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Abstract: In computer vision, depth estimation is a crucial task. The task is to measure the distance between each pixel 
and the camera. The accuracy and efficiency of estimation tasks have undergone a significant improvement 
due to the rise of deep learning. There are many distinct application situations for depth estimation, and the 
task can be broadly classified into two categories: stereo image depth estimation and 2D image depth 
estimation, depending on the needs of each scenario. In this paper, HR-Depth, HybridDepth, SPIdepth in 2D 
image depth estimation methods and UniFuse, NLFB, PanoFormer, OmniFusion, HiMODE in stereo image 
depth estimation methods are introduced and analysed. In addition, NYU-Depth V2, KITTI in 2D image 
dataset and Stanford3D, and Matterport3D in stereo image dataset are introduced in detail, and the 
effectiveness of these two kinds of approaches is examined and contrasted using the widely used evaluation 
indices. It is found that HybridDepth and SPIdepth perform well in 2D image depth estimation, and NLFB 
and HiMODE perform better in stereo image depth estimation. Future research in depth estimation may focus 
more on depth estimation studies of stereo images, because stereo images usually contain richer depth 
information, which can allow for higher accuracy in depth estimation. 

1 INTRODUCTION 

Depth estimate becomes a crucial element as 
computer vision advances from basic image 
identification to intricate scene comprehension. 
Using a mapping relationship from 2D picture cues to 
3D depth, the objective is to extract depth cues from 
the image and calculate each pixel's distance from the 
camera. In order to achieve applications in different 
scenes, image datasets of different scene types such 
as NYU-Depth, KITTI, Stanford3D, Matterport3D, 
etc., have been constructed, which have driven the 
research on depth estimation. As a result, depth 
estimation has found extensive use in fields like 
autonomous driving, robotics, VR, AR, 3D 
reconstruction, and security monitoring. 

As the application scenarios become wider and 
wider, the depth estimation task is gradually divided 
into two different types: 2D image depth estimation 
and stereo image depth estimation. Using 2D images 
without direct depth information, 2D image depth 
estimation seeks to determine how to create a 
mapping relationship between 2D image cues and 3D 

 
a  https://orcid.org/0009-0009-1920-1180 

depth in order to estimate each pixel's distance from 
the camera; Whereas stereo image depth estimation is 
the study of how to extract effective depth cues from 
images containing 360-degree scene information in 
the presence of aberrations or distortions, etc., in 
order to obtain depth information. 

Focusing on the above two different types of 
depth estimation research, this paper analyses and 
summarises their research progress and current status, 
collects different types of research data, and classifies 
and analyses them. Finally, it provides an outlook on 
the research development and application of depth 
estimation. 

2 METHOD 

2.1 Depth Estimation Methods For 2D 
Images 

The Eigen team was the first to use CNN for 2D 
image depth estimation in 2014, and since then, 
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numerous researchers have improved it in various 
ways based on this. Meanwhile, unsupervised deep 
learning methods have emerged, such as training the 
network by generating new viewpoint maps or using 
left and right views and video information to solve the 
depth estimation problem. Supervised means that 
there is a high dependence on training data with 
accurate depth labels, whereas unsupervised means 
that there is no need for depth-labelled data. 

2020, HR - Depth was presented in a study by 
Xiaoyang Lyu et al. This approach, which focuses on 
optimizing the depth estimation effect through two 
methodologies, is an enhanced deep network for 
high-resolution self-supervised monocular depth 
estimation. On the one hand, the jump connection in 
DepthNet is redesigned to add intermediate nodes to 
the original encoder and decoder nodes to aggregate 
features, so that the decoder can obtain high-
resolution features with richer semantic information 
and thus predict the depth map boundary more 
accurately; on the other hand, the feature fusion 
squeeze excitation (fSE) module is proposed, which 
efficiently fuses features through global average 
pooling, fully-connected layers and 1×1 convolution 
to efficiently fuse features and improve network 
performance while reducing the number of 
parameters. In addition, a lightweight network Lite - 
HR - Depth based on MobileNetV3 was constructed 
and knowledge distillation techniques were applied to 
further improve its accuracy. The benefits of this 
approach are substantial： when using Resnet-18 as 
the encoder, HR-Depth performs better than any prior 
state-of-the-art techniques with the fewest parameters 
at both high and low resolutions; Lite - HR - Depth 
contains only 3.1M parameters, yet achieves 
comparable or even better performance than 
Monodepth2 at high resolution; by redesigning the 
jump connections and introducing the fSE module, 
the accuracy of depth estimation in large gradient 
region is effectively improved, and sharper edges can 
be predicted; the high-resolution depth estimation is 
deeply analysed, which provides theoretical basis and 
practical references for subsequent studies.（Lyu、
Liu、Wang，2020） 

In 2024, HybridDepth was presented in a study by 
Ashkan Ganj et al. The method aims to address the 
problems of scale ambiguity, hardware heterogeneity 
and generalisability in depth estimation by fusing 
focused stack information and single-image prior for 
robust metric depth estimation. The process logic is 
as follows: first, the relative depth map and the metric 
depth map are generated using the single-image 
relative depth estimator and the DFF metric depth 
estimator, respectively; then, the relative depth map 

is converted into a global-scale depth map by global 
scale and displacement alignment, and a dense scale 
map is constructed; finally, the global-scale depth 
map is corrected using a deep-learning-based 
refinement layer combined with a scale map and an 
uncertainty map from the DFF module. depth map 
with pixel-level scale correction to obtain the final 
depth map. This method has significant advantages, 
surpassing existing methods on several datasets, such 
as on the DDFF12 and NYU Depth V2 datasets, with 
significant improvement in metrics such as RMSE 
compared to specific SOTA models; strong zero-
sample generalisation capability, with excellent 
performance on the ARKitScenes and Mobile Depth 
datasets; a compact model structure, with an 
inference The model is compact, with inference time 
of only 20ms and size of 240MB, which is more 
suitable for mobile device deployment than other 
models while ensuring accuracy; it effectively solves 
the scale ambiguity problem of single-image depth 
estimation, and the depth estimation is more accurate 
and consistent under different scaling levels. （Ganj
、Su、Guo，2024） 

In 2024, Mykola Lavreniuk Research introduced 
SPIdepth for self-supervised monocular depth 
estimation. The primary flow logic of this technique, 
which aims to increase depth estimate accuracy by 
fortifying the pose network, is as follows:  Use 
DepthNet to extract visual characteristics from a 
single RGB image, then use the encoder-decoder 
framework and the previously trained ConvNext to 
generate the depth map;  In order to align the depth 
map and the reference image during view 
compositing, PoseNet is utilized to estimate the 
relative poses between the input and the reference 
image. The Self Query Layer is used to capture the 
geometric cues for depth estimation, compute the 
depth intervals and generate the final depth maps 
through probabilistic linear combinations; both 
DepthNet and PoseNet are optimised for training, and 
the interference regions are filtered by an automatic 
masking strategy, which is combined with various 
loss functions to improve the model performance. 
The benefits are significant, demonstrating excellent 
performance on datasets such as KITTI, Cityscapes 
and Make3D, with accuracy surpassing many other 
methods, strong generalisation ability, excellent 
performance in dealing with dynamic scenes and 
zero-sample evaluations, and high efficiency in 
inference using only a single image, with a 
lightweight model design that is easy to integrate into 
various types of systems. （Mykola Lavreniuk，
2024） 
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2.2 Depth Estimation Methods For 
Stereo Image 

In 2021, UniFuse was proposed by Hualie Jiang et al. 
for 360° stereo depth estimation. This method aims 
at fusing the features of equirect-angular projection 
(ERP) or cubemap projection (CMP) to enhance the 
depth estimation. The process is as follows: firstly, 
the input panoramic image is subjected to ERP and 
CMP respectively, and the CMP features are 
reprojected to the ERP mesh through C2E; the U-Net 
is used as the baseline network, and the processed 
CMP features are unidirectionally fused to the ERP 
features in the hopping connection of the decoding 
stage, which is specifically achieved through the 
designed CEE fusion module, which firstly performs 
the residual modulation on the CMP features to 
reduce their discontinuities, and then uses the SE 
block to adaptively adjust the importance of the 
channels; finally, the isometric columnar projection 
depth map is output from the fused features. This is 
achieved by the designed CEE fusion module, which 
firstly modulates the residuals of the CMP features to 
reduce their discontinuities, and then adaptively 
adjusts the importance of the channels by using the 
SE block; finally, the fused features output an 
isometric bar-projected depth map. This approach has 
several noteworthy benefits:  State-of-the-art 
performance is attained on the four frequently used 
datasets, and the benefit is evident on the largest real 
dataset Matterport3D; the CEE fusion module is 
made to better fuse the two projected features and 
reduce the number of parameters; the proposed one-
way fusion framework fuses the CMP features to the 
ERP branch only in the decoding stage, which is more 
efficient than the two-way fusion; the model 
complexity is low. Low complexity, UniFuse based 
on ResNet-18 has a small complexity increase but 
significant performance increase compared to 
BiFuse, and can maintain real-time and good 
performance on MobileNetV2; strong generalization 
ability, outperforms BiFuse when migrating between 
different datasets, and is able to generate reasonable 
depths in regions with no real depth. （Jiang、Sheng
、Zhu，2021） 

In 2021, NLFB was proposed by Ilwi Yun et al. to 
improve the 360 °  monocular depth estimation 
method. The method consists of three main parts: 
first, proposing a self-supervised learning method 
using only gravity-aligned videos, which reduces the 
dependence on depth data by mining the relationship 
between the depths of consecutive scenes, and 
constructing image, depth, and pose consistency loss 

to train the model; secondly, using a jointly 
supervised and self-supervised learning approach that 
uses supervised learning to compensate for the 
shortcomings of self-supervised learning in areas that 
reflect light, for instance, and self-supervised learning 
to improve the supervised learning features and 
increase the model's ability to adapt to data that is not 
visible; thirdly, the network can preserve global 
information when reconstructing depth by creating a 
non-local fusion block (NLFB), which applies non-
local operations to the features entering the fusion 
block. The advantages of this method are significant: 
Transformer is successfully applied to 360° depth 
estimation, which outperforms previous methods on 
multiple benchmark datasets and reaches the current 
optimal level; the inaccuracy of supervised learning's 
predictions because of data scarcity and the erratic 
performance of self-supervised learning are both 
successfully improved by the joint learning approach; 
the non-local fusion block better preserves the global 
information and improves the accuracy; the self-
supervised learning part requires only gravity-aligned 
videos, which reduces the dependence on depth data 
and shows advantages in the comparison with other 
self-supervised learning methods. （Yun、Lee、
Rhee，2021） 

In 2022, Shen et al. proposed the PanoFormer 
model, which aims to solve the problem of depth 
estimation of indoor 360°  panoramic images. It 
starts by designing a hierarchically structured 
network architecture in which the input stems 
perform the initial processing of the image, followed 
by the encoder and decoder progressively extracting 
and reducing the features through multiple 
hierarchical stages, where the key lies in the 
collaborative work of the positional embedding, PST 
blocks and convolutional layers included in each 
stage. In terms of feature processing, a pixel-level 
patch-dividing method is innovatively adopted to 
finely divide the input features and manually create 
tokens, which helps the network to capture more 
detailed features, differentiating it from the traditional 
Vision Transformer processing. In order to cope with 
the distortion problem of panoramic images, the 
relative position embedding is implemented using the 
Spherical Token Locating Model (STLM), which 
effectively reduces the effect of distortion on depth 
estimation by transforming operations between 
different domains. Meanwhile, to improve the 
perception of the panoramic geometric structure and 
provide important information for depth estimation, 
the enhanced panoramic self-attention mechanism 
with token flow, which is based on the classic Vision 
Transformer block, allows the final position of the 
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tokens to be determined by the initialization and 
learnable flow during the computation of the attention 
scores, token flow, and resampled features. In the 
supervised part of model training, the objective 
function is designed by combining the inverse Huber 
(Berhu) loss and gradient loss, and the loss value is 
calculated according to a specific formula, which 
drives the model to be optimized continuously. 
Furthermore, two panorama-specific metrics—the left-
right consistency error (LRCE) and the polar root 
mean square error (P-RMSE)—are suggested in light 
of the features of panoramic images. The P - RMSE 
focuses on measuring the depth estimation accuracy 
of the polar regions, while the LRCE is used to assess 
the depth consistency of the left and right boundaries, 
and together, they provide a comprehensive and 
tailored evaluation criterion for panoramic depth 
estimation to ensure the effectiveness and accuracy of 
the model in the panoramic image depth estimation 
task. （Shen、Lin、Liao，2022） 

In 2022, Li et al. proposed the OmniFusion 
method for 360-degree monocular depth estimation. 
Given the presence of spherical distortion in 360 
images affecting depth estimation, the method first 
converts the ERP input images into a set of tangent 
images using spherical projection, which can be used 
to predict the depth map using a conventional CNN 
architecture due to its lack of distortion. At the same 
time, considering that the independence of tangent 
image prediction of depth can cause problems, a 
geometric embedding network is introduced to 
combine pixel sphere coordinates with image centre 
coordinates to provide geometric information, which 
is fused with image features at an early stage of the 
encoder to enhance depth consistency. To 
compensate for the lack of overall information 
brought by decomposing ERP, Transformer is used to 
globally aggregate the image block features, and after 
convolutional dimensionality reduction and 
spreading to add positional embedding, the features 
are adjusted by self-attention. In addition, let the 
network predict the confidence maps, merge the 
depths in a weighted average manner, and add a 
regression layer to the decoder and transform the 
domain. In order to enhance the quality of depth 
estimation and successfully address the issue of 360-
image depth estimation, an iterative depth refinement 
approach is also created to enhance the geometric 
embedding based on the iteratively updated depth 
information.（Li、Guo、Yan，2022） 

In 2022, HiMODE was proposed by Masum Shah 
Junayed et al. as an innovative method for depth 
estimation of 360-degree panoramic images. The 
technique, which is based on a CNN+Transformer 

hybrid architecture, attempts to efficiently address the 
issues of data loss and distortion in the depth 
estimation of panoramic images. Architecturally, it 
employs a deeply separable convolutional CNN 
backbone network combined with a feature pyramid 
network that is capable of extracting high-resolution 
features near the edges, thereby reducing image 
distortion and artefacts. The Transformer module, on 
the other hand, plays an important role, with an 
encoder that enhances the ability to encode depth 
features by capturing the relationships between pixels 
and global information in the image through self-
attention and cross-attention mechanisms; and a 
spatial and temporal patch (STP) and a multi-head 
self-attention (MHSA) layer in the decoder, which 
can process and recover encoded features to generate 
accurate depth maps. In addition, the method 
introduces linear projection and positional coding, 
where the feature maps extracted by the CNN are 
appropriately processed to fit the input requirements 
of the Transformer, and positional coding is utilised 
to enhance the understanding of the image features. 
By lowering the number of parameters and 
computational expenses, the spatial residual block 
(SRB) setting contributes to the system's increased 
stability and performance. Conversely, the contextual 
adjustment layer makes up for the lack of depth data 
and increases the accuracy of depth estimation by 
combining the feature maps that the CNN retrieved 
with the depth maps that the Transformer produced. 
The advantages of HiMODE include the following: 
firstly, it achieves excellent performance on multiple 
datasets and is able to estimate the depth map 
accurately, especially in recovering surface details 
and processing complex scenes. Second, the 
technique is very flexible, robust to the size of the 
input image, and can be used and trained on datasets 
of various sizes. In addition, HiMODE's hybrid 
architecture combines the advantages of CNN and 
Transformer to provide an effective solution for depth 
estimation of 360-degree panoramic images with a 
wide range of applications. （ Junayed 、

Sadeghzadeh、Islam，2022） 

3 EXPERIMENTS 

3.1 Datasets 

NYU-Depth V2 is a classical dataset focusing on 
indoor scene understanding, with simultaneous 
acquisition of colour (RGB) images and depth 
(distance) information by Microsoft Kinect sensors, 
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containing 1449 pairs of densely annotated RGB and 
depth images (with each object annotated with a 
category and an individual number), as well as 464 
diversified indoor scenes (e.g., home, office) from 3 
cities ) of more than 400,000 frames of raw, 
unlabelled video from three cities. The dataset is 
divided into three parts: Labeled (preprocessed 
labelled data with complete depth information), Raw 
(raw sensor data), and a supporting toolkit, which is 
widely used to train models for depth estimation, 
semantic segmentation, 3D reconstruction, etc., and 
is an important research foundation for robotics, 
AR/VR, and other fields. 

KITTI is a reputable dataset in the field of 
automated driving that was jointly launched by the 
Toyota Technological Institute (TTI) and the 
Karlsruhe Institute of Technology (KIT) in Germany. 
It contains rich data gathered by a range of sensors 
(such as RGB cameras, stereo cameras, and 3D 
LIDAR) in real traffic scenarios, covering complex 
environments like cities and villages.Although its raw 
data does not provide fine annotations for semantic 
segmentation (e.g., pixel-level classification), the 
researchers manually annotated some of the images 
for different tasks (e.g., road detection, object 
recognition) involving categories such as roads, 
vehicles, pedestrians, and sky. This dataset has 
become a core test benchmark for autonomous 
driving algorithm development (e.g., environment 
perception, depth estimation, visual localisation) due 
to its realistic scenarios and diverse data. 

The Stanford3D dataset is an important 3D 
computer vision dataset, which is mainly collected 
from indoor environments, covering several different 
scenes such as offices, bedrooms, and so on. The 
dataset contains rich data content, including a large 
number of 3D models in the form of triangular 
meshes, accompanied by information such as 
materials and colours, and the corresponding RGB 
images and depth images. At the same time, the 
dataset also provides detailed annotation information, 
including object category annotation, geometric 
annotation (e.g., 3D coordinates, dimensions, shapes, 
etc.) and semantic annotation (e.g., object functions, 
uses, etc.). These annotation information provides 
important support for tasks such as 3D model 
reconstruction, object recognition and classification, 
and scene understanding and interaction, making the 
Stanford3D dataset widely valuable for research and 
uses in the domain of computer vision. 

A sizable RGB-D dataset for interior scene 
comprehension is called Matterport3D. 10,800 
panoramic views of 90 actual building-scale sceneries 
made up of 194,400 RGB-D photos are included. A 

residential building with several rooms and floors that 
are labeled with surface configurations, camera 
postures, and semantic segmentation makes up each 
scene. 

3.2 Evaluation Metrics 

Indicators of the error or departure of a prediction 
from the actual value include Absolute Relative Error 
(Abs Rel), Squared Relative Error (Sq Rel), Root 
Mean Square Error (RMSE), and Threshold Precision 
Indicators (δ < 1.25, δ < 1.25², δ < 1.25³);  Abs 
Rel is the average of the absolute values of the relative 
errors between the true and predicted values; the 
lower the value, the better the model performs and the 
closer the prediction is to the true value;  The average 
of the squares of the relative errors between the true 
value and the anticipated value is known as Sq Rel.  
The model performs better and the forecast result is 
closer to the true value when the value is less. Sq Rel 
is the average of the squares of the relative errors 
between the predicted value and the true value, and 
again the smaller the value, the better the model 
performance; RMSE calculates the difference 
between the predicted value and the true value, and 
seeks for the average of the squares of the difference 
and then opens the square root, and the smaller the 
value is, the closer the predicted result is to the true 
value, and the better the model prediction ability is; 
and Threshold Precision is a metric that quantifies 
how much the actual depth value deviates from the 
projected depth value.  The percentage of pixels in a 
certain threshold range is the ratio of the predicted 
depth value to the true depth value; the higher the 
ratio, the more accurately the depth estimate is made 
under the associated threshold value. 
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3.3 Experiment Data 

Table 1: Experimental data on depth estimation methods for 2D images 

Dataset Method Abs Rel RMSE δ  
2δ  

3δ
NYU-Depth V2 HybridDepth 0.026 0.128 0.988 1.000 1.000 

 Metric3Dv2 0.047 0.183 0.989 0.998 1.000 
 Marigold 0.055 0.224 0.964 0.991 0.998 
 Depth 

Anything 
0.056 0.206 0.984 0.998 1.000 

 UniDepth 0.058 0.201 0.984 0.997 0.999 
KITTI Monodepth2 0.115 4.701 0.879 0.961 0.982 

 PackNrt-SfM 0.107 4.538 0.889 0.962 0.981 
 HR-Depth 0.104 4.410 0.894 0.966 0.984 
 GEDepth 0.048 2.044 0.976 0.997 0.999 
 EVP 0.048 2.015 0.980 0.998 1.000 
 SQLdepth 0.043 1.698 0.983 0.998 0.999 
 LightedDepth 0.041 1.748 0.989 0.998 0.999 
 SPIDepth 0.029 1.394 0.990 0.999 1.000 

 
As shown in table 1, the minimum values of Abs Rel 
and RMSE under different datasets are marked in 
bold, and the maximum value of threshold accuracy 
index is marked in bold, which shows that the current 

2D image depth estimation methods of HybridDepth 
and SPIDepth have better performance, and the 
model prediction accuracy is higher. 

Table 2: Experimental data on depth estimation methods for stereo images 

Dataset Method Abs Rel Sq Rel RMSE δ 2δ  
3δ  

Stanford3D HoHoNet 0.0901 0.0593 0.4132 0.9047 0.9762 0.9933 
 Omnidepth 0.1009 0.0522 0.3835 0.9114 0.9855 0.9958 
 Bifuse 0.1214 0.1019 0.5396 0.8568 0.9599 0.9880 
 SvSyn 0.1003 0.0492 0.3614 0.9096 0.9822 0.9949 
 NLFB 0.0649 0.0240 0.2776 0.9665 0.9948 0.9983 
 PanoFormer 0.0405 - 0.3083 0.9394 0.9838 0.9941 
 UniFuse 0.1114 - 0.3691 0.8711 0.9664 0.9882 
 OmniFusion 0.0950 0.0491 0.3474 0.8988 0.9769 0.9924 
 HiMODE 0.0532 0.0207 0.2619 0.9711 0.9965 0.9989 

Matterport3D SvSyn 0.1063 0.0599 0.4062 0.8984 0.9773 0.9934 
 Omnidepth 0.1136 0.0671 0.4438 0.8795 0.9795 0.9950 
 HoHoNet 0.0671 0.0417 0.3416 0.9415 0.9838 0.9942 
 Bifuse 0.1330 0.1359 0.6277 0.8381 0.9444 0.9815 
 NLFB 0.0700 0.0287 0.3032 0.9599 0.9938 0.9982 
 PanoFormer - - 0.3635 0.9184 0.9804 0.9916 
 UniFuse 0.1063 - 0.4941 0.8897 0.9623 0.9831 
 OmniFusion 0.0900 0.0552 0.4261 0.9189 0.9797 0.9931 
 HiMODE 0.0658 0.0245 0.3067 0.9608 0.9940 0.9985 

 
As shown in table 2, the minimum values of Abs Rel, 
Sq Rel, RMSE under different datasets are boldly 
marked, and the maximum value of the threshold 
accuracy index is boldly marked, which indicates that 
HiMODE, NLFB, and PanoFormer have performed 
better than other stereo image depth estimation 

techniques in recent years, and that the model 
prediction accuracy is higher. 
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4 DISCUSSION 
Both 2D image depth estimation and stereo image 
depth estimation have their own shortcomings. 2D 
image depth estimation has difficulties in data 
acquisition and annotation, the model has limited 
performance in dealing with complex scenes, lighting 
changes and object occlusion, and feature extraction 
is insufficient with high model complexity and 
computational cost. Future research directions 
include data enhancement, model optimisation, and 
application scenario expansion, such as synthetic 
data, innovative neural network structure, and fusion 
of multimodal information. Stereo image depth 
estimation, on the other hand, is more complex in data 
acquisition and processing, and the model has 
challenges in edge and detail capture, global and local 
information fusion, and special scene processing, as 
well as high model complexity and computational 
cost. Future research can be carried out by optimising 
the dataset, improving the model structure, fusing 
multi-scale and multi-modal information, and 
improving the real-time performance for better 
application in augmented reality, virtual reality, 
intelligent robotics and autonomous driving. 

5 CONCLUSION 

A crucial task in computer vision, depth estimation 
measures the distance between each pixel in an image 
and the camera. This information is vital for many 
applications, including robotics, automatic driving, 
VR, AR, 3D reconstruction, security monitoring, and 
more. It also has significant research implications. 
The accuracy and efficiency of depth estimation have 
improved significantly with the advent of deep 
learning, and it is currently primarily separated into 
two categories: stereo image depth estimation and 2D 
image depth estimation. In 2D image depth 
estimation, HR-Depth optimises depth estimation by 
redesigning jump connections and introducing fSE 
modules, HybridDepth fuses focused stack 
information and single-image a priori to solve scale 
ambiguity, and SPIdepth strengthens the pose 
network to improve accuracy, which have shown 
excellent performance on multiple datasets. In stereo 
image depth estimation, UniFuse fuses different 
projection features, NLFB combines self-supervised 
learning with non-local fusion blocks, PanoFormer 
adopts innovative network architectures and 
strategies to deal with distortion, OmniFusion solves 
the problem of spherical distortion by using spherical 
projection and Transformer, and HiMODE reduces 

distortion by using a hybrid architecture of CNN+ 
Transformer. Transformer hybrid architecture to 
reduce distortion and data loss, each of these 
approaches has its own advantages in depth 
estimation of complex scenes. However, at present, 
2D image depth estimation suffers from the problems 
of difficult data acquisition and annotation, limited 
ability of the model to deal with complex scenes, 
insufficient feature extraction, and high model 
complexity and high computational cost, etc. Stereo 
image depth estimation also faces the challenges of 
data acquisition and processing, edge detail capture, 
global and local information fusion, special scene 
response, and model complexity and computational 
cost. In the future, depth estimation research can be 
carried out in various aspects, such as at the data level, 
solving data-related problems by synthesising data 
and optimizing datasets; at the model level, 
innovating neural network structures, simplifying 
models, and fusing multi-scale and multi-modal 
information; at the application level, further 
expanding to augmented reality, virtual reality, 
intelligent robotics, and automated driving scenarios, 
and improving real-time and accuracy, in order to 
promote the depth estimation technology to a wider 
range of fields. estimation technology to be widely 
used and developed in more fields. Meanwhile, since 
stereo images usually contain richer depth 
information, such methods may become more and 
more popular in the research of depth estimation. 
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