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Abstract: Currently, since 2023, with the further development of artificial intelligence, the requirements for the 
efficiency and accuracy of federated learning have also increased. In distributed computing environments, the 
heterogeneity of hardware configurations and data distributions across different devices poses challenges to 
model training. Designing a federated learning algorithm that can adapt to heterogeneous environments and 
effectively perform knowledge transfer is a key research challenge. To address the construction of multi-task 
distributed models with minimal communication resource consumption, this paper presents the advanced 
Knowledge Transfer-Personalized Federated Learning (KT-pFL) algorithm. KT-pFL is based on the training 
and improvement of the Heterogenous Federated Learning via Model Distillation (FedMD) algorithm, and 
the core logic of the algorithm is briefly described. This paper proposes improvement methods for the KT-
pFL algorithm based on the reproduced algorithm, including the addition of normalization layers and dynamic 
adaptive adjustment of the learning rate. These improvements can increase the accuracy of the algorithm by 
approximately 2% when training on the CIFAR-10 dataset. Finally, a brief analysis and outlook on potential 
future research directions for knowledge transfer are provided. 

1 INTRODUCTION 

Artificial intelligence (AI) has become a hot topic. In 
the training of large AI models, algorithms play a 
crucial role in training efficiency. The same data can 
produce vastly different results when trained with 
different algorithms. The best solution currently 
offered by major manufacturers for building the 
hardware foundation for AI is Graphic Processing 
Unit (GPU) clusters. Often, different terminals across 
regions and devices need to be integrated to train an 
algorithm. This requires a learning method that can 
train on different devices and reasonably combine the 
results from each device. This demand is one of the 
important reasons for the emergence of federated 
learning. 

FedMD is a significant milestone in the 
development of federated learning. It is based on 
improvements in transfer learning. Transfer learning 
uses a mapping function to map samples from the 
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source and target domains to the same distribution 
space to reduce the differences between them. This 
allows knowledge learned in the source domain to be 
applied to the target domain to solve tasks in the target 
domain (Zhao, Li, & Lin, 2020). 
FedMD(Heterogenous Federated Learning via Model 
Distillation) introduces a public dataset as a medium 
and uses model distillation techniques to achieve 
knowledge sharing (Sun, Wang, & Liu, 2024). 

Each participant uses their own private data and 
independently designed models for training but 
communicates through prediction results (such as 
classification scores) on the public dataset, thereby 
achieving knowledge transfer without sharing raw 
data or model parameters, significantly saving 
communication resources (Li, Wang, 2019). This 
method greatly improves accuracy but also increases 
the demand for resources and computing power. How 
to make the datasets required for training more 
efficiently utilized has become a hot topic in 
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federated learning. In recent years, personalized 
federated learning (pFL) has gained increasing 
attention due to its potential to handle client statistical 
heterogeneity. It distills each model to maximize data 
utilization (Chen, Zhang, 2024). However, early pFL 
methods relied on the aggregation of server-side 
model parameters, requiring all models to have the 
same structure and size, which limited their 
application in more heterogeneous scenarios. 
Therefore, personalized federated learning (pFL) was 
proposed. For a group of clients with different models, 
a method using knowledge transfer matrices and 
knowledge distillation was proposed to coordinate the 
differences between models, referred to as KT-pFL. 
This framework allows for personalized models for 
different clients by introducing a knowledge 
coefficient matrix that adaptively enhances 
collaboration between clients with similar data 
distributions, addressing the issue of statistical 
heterogeneity among clients. Extensive experiments 
on datasets such as EMNIST, Fashion-MNIST, and 
CIFAR-10 have shown that this framework 
significantly outperforms the latest algorithms in 
performance (Cohen, Afshar, Tapson, & van Schaik, 
2017; Xiao, Rasul, & Vollgraf, 2017; Krizhevsk, 
Hinton, 2009). 

However, since this framework requires 
maintaining and updating the knowledge coefficient 
matrix, the computational complexity also increases 
significantly, with training times more than double 
that of traditional FedMD (Zhang, Guo, & Ma, 2021). 
This paper reproduces the existing code and proposes 
two methods to maximize data utilization efficiency 
and improve accuracy without further increasing 
computing power and datasets. 

2 THEORETICAL FOUNDATION 

To overcome model constraints and fully utilize the 
potential of heterogeneous model configurations, the 
goal of the novel training framework put out by KT-
pFL study is to create customized models for various 
clients. In the original pFL, it formalizes the 
aggregation process as a customized group 
knowledge transfer training method that enables 
every client to help other clients with their local 
training by keeping a customized soft prediction on 
the server side. First, public data D0 is used for 
training. The loss and accuracy are calculated, and 
then the validation loss and accuracy are recorded 
using their own datasets. It uses transfer learning 
methods based on domain and task to build methods 
for transmission (Li, Wang, 2019). Specifically, a 

knowledge coefficient matrix is established based on 
the prediction parameters and loss of each model, and 
the personalized soft prediction of each client is 
updated. This matrix can adaptively enhance 
collaboration between clients with similar data 
distributions. Furthermore, the knowledge coefficient 
matrix is parameterized so that it may be trained 
alongside the model parameters in order to quantify 
each client's contribution to the customized training 
of other customers. 

3 ALGORITHM DESIGN 

3.1 Training of a Single Model: 

First, update the model parameters, evaluate the 
accuracy, and record the loss during the training 
process. The algorithm returns the loss and accuracy 
data for each round of training and validation. 

3.2 Function for Validating a Single 
Model 

This program is embedded in the training of a single 
model, mainly calculating the accuracy of the model. 
In this experiment, 80% of the data is used for training, 
and 20% is used for validation. The output of the 
model is calculated by traversing the validation data 
loader. If a loss function is provided, the average 
validation loss and average accuracy are returned; if 
no loss function is provided, the average accuracy is 
returned. 

3.3 Implementation of Weighted Logits 
Calculation and Weight Update 
Function 

This section aims to implement the calculation of 
weighted logits for each model. The calculation of 
weighted logits is based on the correlation between 
the teacher model and the local model multiplied by 
the local model tensor. Then, the loss function and 
weight penalty are calculated, and the results are 
returned to the matrix (Tamirisa, Rishub, & Xie, 
2024). The weights are dynamically adjusted based 
on the gradient changes in accuracy to achieve 
stability in the result region (Sun,2024). 

This study adopts a learning rate adjustment 
method and finally returns the above weight values to 
the weight matrix as the final weights for each model. 
The weights are multiplied by the logits of the teacher 
model and added to the logits of the local model to 
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obtain the weighted logits. Logits are not a single 
value but a multi-dimensional tensor, representing the 
output logits of multiple models on the input data. 
This tensor includes the number of models, the batch 
size of the input data, and the number of categories in 
the classification task, and is an indicator that reflects 
the comprehensive performance of the model, often 
used for weight adjustment and operations (Zhao, Li, 
& Lin, 2020). 

3.4 Implementation of the Function for 
Predicting Model Output 

The predict function is used to make predictions on a 
given model and dataset and returns the prediction 
results. First, the model is set to evaluation mode and 
moved to the specified device. Then, the data is 
traversed according to the batch size. Finally, the 
output results of all batches are concatenated into a 
complete numpy array and returned. The 
train_models function is used to train a group of 
models, supporting early stopping, model saving, and 
other functions. First, check if there is an available 
GPU; if not, use the CPU. Then, traverse each model, 
create training and test data loaders, use stochastic 
gradient descent optimizer and cross-entropy loss 
function for training, and record the training and 
validation results of each model. If a save directory is 
specified, the model state is saved to a file. Finally, 
the function returns the training and validation results 
of all models and prints the pre-training accuracy. 
These two functions are commonly used in the 
training and inference processes of deep learning 
models. 

3.5 Main Program 

Train each participant's model and record the training 
and validation results. Perform collaborative training. 

Initialize collaborative performance records, 
training rounds, and weight matrix. Read CIFAR-10 
data and generate aligned datasets, test the 
performance of each model, and record the results. 

Update the training rounds and the rounds of each 
model, and align the main parameters of the models 
for coordination. 

After completing the above steps, each model uses 
private data for training and returns the performance 
records of collaborative training. 

3.6 Training Improvements 

The previous reproduced program used two 
convolutional layers and three fully connected layers 

for training. This improvement adds a normalization 
layer after each convolutional layer, which can 
effectively improve accuracy. Adding a 
normalization layer to the FedMD algorithm can 
increase the accuracy by about 2% (Kang, Liu, 2023). 

4 EXPERIMENTAL RESULTS 

4.1 Tasks and Datasets 

The experiment evaluates the proposed training 
framework on the CIFAR-10 dataset(Krizhevsky et al. 
2009). For each dataset, we apply two different non-
independent and identically distributed (Non-IID) 
data settings: 

Non-IID Type 1: All categories have samples in 
each client, however the quantity of samples in each 
category varies from client to client. 

Non-IID Type 2: There are just two sample 
categories per customer. 

Twenty-five percent of each dataset is utilized for 
testing, while the remaining 75 percent is used for 
training. Every client's test data is distributed 
similarly to the training data. The average test 
accuracy of all local models is recorded for evaluation 
across all approaches. 

4.2 Model Structure 

LeNet, AlexNet, ResNet-18, and ShuffleNetV2 are 
the four lightweight model structures used in the 
experiment (LeCun et al., 1998; He et al., 2016; Ma 
et al, 2018; (Krizhevsky, Sutskever, & Hinton, 2012). 
There are four models in the total personalized 
federated learning system, and each model has five 
clients. 

4.3 Foundational Techniques 

To illustrate the generalizability and efficacy of our 
suggested training framework, we contrast the 
performance of KT-pFL with that of the non-
individualized distillation-based approach FedMD 
(Li, Wang, 2019). 

The following are the outcomes of the experiment: 
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Figure 1: Average test accuracy performance comparison 
between FedMD and KT-pFL on CIFAR-10 (Non-IID 
scenario 1: every client has all labels) (Original). 

 
Figure 2: Average test accuracy performance comparison of 
FedMD and KT-pFL on CIFAR-10 (Non-IID example 2: 
each client has just two labels) (Original). 

Using the CIFAR-10 dataset under non-
independent and identically distributed (Non-IID) 
circumstances, Figures 1 and 2 compare the average 
test accuracy per training round for two federated 
learning approaches (FedMD and KT-pFL) across a 
total of 20 training rounds. 

KT-pFL performs well in both Non-IID settings, 
with its average test accuracy and client test accuracy 
significantly higher than FedMD. The upward trend 
in client test accuracy and validation accuracy of KT-
pFL indicates that the algorithm can effectively 
improve model performance under Non-IID data 
distribution and has good generalization ability. The 
main reason is that in FedMD, each participant has an 
independently designed model, but the collaboration 
process mainly improves the model through 
consensus, with relatively limited personalization. By 
employing a knowledge coefficient matrix to measure 
each client's contribution to other clients, KT-pFL, on 
the other hand, explicitly suggests individualized 
objectives. This allows for more model customization 

and more flexible adaptation to various client data 
distributions. 

KT-pFL uses personalized loss functions and 
knowledge coefficient matrices to perform 
knowledge transfer based on the similarity of client 
data distributions, showing superior performance in 
handling statistical heterogeneity. 

 
Figure 3: Test accuracy for each client in Non-IID case 1 
during KT-pFL training (each client contains all labels) 
(Original). 

With the horizontal axis denoting the training 
rounds and the vertical axis denoting the test accuracy, 
Figures 3 and 4 display the change curves of the 
average test accuracy of ten customers throughout 
training under two Non-IID circumstances on the 
dataset.In Non-IID case 1, the training accuracy of 
each model is above 0.5, but the final validation 
accuracy is around 0.42, indicating that KT-pFL, 
under the condition that each model traverses all 
labels, leads to a certain degree of decline in data 
recognition ability due to knowledge transfer between 
models. 

 
Figure 4: Test accuracy of each client during training for 
KT-pFL in Non-IID case 2 (each client does not contain all 
labels) (Original). 

In practical use, it is difficult for each model to 
train on all labels. In fact, it is more common for each 
model to train on a small number of labels, as in Non-
IID case 2. From the experimental results, it can be 
seen that some models have an accuracy of around 
0.45, while others are around 0.35. The final accuracy 
is around 0.4. The knowledge transfer between 
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models does not lead to a decline in the final model's 
recognition ability. Considering the differences in 
training difficulty between different labels, KT-pFL 
already shows considerable excellence in this case. 

4.4 Discussion and Analysis 

The data results in this paper tend to stabilize after 13 
rounds in both cases, and there is no decline in 
accuracy before the 13th round. Compared to the 
original KT-pFL algorithm (Zhang, Guo, & Ma, 
2021), this paper avoids the decline in accuracy 
during training by adjusting the learning rate, to some 
extent improving the reliability of the training results. 
Future research could consider adjusting the size of 
the public dataset, with smaller sizes being better for 
saving communication resources but without 
significantly affecting accuracy. 

5 CONCLUSION 

The KT-pFL algorithm shows significant 
improvement over the FedMD algorithm, especially 
in Non-IID case 2. This is because it can better utilize 
different clients to train local models, allowing these 
models to specialize in one aspect. This is very 
suitable for Non-IID case 2. The improvements in two 
detailed directions in this paper can further enhance 
KT-pFL on its already excellent foundation. The 
improvements based on learning rate and 
normalization layers help improve the accuracy of the 
algorithm and reduce loss, significantly reducing the 
risk of accuracy decline due to excessive data training 
adjustments and allowing for more efficient use of 
data in each round through normalization layers. In 
practical situations, due to limited training data, it is 
necessary to make the most of them. However, it 
should also be noted that the accuracy of the models 
generated by each client varies greatly, and the 
models basically stop improving after 10 rounds of 
training. Considering the accuracy of the models, 
there is still room for improvement. 
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