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Abstract: The automatic classification of pathology images plays a crucial role in computer-aided diagnosis by 
enhancing diagnostic efficiency and minimizing human error. In this paper, the Enteroscope Biopsy 
Histopathological H&E Image Dataset (EBHI) is utilized to systematically compare and analyze the 
performance of three strategies—Single-Magnification Training, Multi-Channel Fusion, and Stepwise 
Cumulative Learning—to optimize pathology image classification. The Single-Magnification Training 
strategy serves as a baseline experiment to validate the optimization effect of the model, achieving the highest 
classification accuracy of 94.64% at 200× magnification. Under strict filtering conditions, Multi-Channel 
Fusion achieves a peak classification accuracy of 96.06%. However, this approach remains inferior to 
Stepwise Cumulative Learning. This learning strategy significantly outperforms training solely at the highest 
magnification, achieving a classification accuracy of 98.27% on 400× images. This study demonstrates that 
the cumulative learning strategy effectively enhances the classification performance of pathology images. 
Low-magnification images contribute to improving the classification accuracy of high-magnification images, 
offering new insights into multi-scale feature fusion, dynamic learning strategies, and computer-aided 
pathology diagnosis. Furthermore, this study validates the applicability of the EBHI dataset in multi-
magnification pathology analysis and advances the development of intelligent pathology image analysis.

1 INTRODUCTION 

Early diagnosis of colorectal cancer is crucial for 
reducing its high morbidity and mortality, with 
pathological image analysis remaining the gold 
standard for diagnosis. Traditional pathology analysis 
relies on the manual evaluation of tissue sections by 
pathologists, a process that is not only time-
consuming and labor-intensive but also prone to 
subjective bias. Consequently, leveraging advanced 
technologies to enhance the efficiency and accuracy 
of pathological image analysis has become a focal 
point in contemporary medical research. 

In recent years, deep learning techniques have 
provided an efficient and accurate solution for the 
automatic classification and detection of pathology 
images by automatically extracting image features. 
Current research focuses on the following three key 
areas: optimizing deep learning models, improving 
data preprocessing and handling class imbalance, and 
integrating multi-magnification information. 

 
a  https://orcid.org/0009-0003-9188-1252 

Firstly, in terms of model optimization, numerous 
studies have sought to enhance the accuracy of 
pathology image classification by refining deep 
learning architectures. Khan et al. (2024) proposed a 
Swin Transformer-based approach that leverages the 
self-attention mechanism for feature extraction in 
pathology images. By incorporating normalized 
preprocessing, their method significantly improves 
classification accuracy. Kim et al. (2021) 
systematically compared the performance of 
Convolutional Neural Network (CNN), Residual 
Neural Network (ResNet), and Vision Transformer 
(ViT) in pathology image classification. However, 
these studies primarily focused on optimizing a single 
model and did not integrate multi-magnification 
information. 

Secondly, in terms of data preprocessing and class 
imbalance handling, studies have demonstrated that 
appropriate data augmentation and class balancing 
strategies can enhance classification performance. 
Malik et al. (2019) investigated the impact of various 
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preprocessing methods on pathology image 
classification and found that data augmentation 
improves the model’s generalization ability. Raju and 
Rao (2022) addressed the issue of class imbalance by 
proposing a deep learning framework that integrates 
Class-Balanced Loss with data augmentation, 
enabling the model to better recognize minority class 
samples. Although these approaches improve model 
stability to some extent, most existing methods are 
designed for single-magnification images and fail to 
fully exploit the potential complementary information 
across different magnifications. 

Finally, in the fusion of multi-magnification 
information, researchers have explored various 
approaches to integrating different magnifications to 
enhance the classification accuracy of pathology 
images. Das et al. (2017) employed Majority Voting 
Fusion by independently training a CNN model at 
different magnifications and fusing classification 
results from multiple perspectives at the inference 
stage, thereby improving the overall classification 
accuracy of full-slide images. However, this method 
treats different magnifications as independent 
information sources and fails to fully model the 
hierarchical relationship between them, making it less 
effective in simulating the gradual magnification 
process that pathologists naturally follow in real-
world diagnosis. 

This study aims to develop and validate an 
efficient pathology image classification model based 
on deep learning, explore optimization strategies for 
different magnifications, and conduct an in-depth 
investigation into data missing issues, magnification 
combination methods, and multi-magnification 
learning. The main innovations of this study include: 
1) Validate and improve the single-magnification 

training method and establish baseline 
experiments; 

2) Investigate the applicability of the 12-channel 
fusion model and compare different data 
imputation strategies; 

3) Propose a cumulative magnification learning 
strategy based on a progressive training 
sequence. 

2 MATERIAL AND METHODS 
2.1  Dataset 
The EBHI dataset, developed through a collaboration 
between Northeastern University and China Medical 
University Cancer Hospital, serves as a standardized 
dataset for the automated classification of colorectal 
cancer histopathological images (Hu et al., 2023). The 

dataset comprises 5,532 electron microscope images, 
categorized into five pathological groups: Normal, 
Polyp, Low-grade IN, High-grade IN, and 
Adenocarcinoma. Among these, the first two classes 
represent non-cancerous conditions, while the latter 
three exhibit pre-cancerous or malignant 
characteristics to varying degrees. In this study, a 
classification task was constructed based on the 
distinction between benign and malignant tissue types, 
following this categorization criterion. 

In the data preprocessing stage, standardization 
was applied to the raw data to ensure stable model 
training. Size normalization was first performed to 
adapt input images to the required format for deep 
learning models and to maintain compatibility with 
commonly used pre-trained CNN architectures 
(Tellez et al., 2019). Specifically, all pathological 
images were uniformly resized from 2048 × 1536 to 
224 × 224 to ensure a consistent input size. 
Additionally, to enhance training stability and 
accelerate convergence, pixel value normalization 
was conducted, scaling all pixel intensities to the 
range [0,1] to minimize the impact of numerical 
differences between images on model training. 

Following this, all images were converted to 
Tensor format to enable efficient batch processing in 
PyTorch. To further enhance data diversity, data 
augmentation techniques were applied to the training 
set, including random horizontal flip, color jitter, and 
random cropping. These augmentation strategies 
were introduced to improve the model’s 
generalization ability, allowing it to better adapt to 
pathological images under varying conditions (Hao et 
al., 2021; Tellez et al., 2019; Yuan, 2021). 

In terms of data partitioning, all images were 
divided into 40% for the training set, 40% for the 
validation set, and 20% for the test set, ensuring that 
all magnification images from the same case appeared 
in only one of these subsets to prevent data leakage 
(Hu et al., 2023). 

Moreover, since some cases contained multiple 
images at a specific magnification, a magnification 
combination sampling strategy was employed. This 
approach involved randomly combining different 
images from the same case to expand the dataset and 
enhance the robustness of the model (Hashimoto et 
al., 2020; Tokunaga et al., 2019). 

2.2  Methodology 

This study employs Residual Network-50 (ResNet50) 
as the fundamental deep-learning model for the 
classification of colorectal cancer histopathological 
images. To evaluate the impact of different training 
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strategies, three experimental schemes were designed 
and implemented: Single-Magnification Training, 
Multi-Channel Fusion, and Stepwise Cumulative 
Learning. A systematic analysis was conducted to 
assess the classification performance of each strategy. 
To ensure the comparability of experiments and 
control variables, ResNet50 was consistently used in 
all experiments, with modifications made to its input 
layer (conv1) based on specific experimental 
requirements. 

ResNet50 is a deep convolutional neural network 
(CNN) based on the Residual Network architecture. It 
incorporates residual block structures and skip 
connections to effectively mitigate the vanishing 
gradient problem in deep networks (He et al., 2016). 
This network has strong feature extraction 
capabilities, enabling it to learn deep structural 
information from pathological images. To 
accommodate different input strategies, two 
configurations of the ResNet50 input layer were 
implemented in this study: For Single-Magnification 
Training, the input channel was set to 3 channels 
(standard RGB structure), ensuring that the model 
learns pathological features at a single magnification. 
For Multi-Channel Fusion, the input channel was 
adjusted to 12 channels (4 magnifications × 3 RGB 
channels), allowing the model to integrate multi-
magnification information within a single input image 
and simultaneously learn structural features across 
different magnifications. 

To systematically investigate the impact of 
different magnification levels on model classification 
performance, this study designed two major 
experimental schemes. 

The first scheme, Single-Magnification Training, 
involved independently training the model using 
images at 40×, 100×, 200×, and 400× magnifications 
to analyze classification performance at each 
magnification level. 

The second scheme, Multi-Magnification 
Learning, included two distinct strategies: Multi-
Channel Fusion and Stepwise Cumulative Learning. 
In the Multi-Channel Fusion experiment, 40×, 100×, 
200×, and 400× magnification images were 
concatenated following the RGB structure, forming a 
12-channel input, which was then trained using 
ResNet50 to evaluate the effect of cross-
magnification information fusion. 

In the Stepwise Cumulative Learning experiment, 
the model was progressively trained by sequentially 
incorporating magnification information in the order 
of 40× → 40×+100× → 40×+100×+200× → 
40×+100×+200×+400× to examine whether gradual 
learning enhances the generalization capability of the 

model. At each training stage, testing was conducted 
at the highest magnification level learned up to that 
point (e.g., after training on 40×+100×+200×, the 
final evaluation was performed on 200×) to assess 
whether low-magnification information contributes to 
improving classification performance at higher 
magnifications. 

Furthermore, considering that some cases may 
lack corresponding images at certain magnifications, 
three different data processing strategies were 
designed in the Multi-Channel Fusion experiments to 
investigate the impact of different filling methods on 
model performance. These three strategies are Strict 
Filtering, Black Filling, and Nearest Magnification 
Filling. 

2.3  Evaluation Metrics 

This study employs Accuracy, Precision, Recall, 
Specificity, and F1-Score as evaluation metrics to 
comprehensively assess the model’s performance in 
classifying Benign and Malignant tissues. Accuracy, 
which measures the overall correctness of 
classifications, is widely used in decision-making 
models (Turing, 2009). Precision, reflecting the 
reliability of malignant predictions, is a critical metric 
in medical image analysis (Van Rijsbergen, 1979). 
Recall evaluates the model’s ability to detect 
malignant cases, while Specificity assesses its 
capability to distinguish between benign and 
malignant tissues (Altman & Bland, 1994). F1-Score, 
as the harmonic mean of Precision and Recall, is 
particularly useful for handling imbalanced datasets 
(Van Rijsbergen, 1979). 

3  RESULTS AND DISCUSSION 

3.1  Single-Magnification Training  

In this study, single-magnification training was first 
conducted on pathological images at different 
magnifications to validate model optimization and 
investigate the impact of magnification levels on 
classification performance.  

Due to significant differences in tissue structural 
information and cellular feature representation across 
different magnifications, their performance in 
classification tasks also varies. Low-magnification 
images provide an overview of the tissue structure, 
whereas high-magnification images reveal more 
detailed cellular features. These differences influence 
the classification performance at different 
magnification levels. Therefore, experiments were 
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conducted by independently training ResNet50 at 40×, 
100×, 200×, and 400× magnifications, and their 
classification performance was compared. 

Table 1. Classification Performance of Single-Magnification Training 

Magnification Accuracy Category Precision Recall Specificity F1-score 

40× 90.67 Benign 90.27 94.20 85.71 92.19 
Malignant 91.30 85.71 94.20 88.42 

100× 92.18 Benign 88.76 98.13 87.42 93.21 
Malignant 97.88 87.42 98.13 92.35 

200× 94.64 Benign 92.28 94.10 94.98 93.18 
Malignant 96.19 94.98 94.10 95.58 

400× 94.72 Benign 96.51 94.04 95.60 95.25 
Malignant 92.55 95.60 94.04 94.05 

 
Table 1 presents the classification performance of 

the ResNet50 model at different magnifications (40×, 
100×, 200×, and 400×). As shown in the table, 
Classification Accuracy exhibits an overall increasing 
trend with higher magnifications, reaching 94.64% at 
200× and further improving to 94.72% at 400×. 
Additionally, for the malignant category, both 
Precision and Recall at 200× and 400× magnifications 
are higher than those at lower magnifications, 
indicating that high-magnification images are more 
beneficial for malignant lesion detection. 

This study utilizes the same EBHI dataset and 
adopts ResNet50 as the baseline model, consistent 
with the original study. By implementing a series of 
data preprocessing and training optimization 
strategies, the classification accuracy of the model has 
been significantly improved. Compared to the highest 
classification accuracy of 83.81% reported in the 
original study using ResNet50, the optimized 
strategies in this study have achieved 94.64% 
accuracy at 200× magnification, demonstrating a 
remarkable performance enhancement. 

In the Single-Magnification Training experiment, 
this study employed a data augmentation strategy to 
increase data diversity and enhance the model’s 
generalization capability. All pathological images 
were normalized to the range [0,1] and resized to 224 
× 224 for input. The data augmentation operations 
included random horizontal flipping, vertical flipping, 
90°, 180°, and 270° rotations, as well as color 
jittering, enabling the network to develop greater 
robustness to rotational transformations. 

In terms of training optimization, this study 
employed a dynamic learning rate adjustment method 
(ReduceLROnPlateau) to adapt the learning rate at 
different training stages, thereby preventing 
convergence issues that may arise from a fixed 
learning rate. Additionally, the Adam optimizer was 
used in place of traditional Stochastic Gradient 

Descent (SGD), leveraging momentum and adaptive 
learning rate mechanisms to enhance training stability 
and accelerate convergence. 

3.2  Multi-Channel Fusion  

The results of single-magnification training indicate 
that images at different magnifications exhibit 
varying classification performances. Among them, 
high-magnification images at 200× and 400× 
achieved better classification accuracy, though the 
performance improvement between these two 
magnifications was relatively minor. This 
phenomenon suggests that relying solely on a single 
magnification may not fully capture the 
discriminative features of pathological images. 

To address this, the study further investigates 
whether the fusion of multi-magnification 
information can enhance classification performance. 
Compared to Single-Magnification Training, Multi-
Channel Fusion integrates information from multiple 
scales, enabling the model to learn both macro-level 
tissue structures and fine-grained cellular morphology 
simultaneously. This approach improves 
classification robustness and generalization 
capability. Therefore, this study explores a Multi-
Channel Fusion strategy, in which images of the same 
lesion at different magnifications are concatenated 
into a 12-channel input, enhancing the model’s ability 
to learn across different scales and ultimately 
improving classification performance. 

In the experimental design, each case contains 
images at four magnifications (40×, 100×, 200×, and 
400×), which are concatenated into a unified input 
and fed into a modified ResNet50 model for training. 
However, in the dataset, some cases lack images at 
certain magnifications. To investigate the impact of 
different missing data handling strategies on model 
performance, this study explores the following three 
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approaches: 
1) Strict Filtering: Cases missing images at any 

magnification are directly excluded, ensuring 
that both the training and testing samples are 
complete 12-channel inputs. 

2) Black Filling: If an image at a specific 
magnification is missing, it is replaced with a 
black image (all pixel values set to 0) to maintain 
input size consistency. 

3) Nearest Magnification Filling: If an image at a 
particular magnification is missing, it is replaced 
by an image from the nearest lower 

magnification. For example, if the 40× image is 
missing, the 100× image is used instead; if 100× 
is also missing, the 200× image is used, and so 
on. 

All models are trained on preprocessed multi-
channel images, and testing is also performed on 
concatenated 12-channel inputs, rather than 
evaluating single-magnification images separately. 
By comparing the effects of these three data-filling 
strategies, this study analyzes how different missing 
data-handling approaches influence classification 
accuracy.

Table 2. Comparison of Classification Performance Across Multi-Channel Fusion Strategies 

Strategy Accuracy Category Precision Recall Specificity F1-
score

Strict Filter 96.06 Benign 96.28 95.58 96.52 95.92
Malignant 95.86 96.52 95.58 96.19

Black Filling 95.41 Benign 94.27 96.72 94.10 95.48
Malignant 96.61 94.10 96.72 95.34

Nearest Magnification Filling 92.96 Benign 95.71 90.74 95.45 93.16
Malignant 90.21 95.45 90.74 92.76

 
Table 2 presents the impact of three data filling 

strategies on the multi-channel fusion classification 
task. The experimental results show that the Strict 
Filtering strategy achieved the highest classification 
accuracy of 96.06%, indicating that complete multi-
magnification information provides the most stable 
feature representation, thereby enhancing the model’s 
classification capability. 

In contrast, when using Black Filling to replace 
missing magnification images, classification 
performance declined but still maintained a relatively 
high accuracy. This suggests that the model can 
partially adapt to the Black Filling strategy; however, 
zero-value images can introduce additional noise, 
leading to less stable feature representation compared 
to complete data.  

Nevertheless, the Black Filling strategy 
outperformed the Nearest Magnification Filling 
approach, suggesting that maintaining data 
consistency is more beneficial than filling missing 
magnifications with available images from other 
magnifications. 

3.3  Stepwise Cumulative Learning 

Although the multi-magnification fusion strategy 
improves classification performance by integrating 
images from different magnifications, it does not fully 
reflect the observation sequence followed by 
pathologists during actual diagnosis. Typically, 
pathologists begin with low-magnification images to 

examine the overall tissue structure before 
progressively zooming in to higher magnifications to 
obtain finer details. Simply relying on multi-channel 
concatenation may not fully leverage these 
hierarchical features. 

To address this, this study proposes a stepwise 
training strategy, namely Stepwise Cumulative 
Learning, in which the model is initially trained on 
low-magnification images and then progressively 
incorporates higher-magnification information. This 
approach aims to investigate whether the gradual 
accumulation of magnification information can 
enhance the final classification performance. To 
validate the effectiveness of stepwise learning, the 
model is evaluated during the testing phase only on 
the highest magnification introduced in the training 
process. 

During training, the model initially uses only 40× 
magnification images for preliminary training, 
allowing it to learn global tissue structure information 
at a low magnification. Subsequently, images at 100×, 
200×, and 400× magnifications are progressively 
introduced, simulating a stepwise optimization 
process supported by multi-scale information.  

Notably, at each training stage, all case IDs must 
remain consistent, ensuring that images of the same 
case across different magnifications originate from 
the same source. This constraint prevents the model 
from merely learning single-magnification features 
and instead enables it to establish robust cross-
magnification associations.  
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By following this design, the model not only 
leverages the holistic structural information provided 
by low magnifications but also gradually integrates 

fine-grained details from higher magnifications, 
ultimately improving classification performance. 

Table 3. Comparison of Classification Performance in the Stepwise Cumulative Learning Strategy 

Magnification Accuracy Category Precision Recall Specificity F1-score

40× 90.67 Benign 90.27 94.20 85.71 92.19
Malignant 91.30 85.71 94.20 88.42

40×+100× 95.43 Benign 97.45 94.26 96.91 95.83
Malignant 93.06 96.91 94.26 94.94

40×+100×+200× 96.09 Benign 95.00 95.52 96.49 95.26
Malignant 96.87 96.49 95.52 96.68

40×+100×+200×+400× 98.27 Benign 99.06 97.69 98.94 98.37
Malignant 97.39 98.94 97.69 98.16

 
Table 3 presents the classification performance of 

the Stepwise Cumulative Learning strategy as 
different magnification images are progressively 
incorporated. The experiment begins with training 
exclusively on 40× magnification images, followed 
by the sequential addition of 100×, 200×, and 400× 
magnifications, allowing the model to gradually 
establish connections between global low-
magnification structural information and high-
magnification fine details. 

The results demonstrate that the Stepwise 
Cumulative Learning strategy consistently 
outperforms single-magnification training across all 
high-magnification testing tasks. For instance, in the 
400× magnification task, the classification accuracy 
of Single-Magnification training was 94.72%, 
whereas Stepwise Cumulative Learning 
(40×→100×→200×→400×) improved the accuracy 
to 98.27%, achieving a 3.55% increase. Similarly, in 
the 200× magnification task, Single-Magnification 
training achieved an accuracy of 94.64%, while 
Stepwise Cumulative Learning (40×→100×→200×) 
improved the accuracy to 97.31%, representing a 
2.67% increase. 
These findings indicate that introducing low-
magnification information helps enhance the model’s 
classification capability, and as higher magnification 
information is progressively accumulated during 
training, the overall model performance is further 
optimized. 

A more detailed analysis of classification 
performance reveals that the Stepwise Cumulative 
Learning strategy provides the most significant 
improvement in the detection of Malignant cases. For 
instance, in the 400× magnification task, the Recall 
for malignant cases increased from 94.04% in Single-
Magnification training to 98.94%, representing a 
4.9% improvement. This suggests that stepwise 
learning helps the model better capture malignant 

lesion characteristics. 
In contrast, the improvement in classification 

precision for Benign cases was relatively smaller. For 
example, in the 400× magnification task, the 
Precision increased only slightly from 96.51% to 
97.39%. This discrepancy may be attributed to the 
greater complexity of malignant pathological 
features, where the stepwise learning strategy 
provides richer hierarchical information, enabling the 
model to identify malignant patterns more accurately. 

Compared to the Multi-Channel Fusion strategy, 
the primary advantage of Stepwise Cumulative 
Learning is its alignment with the observation 
sequence used by pathologists. By maintaining case 
ID consistency and emphasizing the sequential 
progression of magnification, this approach enables 
the model to leverage low-magnification information 
to refine high-magnification classification. 

In summary, the Stepwise Cumulative Learning 
strategy outperforms both Single-Magnification 
Training and Multi-Channel Fusion across all high-
magnification testing tasks, with the most significant 
improvement observed in malignant case 
identification. These findings suggest that a 
progressive learning approach incorporating low-
magnification information is a crucial method for 
enhancing the classification accuracy of pathological 
images. 

3.4  Discussion 

This study explores the impact of different 
pathological image magnifications on classification 
performance by employing three training strategies. 
However, certain limitations remain, which should be 
addressed in future research. 

First, this study employs ResNet50 as the sole 
baseline model. Although it has demonstrated strong 
performance in pathological image classification, its 
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reliance on local receptive fields may limit its ability 
to integrate cross-magnification information 
effectively. Future research could explore self-
attention-based architectures, such as ViT or Swin 
Transformer, to improve global feature extraction. 
Additionally, leveraging DenseNet or other feature-
reuse networks may enhance robustness, especially in 
small-sample scenarios. 

Second, although the EBHI dataset was used to 
validate the proposed approach, further experiments 
on larger and more diverse pathological datasets are 
necessary to assess the generalizability and stability 
of the method. Additionally, in real-world clinical 
practice, pathologists rely not only on static images 
but also on clinical history and lesion evolution over 
time. Future research should explore Multimodal 
Fusion Models, integrating multi-magnification 
information with other clinical data, to enhance 
diagnostic decision-making. 

Overall, while this study demonstrates the 
effectiveness of stepwise learning and multi-
magnification fusion, further improvements in model 
selection, dataset diversity, and clinical applicability 
are necessary to enhance the practical deployment of 
such methods in pathology. 

4  CONCLUSION 

This study systematically investigates the impact of 
multi-magnification information on pathological 
image classification by designing and validating three 
learning strategies: Single-Magnification Training, 
Multi-Channel Fusion, and Stepwise Cumulative 
Learning. The experiments, conducted using 
ResNet50 on the EBHI dataset, demonstrate the 
effectiveness of the proposed strategies in enhancing 
classification performance. 

The results confirm that the proposed strategies 
significantly enhance classification performance. In 
Single-Magnification Training, the classification 
accuracy was improved from the previously reported 
highest accuracy of 83.81% to 94.64% at 200× 
magnification through the optimization techniques 
applied in this study. Stepwise Cumulative Learning 
achieved the highest accuracy among all strategies, 
particularly in malignant pathology detection, where 
it further improved classification accuracy to 98.27% 
on 400× test images. Additionally, the study 
highlights the impact of different missing 
magnification image filling strategies, showing that 
the Strict Filtering approach yields the best 
classification performance (96.06%). 

These findings suggest that progressively 

incorporating low-magnification information 
enhances the model’s ability to extract discriminative 
features, improving overall classification accuracy. 
Moreover, this study validates the suitability of the 
EBHI dataset for multi-magnification learning 
research, providing a useful reference for future 
dataset selection. 

In summary, this study presents a novel 
optimization approach for multi-magnification 
pathological image classification, laying the 
groundwork for future advancements in intelligent 
pathology image analysis. 
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