
Research on Mapreduce Framework Based on Serverless Computing

Shuheng Zhou a
School of Economics and Management, Harbin Institute of Technology, Weihai, Shandong, 264209, China

Keywords: Big Data, Parallel Computing, MapReduce, Serverless Computing.

Abstract: As an important framework for handling big data, MapReduce has the ability to simplify complex computing
tasks by means of parallel computing. However, the conventional MapReduce framework suffers from issues
like high resource consumption and limited real-time capabilities. Fortunately, serverless computing has the
advantage of automatic expansion and shrinking, fast power-up, low latency, and high efficiency of resource
utilization, providing methods to improve such drawbacks. Therefore, this study tries to improve the behavior
of the MapReduce framework through serverless computing. This study successfully implements the “word
count” function of the adjusted framework through the ALiYun serverless computing platform and compares
its performance with that of conventional MapReduce. In accordance with the experimental results, despite
occupying more space, serverless computing evidently cuts function execution time, effectively improving
the efficiency of the framework. Specifically, the adjusted framework works 19. 42 times faster than
conventional MapReduce. Research has shown that improving the MapReduce framework through serverless
computing can significantly improve computing efficiency, especially in terms of processing speed,
demonstrating the potential of serverless computing in big data processing.

1 INTRODUCTION

In contemporary times, big data featuring great
volume, great variety, and great velocity has become
a main focus of many research domains of data
analysis work (Diwakar & Abdul, 2018).

To cope with massive amounts of data, the
MapReduce programming framework is invented.
Minocha&Singh (2016) pointed out that MapReduce
can slice complex computing tasks into simple ones
by parallel computing, thus improving efficiency. For
example, the average time consumption of a
distributed cloud-computing text classifier based on
MapReduce is 88. 55s, apparently lower than that of
means (137. 38s) and that of naive Bayes (130. 23s)
(Jiang, 2021). However, the object for conventional
MapReduce tends to be offline and static, posing
restrictions in terms of the real-time capability of the
framework while consuming much time and space for
maintenance (He, 2021). To overcome such
challenges, serverless computing has provided an
innovative strategy. Researchers have tried
combining big data processing with serverless
computing to cut down the cost and complexity of big
data processing(Yang et al.,2022).

a https://orcid.org/0009-0007-5245-2593

Besides, Cai et al. (2024) proposed SPSC, a
stream processing framework based on serverless
computing platforms. The SPSC framework has
improved the problem of poor resource utilization and
high latency through discretized processing and
automatic adjustment of computing power (saving 10.
8% of the cost on average, compared to Ali Flink).
Therefore, if taking advantage of serverless
computing’s ability to scale up and down
automatically, MapReduce can also perform more
efficiently and flexibly in data processing tasks.

This study has implemented a word count based
on Function Computing (FC) and Object Storage
Service (OSS), slicing text data and counting the
frequency of each word. Then, it made the
comparison of time and space taken by each Map
function and Reduce function, thus looking into how
parallel computing based on serverless computing
affects the efficiency of MapReduce.

Zhou, S.
Research on Mapreduce Framework Based on Serverless Computing.
DOI: 10.5220/0013679900004670
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 2nd International Conference on Data Science and Engineering (ICDSE 2025), pages 133-136
ISBN: 978-989-758-765-8
Proceedings Copyright © 2025 by SCITEPRESS – Science and Technology Publications, Lda.

133

2 RESEARCH METHOD

2.1 Theoretical Basis

The theoretical basis of this study mainly consists of
Serverless computing and MapReduce.

Serverless computing, a cloud computing
paradigm abstracting server management, allows
developers to focus on coding instead of the
underlying infrastructure (Toosi et al., 2025). In the
meantime, serverless computing has the advantage of
pay-as-you-use, automatic control of scale, and ease
of maintenance(Che,2022). By shortening working
time and cutting down the cost, this change in the
programming paradigm has brought about changes in
methods of application development(Puliafito et al.,
2024).

MapReduce is a programming model and a
framework for processing massive data, which
contains two main functions, Map and Reduce. After
the whole data is put into the map function, some
<key, value> pairs are generated for further
processing. Then, the reduce function will capture
<key, value> pairs with the same keys, combining
their values and generating the final result (Minocha
& Singh, 2016).

2.2 Experiment

MapReduce framework based on serverless
computing platform (taking wordcount as an example)

2.2.1 Choice of Data

The data for this experiment comes from English
Novel Net (novel. tingroom. com). This website has
collected 5663 common English novels and
biographies, the content of which shows great
authority and is of heavy value in terms of education
and research.

This study has downloaded two novels as
different datasets (Jane Eyre for dataset1 and The
Adventures of Tom Sawyer for dataset2), and the data
amount of dataset1 (1051kB) is far greater than that
of dataset2 (479kB).

2.2.2 Design

A. Overall Design
Fig. 1 illustrates the architecture of MapReduce.
Algorithm. 1 is the pseudo-code for the Map function
of word count based on MapReduce. Through FC and
OSS provided by Aliyun, this study develops web
functions in a serverless environment, implementing
MapReduce distributed computing to text data
previously stored in the OSS database. Moreover, this
study employs the idea of serial simulation of
parallelism, inferring the optimal time cost of parallel
computing (In a case where the overload brought by
communication is not taken into account) by the
maximum time consumption of the workers.

Algorithm 1: Pseudocode for wordcount based on MapReduce (Tang et al.,2024).

Algorithm 1

Map Function
Input: document
Map Function Process:
for each word in document:

emit (word, 1)//Emit each word along with the number 1 as a key-value pair
Reduce Function Input: list of key-value pairs (word, count)
Reduce Function Process:
sum=0

for each count in list of counts:
sum+=count//Sum all the counts for each word
emit (word, sum) //Emit the word and its total count

ICDSE 2025 - The International Conference on Data Science and Engineering

134

Figure 1: Architecture of MapReduce (Shukla, Alim, 2018).

B. Map Design
In the map part, workers carry out tasks as below.

1. Using the SDK of Aliyun OSS and provided
parameters (Access Key ID, Secret, Endpoint, and
Bucketname), extract target text data for processing
from the designated storage bucket.

2. Split the input data into a list of words and count
the number of occurrences for each word.

3. Create a text file for each word. Name the file
as the word itself, and the content of the file is the
corresponding number of occurrences.

4. Write these to the specified bucket. If a file with
the same name already exists in the bucket, the
content of the txt file (word occurrence counts) will
be summed.
C. Reduce Design
In the reduced part, workers carry out tasks as below.

1. extract data produced by map functions from
the designated storage bucket. And use a dictionary to
record these <key, value> pairs.

2. Transform the dictionary into json file and write
it into the bucket.

By adjusting the “Prefix” parameter, each reducer
processes a designated part of the data. For instance,
some workers can especially handle words starting

with “A”. In this way, it implements parallel
computing. This part also compares the efficiency of
parallel computing performed by 26 workers and that
of serial computing performed by 1 worker.

3 RESULTS

In terms of validity, parallel computing and serial
computing perform equally. Both parallel computing
and serial computing can generate correct <key, value>
pairs in the map part and write the proper json file into
the designated bucket.

However, parallel computing and serial
computing vary greatly in time and space overload.
Time overload is labeled by execution time, in other
words, time consumed for execution of the business
code of a function, not including time taken for
preparation of function computing platform and code
packages.

Space overload means the maximum of the space
occupied in the executive process. Table 1 and Table
2 compare performances of different computing
methods in dataset1 and dataset2, respectively.

Table 1: Performances of different computing methods in dataset1

Framework Computing Method Execution Time Space overload
Map Parallel 26s763ms 1960. 42MB

Serial 8min25s307ms 208. 25MB

Reduce Parallel 21s294ms 1200. 68MB
Serial 6min4s311ms 60. 19MB

The performances of functions show the same tendency in both datasets. Parallel computing always consumes
less time than serial computing. While in terms of space overload, parallel computing consumes more.

Research on Mapreduce Framework Based on Serverless Computing

135

Table 2: Performances of different computing methods in dataset2

Framework Computing Method Execution Time Space overload

Map
Parallel 15s676ms 1744. 05MB
Serial 3min3s860ms 106. 25MB

Reduce
Parallel 6s241ms 1573. 60MB
Serial 1min40s903ms 51. 94MB

4 DISCUSSION

This study expatiates a frame of MapReduce based on
a serverless platform and uses it to count word
occurrences in 2 datasets. Taking advantage of cloud
computing and cloud storage, the study addresses the
problem that MapReduce is a local operation instead
of an online operation, allowing MapReduce to
process online data and improving its real-time
capability.

Besides, this study compares performances of
parallel computing and serial computing based on the
MapReduce framework, successfully confirming that
parallel computing contributes to carrying out
computing tasks that are massive and complex.

The shortcomings are as follows. First, the
number of objects in a bucket is far more than that one
line of code can extract (1000). Therefore, in the
serial computing task, repeated traversal are made,
bringing extra time and space overload. Second, Grag
(2021) proposes that to use MapReduce,
programmers’ manual work to divide an algorithm
into Maps and Reductions is unavoidable. This
problem has not been addressed in this study. Third,
Grag (2021) also notes that MapReduce is weak in
processing large sets of graphs. In future works, we
will try to optimize the framework of Pregel proposed
by Google.

5 CONCLUSIONS

This study successfully implements the word count
application of MapReduce based on a serverless
platform. Besides, the efficiencies of parallel
computing and serial computing are compared and
analyzed in this study. The result indicates that
MapReduce based on serverless computing can
evidently cut down time overloads. Parallel trades off
space for time, performing efficiently in data
processing.

However, the study also shows that MapReduce
does not do well when taking convenience into
account. To implement a set of MapReduce jobs,
complicated scripts are always unavoidable. Thus,

while MapReduce remains a powerful tool for big
data processing, its adoption may be hindered by the
complexity involved in setting up and managing
MapReduce jobs, suggesting a need for further
research into simplifying these processes or exploring
alternative technologies that offer a better balance
between performance and convenience.

REFERENCES

Adel, N.T., Javadi, B., Iosup, A., Smirni, E. and Dustdar,
S., 2025. Serverless computing for next-generation
application development. Future Generation Computer
Systems, 107573-107573.

Che, Y., 2022. Serverless computing. Computer and
Network, 1, pp. 36–37.

Garg, U., 2021. Data analytic models that redress the
limitations of MapReduce. International Journal of
Web-Based Learning and Teaching Technologies
(IJWLTT), 6, pp. 1–15.

He, B., 2021. Big data computation analysis based on
MapReduce. Computer Programming Techniques and
Maintenance, 12, pp. 97–100.

Jiang, Q., 2021. Distributed cloud computing data mining
methods based on MapReduce. Journal of Jingdezhen
College, 6, pp. 106–108+128.

Puliafito, C., Rana, O., Bittencourt, F.L., et al., 2024.
Serverless computing in the cloud-to-edge continuum.
Future Generation Computer Systems, 161514-517.

Minocha, S. and Singh, H., 2016. MapReduce technique:
Review and SWOT analysis. International Journal of
Engineering Research, 6, pp. 531–533.

Shukla, D. and Alim, A., 2018. A review on big data:
Views, categories and aspects. International Journal of
Computer Applications, 18, pp. 34–42.

Tang, J., Du, W. and Zhou, Y., 2024. Application of the
MapReduce model in large-scale data parallel mining.
Intelligent IoT Technology, 2, pp. 38–42.

Yang, B., Zhao, S. and Liu, F., 2022. Research on serverless
computing technology: A review. Computer
Engineering and Science, 4, pp. 611–619.

Zinuo, C., Zebin, C., Xinglei, C., Ruhui, M., Haibing, G.
and Rajkumar, B., 2024. SPSC: Stream processing
framework atop serverless computing for industrial big
data. IEEE Transactions on Cybernetics.

ICDSE 2025 - The International Conference on Data Science and Engineering

136

