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Abstract: In this work, we propose a novel Mamba-based multi-task framework for multi-view foul recognition. Our
approach leverages the Mamba architecture’s efficient long-range dependency modeling to process synchro-
nized multi-view video inputs, enabling robust foul detection and classification in soccer matches. By in-
tegrating spatial-temporal feature extraction with a multi-task learning strategy, our model simultaneously
predicts foul occurrences, identifies foul types, and localizes key events across multiple camera angles. We
employ a hybrid loss function to balance classification and localization objectives, enhancing performance on
diverse foul scenarios. Extensive experiments on the SoccerNet-MVFoul dataset demonstrate our method’s
superior accuracy and efficiency compared to traditional CNN and Transformer-based models. Our frame-
work achieves competitive results, offering a scalable and real-time solution for automated foul recogni-
tion, advancing the application of computer vision in sports analytics. The codebase is publicly available
at https://github.com/areyesan/Mamba-Based MVFR for reproducibility.

1 INTRODUCTION

Automated foul recognition in soccer has emerged
as a vital aspect of sports analytics, largely due to
the growing availability of extensive, annotated video
datasets and significant advancements in deep learn-
ing technology. Accurately detecting and classify-
ing fouls not only enhances the objectivity of match
analysis but also provides essential support to refer-
ees during games. However, the inherent complex-
ity of soccer matches—marked by rapid player move-
ments, frequent occlusions, and a variety of foul sce-
narios—poses considerable challenges for traditional
computer vision methods (Cioppa et al., 2020).

Recent developments in multi-view video analy-
sis have demonstrated that synchronized camera feeds
can significantly improve event recognition in sports
(Gao et al., 2024). This technique allows for a richer
understanding of player interactions and foul occur-
rences from multiple angles, ultimately enhancing
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the accuracy of detection systems. Despite these ad-
vancements, many current methods still face difficul-
ties in effectively modeling long-range dependencies
(Vaswani et al., 2023) and managing multiple tasks in
real time (Carion et al., 2020). The fast-paced nature
of soccer, characterized by quick transitions and in-
tricate player formations, demands robust algorithms
that can swiftly process large volumes of visual data.

Additionally, integrating context-aware loss func-
tions has been suggested to refine action spotting in
soccer videos, addressing the need for a more nu-
anced understanding of player actions and their impli-
cations (Cioppa et al., 2020). As the field continues to
evolve, the creation of scalable datasets, such as Soc-
cernet, is crucial for training models that can gener-
alize effectively across various match scenarios (Gi-
ancola et al., 2018). Ultimately, the combination of
advanced multi-view analysis, context-aware method-
ologies, and efficient deep learning architectures has
the potential to transform foul recognition in soccer,
making it more accurate and reliable for referees and
analysts alike.

To address these challenges, we introduce
S-amba, a novel multi-task framework tailored for
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multi-view foul recognition in soccer, specifically de-
signed for the SoccerNet-MVFoul dataset1 (Held
et al., 2023). Our approach harnesses the efficiency of
the Mamba state space model, integrating a multi-task
learning strategy to simultaneously predict foul oc-
currences, classify foul types, and localize key events
across synchronized multi-view video inputs (Gu and
Dao, 2024). The S-amba framework capitalizes on
Mamba’s ability to model long-range dependencies
effectively, addressing the limitations of traditional
methods in handling the dynamic and complex nature
of soccer matches. Our main contributions are: (1) the
S-amba architecture, which seamlessly processes syn-
chronized multi-view video inputs, (2) a hybrid loss
function that balances foul classification and event lo-
calization tasks, and (3) superior performance on the
SoccerNet-MVFoul dataset (Held et al., 2023) com-
pared to state-of-the-art models.

The manuscript is organized as follows. Sec-
tion 2 introduces some related works for foul detec-
tion within the soccer context. Section 3 presents the
proposed methodology carried out to implement the
proposed architecture. Then, Section 4 shows the ex-
perimental results on a benchmark dataset. Finally,
conclusions are presented in Section 5.

2 BACKGROUND

Automatic foul detection in sports events using com-
puter vision techniques has gained significant rel-
evance in recent years due to its potential to as-
sist referees and improve decision-making accuracy
((Thomas et al., 2017)). Traditionally, approaches
to sports action recognition have been based on
deep learning methods, especially convolutional neu-
ral networks (CNNs) and recurrent networks (RNNs),
which have proven effective in event classification
and detection tasks in sports videos ((Carreira and
Zisserman, 2017), (Feichtenhofer et al., 2019)).

However, most of these methods are limited to
analysis from a single visual perspective, which
restricts their ability to capture complete spatial
and temporal information, especially in complex
situations such as fault detection, where multiple
views can provide crucial complementary informa-
tion ((Iosifidis et al., 2013), (Putra et al., 2022)).
Recently, multi-view approaches have emerged as a
promising solution to overcome these limitations, in-
tegrating information from multiple views to improve
the robustness and accuracy of action recognition

1https://huggingface.co/datasets/SoccerNet/
SN-MVFouls-2025

(Shah et al., 2023). On the other hand, the work pro-
posed by (Hu et al., 2008) present a method for rec-
ognizing facial expressions from multiple viewing an-
gles. It addresses the variability in facial appearance,
which makes emotion identification difficult. It uses
image processing and machine learning techniques
to combine information from different perspectives,
thereby improving recognition accuracy.

Similar to the previous approach, the work pre-
sented by (Held et al., 2023) is the SoccerNet-
MVFoul dataset, which contains multi-viewing angle
videos of soccer fouls. It also presents an encoder-
decoder architecture with a multitask classifier for
foul and action recognition tasks. Furthermore, the
proposed architecture has weaknesses, such as its de-
pendence on high-resolution videos to obtain high ac-
curacy values.

3 METHODOLOGY

This section details the different stages followed to
carry out the proposed methodology in the context of
Multi-view Foul Recognition (MVFR). The MVFR
task involves classifying soccer videos from multi-
ple camera views into foul categories (no offence, in-
fraction severity 1, 3, or 5) and action types (e.g.,
standing tackling, tackling, holding, pushing, high
leg, elbowing, dive, and challenge). This multi-task
classification problem requires robust feature extrac-
tion, view aggregation, and task-specific predictions.
A novel MultiTask Model Mamba-based called
S-amba, which integrates a pre-trained MViT-V2-S
backbone (Li et al., 2022) with an enhanced Mamba-
based aggregation module (Gu and Dao, 2024), in-
corporating temporal and view attention mechanisms,
as illustrated in Figure 1, to capture cross-view and
temporal dependencies efficiently. Our approach ad-
dresses challenges such as class imbalance, noisy
annotations, and multi-view integration through ad-
vanced preprocessing, curriculum learning, class-
weighted loss functions, and gradual backbone un-
freezing.

3.1 Model Architecture

The S-amba model processes multi-view video in-
puts of shape x ∈ RB×V×C×T×H×W , where B is the
batch size, V = 2 is the number of views, C = 3 is
the number of color channels, T = 16 is the number
of frames, and H ×W = 398× 224 is the frame res-
olution. The model outputs logits for foul classifica-
tion (4 classes) and action classification (8 classes).
The architecture comprises a backbone, a Mamba-
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Figure 1: Overview of the proposed S-amba architecture for multi-view foul recognition. Each input action video consists of
two synchronized views (live stream and a randomly selected replay), which are processed by a shared MViT-V2-S encoder.
The extracted features are passed to the Mamba-Attention Aggregate module, which integrates long-range dependencies via
a Mamba state space model and applies both temporal and view-level attention. The aggregated representation is then used
to produce multi-task predictions for foul classification (4 classes) and action classification (8 classes) through attention-
enhanced task-specific heads.

based view aggregation module with attention, and
task-specific heads with attention mechanisms. Be-
low, we describe each component mathematically.

3.1.1 Backbone: MViT-V2-S

The backbone is a pre-trained MViT-V2-S model (Li
et al., 2022), initialized with Kinetics-400 weights
(Kay et al., 2017). Input tensors are reshaped to
x′ ∈R(B·V ·T )×C×H×W and resized to 224×224 via bi-
linear interpolation:

x′′ = Interpolate(x′,224×224,mode = bilinear),

then reshaped back to RB×V×C×T×224×224. The back-
bone extracts features as:

f = FMViT(x′′;θMViT) ∈ R(B·V )×d , (1)

where d = 512 is the feature dimension, and θMViT
are the backbone parameters. The original head is
modified to a linear layer:

f = λhead(z), z ∈ R(B·V )×din , (2)

where λhead projects to 512 dimensions. Initially, only
the last two layers are unfrozen, with gradual unfreez-
ing of additional layers every 2 epochs.

3.1.2 Mamba Aggregate

We introduce Mamba Aggregate, which enhances
view aggregation using the Mamba state space model
(Gu and Dao, 2024) combined with temporal and
view attention mechanisms. Features f are reshaped
to f′ ∈ RB×V×d :

f′ = Unbatch(f,B,dim = 1,unsqueeze = True).

The Mamba module processes f′ as a sequence of V
views:

ht = Mamba(f′t ,ht−1;θMamba) ∈RB×d , t = 1, . . . ,V,
(3)

where ht is the hidden state, and θMamba are parame-
ters with dstate = 16, dconv = 4, and expansion factor
2. A lifting network processes the output:

m = L(ht ;θlift) ∈ RB×V×d , (4)
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where L = ν ◦σ ◦λd!d , with σ as GELU activa-
tion, λd!d a linear transformation, and ν layer nor-
malization. Temporal attention aggregates features
across views:

t = Atemp(m;θtemp) ∈ RB×d , (5)

where Atemp is a multi-head attention module with 4
heads, followed by mean pooling over the temporal
dimension. View attention further processes features:

v = Aview(m;θview) ∈ RB×d , (6)

The final aggregated feature is:

p = ν(t+v) ∈ RB×d . (7)

3.1.3 Multi-Task Head

The aggregated features p are processed by a shared
intermediate network:

g = I (p;θinter) ∈ RB×d , (8)

where I = δpath,0.1 ◦ δ0.5 ◦σ ◦λd!d ◦ν, with σ as
GELU, λd!d a linear transformation, ν layer normal-
ization, δ0.5 dropout (probability 0.5), and δpath,0.1
drop path (probability 0.1). Task-specific attention
modules process view features m ∈ RB×V×d :

ffoul = Afoul(m;θfoul-attn) ∈ RB×d , (9)

faction = Aaction(m;θaction-attn) ∈ RB×d , (10)

where Afoul and Aaction are multi-head attention mod-
ules with 4 heads. Task-specific branches produce
logits:

yfoul = Hfoul(g+ ffoul;θfoul) ∈ RB×4, (11)

yaction = Haction(g+ faction;θaction) ∈ RB×8, (12)

where Hfoul and Haction are:

H = λd!n ◦δ0.5 ◦σ◦λd!d ◦ν,

with n = 4 for foul and n = 8 for action classification.
The model outputs (yfoul,yaction).

3.2 Training Strategy

The model is trained on the SoccerNet-MVFoul
dataset(Held et al., 2023), addressing class imbalance,
noisy labels, and computational constraints using cur-
riculum learning, class-weighted loss, data augmen-
tation, and gradual unfreezing. Training is conducted
on an A100 NVIDIA GPU using PyTorch (Paszke
et al., 2019).

3.2.1 Dataset and Preprocessing

The dataset consists of video clips stored as .pt
files, with input shape [B,V,3,16,398,224]. The
SoccerNet-MVFoul dataset class normalizes pixel
values to [0,1] and selects two views (live stream and
replay, random or selected). Labels are mapped to
foul classes (0: No Offence, 1: Severity 1, 2: Severity
3, 3: Severity 5) and action classes (0: Standing Tack-
ling, 1: Tackling, 2: Holding, 3: Pushing, 4: Chal-
lenge, 5: Dive, 6: High Leg, 7: Elbowing). Invalid
annotations (e.g., severities 2.0 or 4.0) are filtered, and
action labels are normalized.

”Challenge”: 4, ”Dive”: 5, ”High Leg”: 6, ”El-
bowing”: 7

3.2.2 Loss Function

The S-amba framework employs a multi-task loss for
foul prediction and action localization, tailored to the
model variants in Table 1. For model v1, we use class-
weighted Cross-Entropy losses:

Lv1 = Lfoul +Laction, (13)

where:

Lfoul =−
B

∑
i=1

wfoul,yi log(pfoul,i) ,

Laction =−
B

∑
i=1

waction,zi log(paction,i) ,

with pfoul,i = Softmax(yfoul,i)[yi], paction,i =
Softmax(yaction,i)[zi]. For models v2,v3,v4, and
v5, we apply Focal loss to handle class imbalance
(Lin et al., 2017):

Lv2-v5 = L focal
foul +L focal

action, (14)

where:

L focal
foul =−

B

∑
i=1

wfoul,yi(1− pfoul,i)
γ log(pfoul,i) ,

L focal
action =−

B

∑
i=1

waction,zi(1− paction,i)
γ log(paction,i) ,

with γ = 2. Class weights are computed as:

wk =
1√

nk + ε
, ε = 10−6, (15)

where nk denotes class counts, normalized to sum
to 1. Label smoothing (0.05) is applied across all vari-
ants to reduce overfitting (Szegedy et al., 2016).
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3.2.3 Optimization

We use AdamW (Loshchilov and Hutter, 2017) with
an initial learning rate of 5× 10−5 and weight decay
0.01. A OneCycleLR scheduler (Smith and Topin,
2019) adjusts the learning rate to a maximum of
1×10−4. The backbone starts with the last two layers
unfrozen, with one additional layer unfrozen every 2
epochs. Gradient clipping (max norm 1.0) prevents
exploding gradients.

3.2.4 Curriculum Learning

To address class imbalance, we over-sample rare
classes (e.g., Dive, High Leg, Elbowing). For each
sample i, the sampling factor is:

factori = min(max(αaction,i,αfoul,i),50), (16)

where:

αaction,i =


3 if class is Dive,
2 if class is High Leg or Elbowing,
1 otherwise,

αfoul,i =


5 if class is No Offence or Severity 5,
2 if class is Severity 3,
1 otherwise.

This increases the effective training set size, as re-
ported in the training script.

3.2.5 Data Augmentation

Training clips undergo random augmentations using
Kornia (Riba et al., 2020):

• Random horizontal flip (p = 0.5).

• Random affine transform (rotation ±15◦, transla-
tion ±10%, scale [0.8,1.2,1.5,2.0]).

• Color jitter (brightness, contrast, saturation ±0.3,
hue ±0.1, p = 0.5).

3.2.6 Evaluation and Early Stopping

The model is evaluated using accuracy and balanced
accuracy (BA):

BA =
1
K

K

∑
k=1

TPk

TPk +FNk
, (17)

where K = 4 for foul and K = 8 for action classifica-
tion. Early stopping is triggered if the combined BA
does not improve for 50 epochs.

To provide a comprehensive assessment of the
model’s performance, we report several key metrics:
top-1 accuracy (Acc.@1), top-2 accuracy (Acc.@2),

F1-score (F1), recall (RE), and precision (PR). Top-1
accuracy indicates the proportion of instances where
the model’s highest-ranked prediction matches the
ground truth. Top-2 accuracy considers a prediction
correct if the true label is among the model’s two
highest-ranked outputs, which is particularly informa-
tive in cases of label ambiguity or when multiple plau-
sible labels exist.

Because the dataset has a significant class imbal-
ance, just looking at accuracy alone can be mislead-
ing. A model might get a high accuracy score simply
by favoring the most common classes. That’s why
we’re also including these other metrics, which give
us a more detailed understanding of performance:

Precision (PR) =
TP

TP+FP
(18)

Recall (RE) =
TP

TP+FN
(19)

F1-score (F1) = 2 · Precision ·Recall
Precision+Recall

(20)

where T P, FP, and FN stand for true positives, false
positives, and false negatives, respectively. The F1-
score, which is the harmonic mean of precision and
recall, is particularly helpful for imbalanced datasets.
It balances the trade-off between making false posi-
tive errors and missing actual positive cases.

By using all these metrics, we can be sure we’re
getting a fair and thorough evaluation of our model.
This approach helps us understand not only how well
it performs overall, but also how well it identifies less
common classes and how reliable its predictions are.
You’ll find the specific numbers for each metric in the
next section.

3.3 Implementation Details

The model is trained for up to 200 epochs with a batch
size of 16 on an A100 NVIDIA GPU. The training
and validation datasets follow the SoccerNet struc-
ture (Giancola et al., 2018). Predictions and ground
truth are logged in JSON format. Compared to tradi-
tional Transformer-based approaches (Vaswani et al.,
2017), the S-amba implementation reduces memory
overhead, enabling efficient processing of synchro-
nized multi-view inputs. The input video frames are
processed at resolutions of 224×398 and 112×199 to
balance computational cost and model performance.
Table 1 details the experimental configurations for all
conducted experiments.
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Foul metrics Action metrics

Figure 2: Radial graphs for foul and action classification.

Table 1: Experiment setup. Live Stream (L), Replay (R).

Model Views Strategy

(Ours) v1 L+RRandom Unfreeze all backbone
(Ours) v2 L+RRandom Unfreeze 2 last layers
(Ours) v3 L+R1 Unfreeze 4 last layers
(Ours) v4 R1 +R2 Unfreeze 4 last layers
(Ours) v5 L+R1 Gradual unfreeze

4 EXPERIMENTAL RESULTS

The S-amba models are evaluated on the SoccerNet-
MVFoul test dataset (Held et al., 2023), comparing
them with CNN- and Transformer-based approaches.
The evaluation results are summarized in Tables 2 and
3, and a visual representation of these metrics with
radial graphs is shown in Figure 2. On the other hand,
Figures 3 show the confusion matrices of the different
model evaluations.

4.1 Dataset

An exploratory analysis of the dataset is conducted as
a first step, revealing a clear imbalance in the distri-
bution of classes, both in terms of foul presence (of-
fense/no offense) and the severity levels assigned to
each event. As shown in Figure 4, Most examples
fall into the ”no offense” category with low sever-
ity (−1), while foul events (”offense”) are mainly
distributed across intermediate severities (1 and 3).
Cases with high severity (4 and 5) are very rare. The
”between” class, which represents ambiguous cases,
is also mostly concentrated in the low and medium
severity levels.

This distribution highlights the unbalanced nature
of the problem, where the majority classes can domi-
nate the model’s learning process, making it harder to
correctly identify less frequent but important events,

such as serious fouls. That’s why it’s essential to use
evaluation metrics that reflect performance across all
classes, not just the most common ones.

On the other hand, the relationship between event
type (challenge/offense) and severity is crucial for au-
tomatic foul recognition. Events labeled as ”offense”
tend to be associated with higher severity levels, while
”no offense” events are grouped at the lower end of
the scale. This correlation suggests that severity could
be a useful indicator for classifying and prioritizing
events within the context of the challenge.

Additionally, Figure 5 shows the joint distribu-
tion between action classes and severity levels. We
can see that certain actions, such as ”dive” and ”un-
known,” are almost exclusively found at the lowest
severity levels (−1), while other actions like ”elbow-
ing,” ”high leg,” ”pushing,” and ”tackling” are spread
across a wider range of severities, including interme-
diate and high values.

This matrix makes it clear that severity is not dis-
tributed evenly among the different action classes.
Actions like ”elbowing” and ”high leg” tend to be as-
sociated with higher severity, suggesting that sever-
ity could be a useful and discriminative attribute for
classifying dangerous or sanctionable actions. In con-
trast, actions like ”dive” and ”unknown” are rarely
linked to high severity, which may reflect both the na-
ture of these actions and possible ambiguities in the
annotations. The relationship between action class
and severity underscores the importance of consid-
ering both variables when designing foul recognition
models, as this allows for prioritizing the detection of
events that have a greater impact on the game.

4.2 Foul Classification

After performing the dataset analysis, the next step is
to present the analysis results for foul and action clas-
sification. For foul classification, the S-amba model
v3 generally performs better in the Accmetrics.@1 =
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Table 2: Test set performance for the multi-view video foul and action classification. Balanced Accuracy (BA), F1-score (F1),
Recall (RE), Precision (PR).

Type Author Feature Extractor Pooling Size Acc.@1 Acc.@2 BA PR RE F1

Foul (Held et al., 2023) ResNet (He et al., 2016) Mean 224×398 0.32 0.60 0.28 - - -
Foul (Held et al., 2023) ResNet (He et al., 2016) Max 224×398 0.32 0.60 0.28 - - -
Foul (Held et al., 2023) R(2+1)D (Tran et al., 2018) Mean 224×398 0.32 0.56 0.33 - - -
Foul (Held et al., 2023) R(2+1)D (Tran et al., 2018) Max 224×398 0.32 0.56 0.33 - - -
Foul (Held et al., 2023) MViT-V2-S (Li et al., 2022) Mean 224×398 0.40 0.65 0.45 - - -
Foul (Held et al., 2023) MViT-V2-S (Li et al., 2022) Max 224×398 0.47 0.69 0.43 0.28 0.36 0.28
Foul S-amba v1 (Ours) MViT-V2-S (Li et al., 2022) - 224×398 0.37 0.82 0.32 0.57 0.37 0.39
Foul S-amba v2 (Ours) MViT-V2-S (Li et al., 2022) - 112×199 0.43 0.70 0.35 0.56 0.43 0.44
Foul S-amba v3 (Ours) MViT-V2-S (Li et al., 2022) - 112×199 0.58 0.87 0.35 0.57 0.58 0.57
Foul S-amba v4 (Ours) MViT-V2-S (Li et al., 2022) - 112×199 0.45 0.76 0.35 0.53 0.45 0.46
Foul S-amba v5 (Ours) MViT-V2-S (Li et al., 2022) - 112×199 0.43 0.70 0.35 0.56 0.49 0.51

Action (Held et al., 2023) ResNet (He et al., 2016) Mean 224×398 0.34 - 0.25 - - -
Action (Held et al., 2023) ResNet (He et al., 2016) Max 224×398 0.32 - 0.24 - - -
Action (Held et al., 2023) R(2+1)D (Tran et al., 2018) Mean 224×398 0.34 - 0.30 - - -
Action (Held et al., 2023) R(2+1)D (Tran et al., 2018) Max 224×398 0.39 - 0.31 - - -
Action (Held et al., 2023) MViT-V2-S (Li et al., 2022) Mean 224×398 0.38 - 0.31 - - -
Action (Held et al., 2023) MViT-V2-S (Li et al., 2022) Max 224×398 0.43 0.72 0.34 0.30 0.35 0.29
Action S-amba v1 (Ours) MViT-V2-S (Li et al., 2022) - 224×398 0.54 0.76 0.34 0.51 0.54 0.51
Action S-amba v2 (Ours) MViT-V2-S (Li et al., 2022) - 112×199 0.50 0.75 0.31 0.48 0.50 0.46
Action S-amba v3 (Ours) MViT-V2-S (Li et al., 2022) - 112×199 0.51 0.76 0.31 0.49 0.51 0.48
Action S-amba v4 (Ours) MViT-V2-S (Li et al., 2022) - 112×199 0.52 0.73 0.28 0.48 0.52 0.47
Action S-amba v5 (Ours) MViT-V2-S (Li et al., 2022) - 112×199 0.53 0.74 0.34 0.51 0.53 0.50

Table 3: Test set performance for the multi-view video foul
and action classification.

Foul Acc.@1
v1 v2 v3 v4 v5

No Offence 38.10 42.86 28.57 47.62 52.38
Offence Severity 1 29.41 36.31 71.34 44.59 59.24
Offence Severity 3 61.76 61.76 39.71 47.06 27.94
Offence Severity 5 0.00 0.00 0.00 0.00 0.00

Action Acc.@1
v1 v2 v3 v4 v5

Standing Tackling 77.42 80.37 76.64 84.11 80.37
Tackling 68.75 44.18 51.16 39.53 44.19
Holding 3.45 7.14 10.71 7.14 17.86
Pushing 40.00 0.00 0.00 0.00 0.00
Challenge 29.79 21.74 26.09 34.78 30.43
Dive 0.00 0.00 20.00 0.00 0.00
High Leg 33.33 33.33 16.67 33.33 33.33
Elbowing 16.67 63.64 54.55 27.27 63.64

0.58, Acc.@2 = 0.87, PR = 0.57, RE = 0.58, F1 =
0.57, and only being surpassed in BA = 0.35 by (Held
et al., 2023) with MViT-V2-S in Table 2 (5th row).
On the other hand, the radial graph shown in Figure
2 (1st col) graphically shows the quantitative result of
the metrics analyzed and mainly highlights S-amba
model v3. The confusion matrix present in Figure
3 (1st col) shows that the model tends to incorrectly
classify Severity 5 offenses as Severity 1 or Severity
3 in major cases, suggesting that the model captures
the presence of serious offenses but struggles to dis-
tinguish between extreme severity levels, likely due
to the scarcity of Severity 5 examples in the training
data.

The class analysis reveals different patterns shown
above:

• No Offense: Accuracy of 52.38%, showing mod-
erate performance in identifying fair plays.

• Offense Severity 1: With accuracy of 71.34%,
being the category best recognized by the model
and reflecting the excellent performance of detect-
ing minor offenses.

• Offense Severity 3: Accuracy of 61.76%, reflect-
ing the good performance of detecting moderate
offenses.

• Offense Severity 5: Accuracy of 0.00%, indicat-
ing a significant limitation in identifying the most
severe but extremely rare offenses in the dataset.

4.3 Action Classification

The next task to analyze the results is action classi-
fication, where the S-amba model v1 achieves the
metrics value as Acc.@1 = 0.54, Acc.@2 = 0.76,
BA = 0.34, PR = 0.51, RE = 0.54, and F1 = 0.51,
significantly outperforming the different models. On
the other hand, the radial graph (Figure 2) (2nd col-
umn) graphically shows that the S-amba model v1,
v2, v3, and v5 present very close values. The con-
fusion matrix (Figure 3) (2nd col) reveals that the
model frequently confuses Elbowing with Challenge;
Standing Tackling with Challenge, Holding and Tack-
ling, which is understandable given the visual similar-
ity between these actions and the class imbalance.
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Figure 3: 1st col. Confusion matrix for foul classification. 2nd col. Confusion matrix for action classification.
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Figure 4: Joint distribution of offense and severity in the
dataset.

Figure 5: Distribution of action classes based on severity.

Performance by class shows important observa-
tions:

• Standing Tackling: Accuracy of 84.11%, being
the best-recognized action.

• Tackling: The model achieved an accuracy of
68.75%, which reflects its effectiveness in identi-
fying dynamic contact actions within the dataset.

• Elbowing: An accuracy of 63.64% was ob-
tained, indicating the model’s capability to cor-
rectly identify this category of action.

• Pushing: A accuracy of 40.00%, which may be
attributed to the limited number of instances of
this action in the dataset.

• Challenge, High Leg, and Holding: Accuracies
of 34.78%, 33.33%, and 17.86%, respectively, re-
flecting the difficulty of recognizing less frequent
actions.

• Dive: Accuracy of 20.00%, demonstrating the ex-
treme difficulty of detecting malingering, which is
both rare and visually subtle.

Figure 6 shows the feature visualization of feature
maps obtained from the proposed architecture, evalu-

ated on sample frames from the test set. These visu-
alizations reveal that the model pays special attention
to regions of interaction between players, highlighting
areas of potential contact. Additionally, the Mamba-
based aggregation effectively captures complemen-
tary information from multiple views, integrating spa-
tial features from different angles. Notably, the acti-
vations are strongest in frames containing the exact
moment of the foul, demonstrating the model’s abil-
ity to locate relevant events temporally.

Figure 7 shows Grad-CAM visualizations ob-
tained from the proposed architecture evaluated on
test set samples from two different views. It is ob-
served that, in both samples, the first layers capture
low-level features with sparse activations. In con-
trast, in deeper layers, the activations become more
focused, concentrating on the regions of interest. This
progressive evolution of the activations evidences an
effective hierarchical representation capability, and
the consistency between views suggests a robust gen-
eralization of the model to perspective changes.

4.4 Reproducibility

The codebase will be available at GitHub and in-
cludes all scripts for preprocessing (preproc.py),
model definition (model 2.py), and training
(train mamba.py). Instructions for setup and execu-
tion are provided in the repository’s README. We
also save predictions and ground truth JSON files for
verification.

5 CONCLUSIONS

The S-amba multi-task architecture effectively tackles
Multi-View Foul Recognition using the SoccerNet-
MVFoul dataset (Held et al., 2023), by leveraging se-
quential modeling for multi-view aggregation along-
side robust training strategies to handle imbalanced
data. The results demonstrate that the proposed
S-amba architecture outperforms competing methods
across key metrics such as Acc.@1, Acc.@2, PE,
RE, and F1, with the only exception being BA in
foul classification, where it is slightly surpassed. In
contrast, for action classification, S-amba achieves
superior performance across all evaluated metrics.
Notably, the architecture employs MViT-V2-S as its
backbone and utilizes Mamba with a video input size
of 112× 199—half the size used by other architec-
tures—yet still delivers the best results for multi-view
foul and action classification in video. This surpasses
previous approaches proposed by (Held et al., 2023).
Future work will focus on exploring larger backbone
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Figure 6: Feature map visualizations from the proposed architecture evaluated on test set sample frames.
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Figure 7: Grad-CAM visualizations from the proposed architecture evaluated on test set sample frames.
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models and advanced data augmentation techniques
to further enhance performance.
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