 
analysis. In the continuous-time financial framework, 
the American option exercise strategy is transformed 
into a coupled problem of parabolic partial 
differential equations with complementary 
conditions, the logarithmic price transformation is 
introduced to eliminate the singularity of the 
equations, and the uniqueness of the existence of the 
weak solution is proved by using Sobolev space 
theory. The local Lipschitz continuity of the critical 
price function S*(t) and its asymptotic behaviour of 
convergence to the strike price are rigorously derived 
for the non-smooth property of the free boundary. A 
finite difference method in Crank-Nicolson format is 
proposed, which is combined with a projection 
relaxation algorithm to deal with the early strike 
constraints, to establish the convergence theory of the 
numerical solution in terms of operator splitting. The 
model is further extended to fractional order 
derivatives to portray market memory effects (Chen 
et al., 2024), and sparse tensor product spaces are 
constructed to solve the high-dimensional problem 
dimensionality catastrophe. This study provides a 
rigorous mathematical framework for American 
derivatives pricing and deepens the theoretical 
knowledge of the free boundary dynamics 
mechanism. 

2.2 Turbulence Modelling and 
Aerodynamic Efficiency 
Optimization 

The mathematical description of fluid motion is the 
intersection of classical mechanics and engineering 
science. the Navier-Stokes system of equations, as the 
controlling equations of viscous fluid dynamics, has 
nonlinear characteristics originating from the 
coupling of inertial and viscous terms, which 
profoundly reflects the energy transfer and 

dissipation mechanisms of fluid motion. The system 
of equations is derived from the laws of conservation 
of mass and momentum: 

 ρ ൬∂u∂t + u∇u൰ = −∇p + μ∇ଶ𝑢 + 𝑓(∇𝑢 = 0) (11) 

 
he coupling relationship between the velocity 

field u and the pressure field p dominates complex 
phenomena such as flow separation and vortex 
evolution. In the field of aeronautical engineering, the 
solution of the equations is directly related to the 
optimisation of the aerodynamic performance of the 
aircraft, whose core objective is to reduce wind 
resistance by suppressing turbulence dissipation, and 
thus to improve fuel efficiency (Chau & Zingg, 
2021). 

Theoretical studies have shown that the 
distribution of pressure gradient ∇p on the airfoil 
surface is a key regulating parameter for aerodynamic 
efficiency (Deng et al., 2022). The region of inverse 
pressure gradient is prone to trigger boundary layer 
separation, leading to a surge in differential pressure 
drag. Adjusting the airfoil curvature by constructing 
a shape function can optimise the mathematical 
properties of the pressure distribution function p(x) 
and shift the separation point back. For example, 
increasing the radius of curvature of the leading edge 
delays the flow instability, while controlling the 
trailing edge curvature attenuates the intensity of 
trailing vortex shedding. This type of optimisation is 
essentially a problem of solving a generalised 
extremum problem under the constraints of the N-S 
equations, which is mathematically expressed as: 

 𝑚𝑖𝑛௰ 𝐶஽(𝛤) (12) 
 
Such that 𝑁(𝑢, 𝑃; 𝛤) = 0 (13) 
 
where Γ is the airfoil geometry parameter, CD is 

the drag coefficient, and N is the N-S equation 
operator. 

Current theoretical challenges focus on the 
construction of closed models for high Reynolds 
number turbulence (Zhang et al., 2023). The classical 
RANS method simplifies the pulsation correlation 
term by introducing the turbulent viscosity μt, but its 
prediction of anisotropic turbulence suffers from 
systematic bias. The data assimilation technique 
embeds the flow field observation data into the PDE 
constrained optimisation framework, which provides 
a new idea to improve the generality of the model. 
The theoretical progress of the N-S equations 
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continues to promote the development of green 
aviation technology, and its nonlinear nature has 
become a bridge between mathematical analysis and 
engineering innovation. 

2.3 Fourier Equations in Heat Transfer 

The mathematical description of heat transfer as a 
fundamental physical process of energy transfer 
began with the formulation of Fourier's law. This law 
establishes a linear ontological relationship between 
the density of heat flow and the temperature gradient: 

 q = −k∇t (14) 
 
Where k is the thermal conductivity of the 

material and ∇T characterises the spatial temperature 
inhomogeneity. Combined with the law of 
conservation of energy, the classical parabolic partial 
differential equation, the Fourier heat conduction 
equation, can be derived: 

 ρc௣ 𝜕𝑇𝜕𝑡 = ∇(𝑘∇𝑇) + 𝑄 (15) 

 
Where ρ is the density, Cp is the specific heat 

capacity, and Q is the endothermic term. The equation 
has a missing second-order derivative term in time, 
which is essentially a parabolic PDE, and the spatial 
and temporal evolutionary properties of its solution 
T(x,t) reflect the nonequilibrium nature of the thermal 
diffusion process with memory effects (Narasimhan, 
1999). 

In engineering thermal design, this equation needs 
to be combined with mixed boundary conditions to 
form a suitable problem. As an example, a typical 
boundary condition for heat dissipation on metal 
substrates of electronic devices contains: 

Dirichlet condition: fixed temperature boundary 
(e.g. heat sink contact surface 𝑇|௰భ = 𝑇଴); 

Robin condition: convective heat transfer 
boundary −k(∂T ∕ ∂n)|୻ଶ = h(T − T∞), where h is 
the convective heat transfer coefficient and T∞ is the 
ambient temperature. The analytical solutions of such 
marginal problems are usually difficult to obtain, and 
the uniqueness of the existence of their weak 
solutions can be proved in Sobolev space by the 
energy estimation method, which lays the theoretical 
foundation for the finite element numerical methods. 

The nonlinear expansion of the heat transfer 
equation is particularly important in phase change 
materials and anisotropic media. For example, in 
phase change energy storage systems, the enthalpy 

function H(T) is introduced to reconstruct the 
governing equations: 

 𝜕𝐻𝜕𝑡 = ∇(𝑘(𝑇)∇𝑇) (16) 

 
In this case, the thermal conductivity k(T) exhibits 

strong nonlinear characteristics in the solid-liquid 
phase transition interval, which leads to degradation 
of the smoothness of the equation solution 
(Simoncelli et al., 2019). The mathematical analysis 
of such problems requires the use of regularisation 
methods with monotone operator theory to reveal the 
dynamics of the phase interface movement. 

Modern engineering challenges focus on multi-
physics field coupling effects. For example, 
thermoelectric coupling problems in microelectronic 
packages require solving the heat conduction 
equation in conjunction with the current continuity 
equation: 

 ∇ ∙ (k∇T) + J ∙ E = 0 (17) 
 ∇ ∙ (σ∇∅) = 0 (18) 
 
Where σ is the conductivity, ϕ is the potential 

field, and J is the current density. The suitable 
qualitative analysis of such coupled systems involves 
the interaction mechanism of the elliptic-parabolic 
system of equations, and its numerical stability 
conditions are significantly stricter than that of the 
single physical field case (Bar-Kohany & Jain, 2024). 
The theoretical extension and coupled modeling of 
Fourier equations continue to drive the thermal 
management technology innovation of new energy 
systems and high-end equipment. 

2.4 Modeling Practices for Partial 
Differential Equations in Ecology 
and Biomedicine 

The universality of partial differential equations 
(PDEs) has made them a central tool in the modeling 
of complex systems across disciplines, with 
applications ranging from the prediction of 
epidemiological transmission to the dynamics of 
tumor growth demonstrating profound scientific 
value. 

2.4.1 Ecology and Epidemiology:  
Reaction-Diffusion Equations 

In the COVID-19 pandemic, the reaction-diffusion 
equation quantifies the spatio-temporal heterogeneity 
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of virus transmission by coupling the mechanisms of 
spatial diffusion and population interaction (Ahmed 
et al., 2021). Its standard form is: 
 ∂u∂t = 𝐷∇ଶ𝑢 + 𝛽𝑈 ቀ1 − 𝑢𝐾ቁ − 𝛾𝑢 (19) 

Where u(x,t) denotes the regional infection density, D 
is the diffusion coefficient (positively correlated with 
the intensity of population mobility), β is the contact 
transmission rate, γ is the recovery rate, and K is the 
environmental carrying capacity (e.g., healthcare 
resource constraints). By integrating mobile phone 
signaling data to construct a spatial dynamic function 
of D(x,t), the cross-city transmission path can be 
accurately simulated. The DIMON framework 
(Diffeomorphic Mapping Operator Learning) 
significantly improves the efficiency of multi-area 
propagation models by geometrically dependent PDE 
solving, reducing the computation time from hours to 
seconds (Yin et al., 2024). Theoretical analysis shows 
that when the basic regeneration number 𝑅଴ = 𝛽/𝛾 >1, the solution of the equation presents the traveling 
wave front (Traveling Wave) characteristic, which 
corresponds to the pattern of the epidemic spreading 
from the core city to the periphery. Based on this 
model, the optimisation of the quarantine policy can 
be transformed into a control problem under the PDE 
constraints: limiting population movement by 
adjusting the diffusion term coefficient D delays the 
peak of infection and reduces the overall scale of 
transmission. 

2.4.2 Biomedicine: Tumor Growth and 
Therapeutic Response 

The process of tumor invasion can be modeled by an 
improved reaction-diffusion equation: 
 𝜕𝑐𝜕𝑡 = ∇(𝐷௖∇𝑐) + 𝜌𝑐𝑙𝑛 ൬𝐶௠௔௫𝑐 ൰ − 𝜆𝑐 (20) 

 
Where c(x,t) is the tumor cell density, Dc 

characterises the cell migration ability, ρ is the 
proliferation rate, and λ is the killing coefficient of 
chemotherapy or radiotherapy. This model reveals the 
phenomenon of ‘infiltration fronts’ at the edge of the 
tumor: highly migratory cells ( 𝐷௖ ↑ ) develop a 
diffusion advantage, leading to local failure of 
conventional treatments. Based on this, combination 
therapies (e.g., targeted migration inhibitors with 
immune activation have been proposed to achieve 
synergistic therapeutic effects by simultaneously 
modulating Dc and λ(Kohli et al., 2022).In addition, 
angiogenesis models: 

 ∂v∂t = 𝐷௩∇ଶ + Κ 𝑐ଶ𝑐ଶ + 𝑐଴ଶ − 𝜇𝑣 (21) 

 
It describes the process of tumour-induced 

vascular neovascularisation (v is the vessel density) 
and provides a theoretical basis for dose optimisation 
of antivascular drugs. 

2.4.3 Environmental Science: Atmospheric 
Pollution Dispersion 

Pollutant transport follows the convection-diffusion 
equation: 
 ∂C∂t + 𝑢 ∙ ∇𝐶 = ∇ ∙ (K∇C) + S(x, t) (22) 

 
Where C is the pollutant concentration, u is the 

wind velocity field, K is the turbulent diffusion 
coefficient, and S is the pollution source term. 
Coupling meteorological data to solve this equation 
can predict the spatial and temporal distribution of 
PM2.5 and guide the dynamic regulation of industrial 
emissions. The DIMON framework further optimises 
the solution efficiency of 3D pollution dispersion 
models through parametric domain and geometric 
mapping to support real-time environmental 
decision-making(Yin et al., 2024). 

From the traveling wave dynamics of virus 
propagation to the diffusion front of tumor 
infiltration, partial differential equations reveal the 
essential laws of multidisciplinary dynamic systems 
through a rigorous mathematical framework. Its 
successful applications in isolation policy 
optimisation, combination therapy design and 
environmental governance highlight the 
irreplaceability of mathematical tools in solving real-
life complex problems. With the development of data 
assimilation and multi-scale modeling techniques, 
PDE will continue to promote the deep integration of 
scientific frontiers and engineering practices. 

3 LIMITATIONS OF PARTIAL 
DIFFERENTIAL EQUATIONS 
AND FUYURE DIRECTIONS 

Partial differential equations (PDEs) are widely used 
in science and engineering, but their theoretical 
framework and computational methods still face core 
challenges. This section analyses the current 
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limitations from a mathematical and computational 
point of view and looks at future breakthroughs. 

3.1 Limitations 

lthough the interdisciplinary applications of partial 
differential equations (PDEs) are wide-ranging, their 
theoretical and computational methods still face core 
challenges. 

3.1.1 The ‘Dimensional Disaster’ of  
High-Dimensional PDEs 

Higher dimensional parabolic type equations (such as 
Schrödinger's equation for the quantum many-body 
problem) take the form: 
 𝜕𝑢𝜕𝑡 + 12 𝑇𝑟(𝜎𝜎்𝐻𝑒𝑠𝑠௫𝑢) + ∇𝑢 ∙ 𝜇 +𝑓(𝑡, 𝑥, 𝑢, 𝜎்∇𝑢) = 0 (23) 

 
The spatial dimension d often reaches hundreds 

(e.g., the number of associated assets in the pricing of 
financial derivatives), and the computational 
complexity of conventional numerical methods (e.g., 
finite element, Monte Carlo) grows exponentially 
with d (Kohli et al., 2022; Hafiz et al., 2024). For 
example, the Black-Scholes equation requires the 
introduction of non-linear terms when considering 
default risk, but the memory requirements after high-
dimensional discretisation far exceed the classical 
computer limits (Brunton & Kutz, 2024). 

3.1.2 Physical Assumptions and Actual 
Deviations 

PDE modelling often relies on idealised assumptions 
such as a homogeneous medium or linear ontological 
relationships. Taking the heat transfer equation as an 
example, Fourier's law assumes instantaneous 
equilibrium of the heat flow with the temperature 
gradient, but in micro- and nanoscale or ultra-fast heat 
transfer, the non-locality and relaxation time effects 
are significant, leading to deviation of model 
predictions from experimental observations. 
Similarly, the turbulence closure model of the Navier-
Stokes equations suffers from a universality 
deficiency, making it difficult to characterise 
complex boundary layer separation phenomena 
(Hafiz et al., 2024). 
 
 
 
 

3.2 Future Directions 

Quantum computing provides a new paradigm for 
solving high-dimensional PDEs. Based on the 
Schrödingerisation technique, linear PDEs can be 
transformed into quantum simulatable Schrödinger 
equations, which can be solved in parallel via 
quantum superposition states with complexity 
reduced to poly(d, log (ଵఌ)). For example, quantum 
finite-difference algorithms for the Poisson equation 
have been realised to solve with high accuracy in the 
spatial dimension d = 103 , and the computation time 
has been reduced by two orders of magnitude 
compared to the classical methods (Hafiz et al., 2024; 
Brunton & Kutz, 2024). In addition, hybrid quantum-
classical algorithms (e.g., adaptive grids combined 
with homogenisation) for multiscale PDEs can 
effectively reduce the CFL condition limitations and 
are suitable for the simulation of heat transfer in 
composites and groundwater flow (Hafiz et al., 2024). 

Innovations in quantum computing provide 
leapfrog solutions to high-dimensional, nonlinear 
problems. However, the deep integration of physical 
mechanisms and data-driven, and synergistic 
optimisation of quantum-classical computing 
architectures still require interdisciplinary 
collaboration. These advances will deepen the 
knowledge of complex systems and drive disruptive 
technological breakthroughs in areas such as financial 
risk modeling and new energy material design (Hafiz 
et al., 2024; Brunton & Kutz, 2024). 

4 CONCLUSIONS 

PDEs have become a central framework for modeling 
complex systems in modern science and engineering 
due to their mathematical universality and physical 
interpretability. From classical fluid dynamics and 
heat transfer to financial derivatives pricing, 
biomedical and environmental sciences, PDEs reveal 
the intrinsic laws of multi-scale dynamic systems 
through a unified theoretical language. However, the 
‘dimensional catastrophe’ of high-dimensional 
problems and the simplicity of physical assumptions 
are still the main bottlenecks that restrict their wide 
application. Emerging technologies such as Physical 
Information Neural Networks (PINNs) and quantum 
algorithms have provided new paths to address these 
challenges: the former fuses data-driven and physical 
constraints to achieve efficient solutions to high-
dimensional nonlinear problems, while the latter 
utilises quantum parallelism to achieve exponential 

ICDSE 2025 - The International Conference on Data Science and Engineering

322



computational acceleration. Future research needs to 
further deepen the synergy between mathematical 
theory and engineering practice, and promote 
innovations in multi-scale modeling, uncertainty 
quantification and interdisciplinary algorithm design. 
By balancing model accuracy, computational 
efficiency and engineering applicability, PDEs will 
continue to lead the paradigm change in the cognition 
and regulation of complex systems in the era of 
artificial intelligence and quantum computing. 
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