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Abstract: Federated contrast learning has shown great potential in privacy-sensitive scenarios, enabling multiple parties 
to train models using their local data, rather than sharing privacy data. Model-contrastive Federated learning 
(MOON) effectively improves the accuracy of graphical contrast learning. However, after researching 
SimCLR which is a part of the origin of the MOON algorithm, it is found that the MOON federal learning 
algorithm does not consider the influence of the change of hyperparameter (temperature) on the accuracy of 
its model. This article will focus on the model comparison federated learning framework MOON, and propose 
an adaptive temperature control mechanism based on simulated annealing, aiming at the static set limit of its 
key hyperparameter, contrast loss temperature (τ). The temperature attenuation function is designed to achieve 
global-local optimization of dynamic balance - the initial high-temperature promotion model explores the 
global feature space and later low-temperature enhanced local fine-grained optimization. The experiments in 
this paper show that the dynamic temperature can slightly improve the accuracy of the MOON model. This 
work systematically quantifies the influence of temperature parameters on model contrast federation learning.

1 INTRODUCTION 

According to research by the World Innovation and 
Change Management Institute, AI is becoming an 
important part of human life which constitutes at least 
10% of day-to-day activities (World Innovation and 
Change Management Insititute, 2024). Intelligent 
systems often leverage machine learning capabilities 
to enhance their performance(Janiesch et al., 2021). 
Meanwhile, the data requirement of deep learning is 
huge. However, data is usually stored in different 
parties in practice (e.g., companies and self-users). 
Due to increasingly stringent privacy laws of different 
countries, parties cannot train a model by directly 
uploading their data to a centralized server (Voigt & 
Bussche, 2017). 

Therefore, Federated Learning which is enhanced 
to preserve the privacy of individuals’ data appears. 
Compared to traditional machine learning, Federated 
Learning is a distributed learning framework that 
allows multiple entities to work collectively without 
sharing sensitive data (Jafarigol et al., 2023). FedAvg 
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is one of the popular federated learning algorithms 
(Brendan et al., 2016). In each round of the algorithm, 
individual participants submit their locally trained 
models to the central server, where these models are 
integrated to improve the overarching global model. 
Therefore, the raw data will not be changed in the 
whole process. 

Due to the limitation of most deep learning 
methods when applying to image datasets, Model-
Optimized Federated Learning (MOON) was 
proposed (Li et al., 2021). MOON algorithm proposes 
a novel perspective based on FedAvg. Briefly, the 
local model is adjusted by reducing the discrepancy 
between the representations learned by the local 
model and the global model in MOON. By the way, 
the accuracy of MOON is significantly greater than 
other methods when facing an image dataset (Li et al., 
2021). 

This paper presents an improved version of the 
MOON algorithm that adjusts the hyperparameter 
temperature (τ) to increase the diversity of model 
outputs. This paper uses simulated annealing. SA 
draws inspiration from the annealing process in 
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metallurgy, beginning with an initial solution and a 
high temperature. Temperature gradually decreases 
as time goes by. This helps fine-tune the model's 
outputs and provides a more effective framework for 
federated learning, especially in contrastive learning 
tasks. This paper also complicates the neural network 
structure by introducing the Transformer architecture. 
This allows the model to better capture long-range 
dependencies and improve the model’s overall 
performance. 

2 BACKGROUND AND RELATED 
WORK 

2.1 Federated Learning and MOON 

 
Figure 1: FedAvg framework (Original) 

FedAvg is the most commonly used algorithm in 
federated learning. The operational framework of 
FedAvg is shown in Figure 1. Each round of FedAvg 
consists of four steps. First, the server initializes the 
global model and sends a global model to all parties. 
Each party then uses the local data set to perform a 
predetermined round of random gradient (SGD) 
descent to update its local model. The parameters of 
the local model are sent back to the server after the 
update is complete. Finally, after accepting the local 
model parameters of all clients, the server aggregates 
the parameters by weighted average, thus generating 
a new model for the next round of training. 

Current research on FedAvg on non-independent 
equally distributed data (non-IID) is mainly divided 
into two types: improvements to the local training 
part (i.e., step 2 of Figure 1) and improvements to 
server-side aggregation (i.e., step 4 of Figure 1). This 
paper will research and further improve the current 
MOON Federation learning algorithm based on 

FedAvg, which is an improved method for the local 
training part. 

The MOON federated learning algorithm is 
designed to enhance model performance within 
supervised learning contexts by contrast learning. 
SimCLR framework is used as the core method of 
contrastive learning in the MOON algorithm (Chen et 
al., 2020). Therefore, based on FedAvg, a new model 
contrastive loss term (i.e., ℓୡ୭୬) proposed by MOON 
has been added to the traditional loss term of 
supervised learning (i.e., cross entropy loss  ℓ௦௨௣ ). 
The aim of ℓ௖௢௡  is to both narrow the difference 
between the local model 𝑧  and the global model 𝑧௚௟௢௕  and extend the difference between the local 
model 𝑧 and the last local model 𝑧௣௥௘௩. Below is the 
formula of ℓ௖௢௡. 

 ℓ௖௢௡ = −𝑙𝑜𝑔 ୣ୶୮ (௦௜௠(௭,௭೒೗೚್)/ఛୣ୶୮ (௦௜௠(௭,௭೒೗೚್ )/ఛ)ାୣ୶୮ (௦௜௠(௭,௭೛ೝ೐ೡ )/ఛ)(1) 

Where τ represents a temperature parameter. 
Therefore, the total loss function has become ℓ =ℓ௦௨௣ + µℓ௖௢௡. 

2.2 Simulated Annealing 

The Metropolis criterion is the origin of the Simulated 
Annealing (SA) algorithm (Chen et al., 2007). SA is 
a heuristic random search algorithm. SA's core 
principle is to allow a small degree of deterioration 
during total search. This is achieved by a probabilistic 
mechanism. This mechanism helps SA avoid getting 
stuck in a local optimum too early and increases the 
chances of finding the global optimum. A large of 
studies indicate SA is an effective optimization 
technique capable of achieving the optimal solution 
with a probability of 1 (Li et al., 2020). In 1983, 
Kirkpatrick effectively brought the concept of 
annealing into the realm of optimization (Kirkpatrick 
et al., 1983). SA is widely used in optimization 
problems. It's popular because it can search locally 
really effectively and solves problems quickly. 

It adds SA during training. SA can boost 
exploration and prevent the model from getting stuck 
in local optima in federated learning. This helps the 
network break free from suboptimal setups and boosts 
its generalization performance. This paper integrates 
SA into MOON to dynamically adjust 
hyperparameter temperature. The code presented in 
this paper determines whether to accept a new 
temperature by calculating the acceptance probability 
between the new and old solutions. The formula for 
calculating the acceptance probability of the 
hyperparameter temperature is as follows: 
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 P = ቊ 1.0, if new_loss < old_lossexp ቀ୭୪ୢ_୪୭ୱୱି୬ୣ୵_୪୭ୱୱ୲ୣ୫୮ୣ୰ୟ୲୳୰ୣ ቁ , otherwise (2) 

old_loss and new_loss represent the loss values of 
the old and new solutions, respectively, and 
temperature denotes the current temperature. If the 
new solution yields a lower loss than the old one, it is 
directly accepted. In another situation, the new 
solution is accepted with the probability calculated as 
described earlier. In this paper, the temperature 
update is closely related to the gradients during 
training. Specifically, the updated formula for the 
temperature is as follows: 

 temperature = max ቀtemperature × ቀ1 − σ ×|ୡ୳୰୰ୣ୬୲_୥୰ୟୢି୮୰ୣ୴_୥୰ୟୢ|୮୰ୣ୴_୥୰ୟୢା஫ ቁ , min_temperatureቁ (3) 
current_grad and prev_grad represent the gradient 

norms of the current and previous iterations, 
respectively. α is a parameter that controls the rate of 
temperature change, and ε is a small value used to 
prevent division by zero. In this paper, the 
temperature adjustment is designed to depend not 
only on the cooling rate but also on the variation in 
gradients. When the gradient change is large, the 
temperature decreases rapidly, reducing the 
probability of accepting suboptimal solutions. 
Conversely, when the gradient change is small, the 
temperature decreases more slowly, maintaining a 
higher level of exploration. 

2.3 Motivation 

The importance of the hyperparameter temperature 
(τ) is ignored in MOON federation contrast learning. 
In this article, the hyperparameter temperature (τ) will 
be emphasized. It is found from formula (1) that the 
hyperparameter temperature (τ) is responsible for 
controlling the "sensitivity" of similarity calculation 
in the contrast loss function, which is similar to the 
usage in SimCLR (Chen et al., 2020). The higher 
temperature makes the scaling effect smaller, so that 
the difference in similarity is not significant, while the 
lower temperature has a larger scaling effect, which 
can enhance the difference between the similarities. 
Therefore, the hyperparameter temperature (τ) plays 
an important role in contrast learning. 

3 METHOD 

3.1 Experiment 
This paper refines the neural network model by 
integrating Convolutional Neural Networks (CNNs) 

and Transformer structures. So that it can 
significantly improve the representation capability of 
image features. For CIFAR-10, a CNN is first used as 
the base encoder. The architecture includes two 3x3 
convolutional layers, each followed by a Batch 
Normalization layer and a ReLU activation function, 
and then a 2x2 max-pooling layer (the first 
convolutional layer with 32 channels and the second 
convolutional layer with 64 channels). This is 
followed by another two 3x3 convolutional layers, 
each also followed by Batch Normalization and 
ReLU activation, and another 2x2 max-pooling layer 
(both convolutional layers have 128 channels), with a 
0.1 Dropout added. Finally, the architecture includes 
an additional pair of 3x3 convolutional layers, with 
each layer accompanied by a Batch Normalization 
layer a ReLU activation function, and a 2x2 max-
pooling layer (both convolutional layers have 256 
channels). 

The Transformer part employs a Transformer 
encoder with 6 layers of Transformer encoder layers, 
each with a model dimension of 256 and 8 attention 
heads. The fully connected layer section first flattens 
the feature maps output by the CNN and converts 
them into the input format for the Transformer. It then 
passes through two linear layers (with a hidden layer 
dimension of 256) and ReLU activation functions, 
finally output to the target classification dimension, 
resulting in 10 output units. 

For all methods, it uses the SGD optimizer with a 
learning rate of 0.01. The SGD weight decay is 
configured at 0.00001, with a momentum of 0.9 and 
a batch size of 64. For all federated learning methods, 
unless otherwise specified, the number of local 
epochs is set to 10. For the CIFAR-10 dataset, the 
number of communication rounds was set to 100. 

This paper first focuses on adjusting the 
temperature hyperparameter to improve the MOON 
algorithm. The temperature in the MOON algorithm 
controls the degree of softening in contrastive 
learning. A lower temperature value makes the 
model's representations of different classes more 
distinct, while a higher temperature value reduces the 
distinction between classes, making clustering easier. 
This paper employs the simulated annealing 
algorithm to achieve dynamic adjustment, gradually 
decreasing the temperature during training to enable 
more precise parameter optimization. 

This paper proposes an improved acceptance 
probability mechanism. When the loss value of the 
new solution is lower than that of the current solution, 
the new solution is directly accepted. Otherwise, the 
acceptance probability is calculated based on the 
Metropolis criterion, which is determined by the 
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exponential function 𝑒𝑥𝑝((𝑜𝑙𝑑_𝑙𝑜𝑠𝑠 − 𝑛𝑒𝑤_𝑙𝑜𝑠𝑠)/𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) to decide whether to accept a worse 
solution. This update mechanism enables this 
algorithm to perform extensive exploration at high 
temperatures and progressively converge to get an 
improved solution at low temperatures. 

To achieve this process, it initiates the 
temperature T=1.0 and set the minimum temperature 
Tmin=0.001. Within the gradient-based dynamic 
temperature adjustment mechanism, the temperature 
is modulated by assessing the rate of change of the 
current gradient norm relative to the preceding 
gradient norm. The formula for updating the 
temperature is expressed as 𝑇 = 𝑀𝐴𝑋(𝑇 × (1 −𝜎 × 𝑔𝑟𝑎𝑑_𝑐ℎ𝑎𝑛𝑔𝑒), 𝑇𝑚𝑖𝑛) , where σ=0.005 serves 
as a parameter that governs the extent of temperature 
adjustment. This dynamic adjustment mechanism 
empowers the algorithm to adaptively regulate the 
temperature in accordance with actual model updates, 
thus attaining a more optimal equilibrium between 
exploration and exploitation. 

3.2 Precision Comparison 

It adjust the parameter τ to control the strength of 
contrastive learning. The test is conducted on the PFL 
platform. Table 1 shows the Top-1 test accuracy 
achieved with different values of τ on CIFAR-10. 

Table 1: Top-1 accuracy with different τ on CIFAR-10. 

τ Top-1 Accuracy
0.05 66.82% 
0.1 67.04% 
0.5 66.43% 
1.5 66.63% 

The results in Table 1 show how the 
hyperparameter τ affects model accuracy. Different τ 
values lead to big swings in accuracy. This 
phenomenon tells us how important τ is in contrastive 
learning. Specifically, lower τ makes the model's 
representations more distinct between classes. Higher 
τ creates more generalized representations, which 
might make it harder for the model to distinguish 
between classes. 

According to this test on PFL, this paper decides 
to explore more benefits of dynamically adjusting τ 
during training. It integrated SA into the MOON 
framework. This method helps with adaptive 
temperature control and balances the exploration 
access training process. It refines convolutional layers 
in the neural network. This allows the MOON model 
to capture both local and global features more 
effectively. So that it can achieve to enhance the 
model's robustness and generalization capability. 

It integrates SA and revises convolutional layers 
in the MOON codebase. It tests NEW-MOON on 
CIFAR-10. The results show that dynamically 
adjusting τ through SA boosts the model's 
adaptability at different training phases. This adaptive 
mechanism helps the model converge better at first 
and cut down overfitting finally. 

Table 2: Top-1 accuracy between NEW-MOON and 
MOON frameworks with different τ on CIFAR-10 

τ NEW-MOON Top-1 
Accuracy

MOON Top-1 
Accuracy

0.5 68.57% 68.70%
1.0 69.67% 68.54%
1.5 69.31% 68.47%
2.0 69.36% 68.33%

4 DISCUSSION 

To gain a deeper understanding of the impact of the 
hyperparameter τ on the model's test accuracy, it 
introduced a SA algorithm. This algorithm 
dynamically adjusts the value of the hyperparameter 
to better adapt to changes during the training process. 
Our goal is to optimize the contrastive loss function 
by allowing the model to focus more on the details of 
the training samples in the early stages At the same 
time, the model can accelerate convergence. In the 
training process, τ is gradually reduced. And the 
model begins to pay more attention to global 
information, enhancing its generalization capability. 
According to our experimental results, this dynamic 
adjustment strategy significantly improves the 
model's test accuracy. By continuously adjusting τ 
generated by the model's feedback during training, 
model can successfully mitigate overfitting and 
enhance the model's precision. 

In addition to the aforementioned aspects, it has 
also optimized the neural network architecture by 
integrating the Simulated Annealing algorithm with a 
deeper neural network structure. The experimental 
results demonstrate that this combination yields more 
accurate outcomes, particularly in the realm of 
hyperparameter tuning. In the training of neural 
networks, especially the CNN-Transformer hybrid 
model employed in our study, the selection of 
hyperparameters is of paramount importance for 
performance. Within the MOON algorithm, the 
hyperparameter τ optimizes the model's clustering 
ability by adjusting the distinguishability of 
representations between different classes. By 
utilizing Simulated Annealing to dynamically adjust 
the temperature, the model can flexibly control the 
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intensity of contrastive learning during training, 
adapting to the varying needs at different stages and 
thereby optimizing performance. This integration 
helps achieve more precise training results and 
enhances the model's robustness and effectiveness in 
practical applications. 

However, the study is limited by the use of only 
the CIFAR-10 dataset, which consists of small-sized 
images (32×32) and a limited number of images 
(60,000). This may not fully capture the complexity 
and diversity of real-world image data. For future 
research, this paper suggests expanding the 
evaluation on more diverse and more complex 
datasets. For example, ImageNet has over 1,000 
categories and millions of high-resolution pictures. 
Testing on such a dataset will help validate the 
model's generalization capability and robustness in 
different scenarios. 

5 CONCLUSIONS 

The temperature parameter τ is a super important 
hyperparameter in federated contrastive learning. It 
directly determines whether the model performs well 
or not. τ controls how smooth and distinct the 
similarity distribution is in the contrastive loss 
function. If it can tune τ just right, it can boost the 
model's training efficiency and ability to generalize. 
By finding the perfect step sizes for the model, it can 
make the training process smoother and give the 
model more confidence when it encounters new 
datasets. Conversely, improper settings may result in 
unstable training, overfitting, or suboptimal 
performance. 

This paper demonstrates through experiments that 
employing a simulated annealing algorithm to 
dynamically adjust τ markedly improves the model's 
adaptability across different training stages. This 
dynamic adjustment enhances training stability and 
final accuracy, allowing the model to flexibly balance 
the learning of local and global information. It 
accelerates convergence in the early stages of training 
and mitigates overfitting in later stages. 

Moreover, this paper optimizes the neural 
network model by integrating CNN and Transformer 
architectures. This integration enables the model to 
more effectively capture both local and global 
features of images, thereby achieving higher 
performance and generalization ability. 

In summary, the MOON federated learning 
algorithm proposed in this paper addresses the non-
IID data problem in federated learning through 
dynamic temperature adjustment and network 

structure optimization. Future research can further 
explore the adaptability of temperature parameters 
and neural network structures under different datasets 
and tasks. Additionally, future work can investigate 
how to more efficiently leverage the privacy-
preserving features within the federated learning 
framework to promote the application development 
of this field. 
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