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Abstract: Recent years have seen a surge in research on distributed data processing and privacy protection due to the 
quick growth of big data and artificial intelligence technology. Federated learning, as a distributed 
collaboration framework with privacy protection, has attracted much attention due to its application potential. 
However, in practical applications, it faces challenges such as heterogeneous data distribution, high 
communication overhead, and insufficient privacy protection, and algorithm improvements are urgently 
needed to improve performance and adaptability. This study proposed an improved federated learning 
algorithm Model Contrastive Federated Learning-Differential Privacy and Adaptive Pruning (MOON-DPAP), 
which improved the efficiency, accuracy, and privacy protection capabilities of federated learning by 
introducing dynamic pruning technology, dropout, dynamic adjustment of differential privacy, and 
hyperparameter optimization. Experiments show that MOON-DPAP outperforms FedAvg, SCAFFOLD, 
MOON, and FedDyn in multiple performance indicators. In heterogeneous data scenarios, it shows higher 
accuracy and stability. In scalability tests, the algorithm performance remains superior even when the number 
of clients increases. Privacy protection tests verify its security and practicality. MOON-DPAP provides an 
innovative solution to the challenges of federated learning in performance improvement and privacy 
protection, laying the foundation for its practical application. 

1 INTRODUCTION 

As distributed data becomes more widely used and 
data privacy protection becomes more widely 
recognized, federated learning has gradually become 
a key technology to solve data silos and privacy 
protection needs. It uses distributed devices to 
collaboratively train models without disclosing the 
actual data and has broad application prospects in the 
fields of medicine, finance, and the Internet of Things 
(Yang, Liu, & Chen et al., 2019). However, in 
practical applications, federated learning faces 
challenges such as heterogeneous data distribution, 
increased communication and computing overhead, 
insufficient privacy protection mechanisms, and poor 
accuracy, which limit its promotion. 

The earliest federated learning algorithm is 
Federated Averaging (FedAvg), which modifies the 
global model through weighted averaging and local 
training, but it has poor adaptability to device 
heterogeneity and non-IID data (McMahan, Moore, 
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& Ramage et al., 2017). To this end, improved 
algorithms such as Federated Optimization in 
Heterogeneous Networks (FedProx) and Adaptive 
Federated Optimization using Adam (FedAdam) 
have emerged. FedProx balances the difference 
between local updates and global models by 
introducing regularization terms, while FedAdam 
adjusts the local update step size through adaptive 
learning rates, thereby reducing the training 
differences between devices (Li, Sahu, & Zaheer et 
al., 2020; Reddi, Charles, & Zaheer et al., 2020). 

Federated learning offers privacy protection, with 
differential privacy and homomorphic encryption 
being common techniques used for safeguarding this 
fundamental benefit. Although they improve privacy 
protection to a certain extent, differential privacy will 
impact model accuracy, and the significant 
computational complexity of homomorphic 
encryption constrains its applicability and 
dissemination. Communication efficiency is a key 
challenge in federated learning, especially when the 
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number of devices is large and frequent 
communication leads to inefficiency. Han, Mao and 
Dally (2015) proposed that model compression and 
quantization techniques can be used to reduce 
communication overhead. At the same time, by 
increasing the number of local training cycles, the 
local update approach can decrease the amount of 
communication between the hardware and the server, 
but it may lead to local model overfitting and affect 
global performance. In federated learning, two 
significant issues are device and data heterogeneity. 
Due to the differences in computing power and data 
distribution of devices, the computational capabilities 
of devices are frequently not fully utilized by 
conventional federated learning techniques., and may 
even lead to the degradation of global model 
performance. To this end, researchers have proposed 
algorithms based on gradient alignment and adaptive 
adjustment of model parameters, aiming to optimize 
the contribution between different devices and 
improve the global model effect. 

Li, He and Song (2021) proposed the Model-
Contrastive Federated Learning (MOON) algorithm, 
which represents a significant advancement in the 
field of federated learning recently. MOON 
effectively mitigates the differences among devices 
through a standardized update strategy, 
demonstrating strong robustness, especially in 
handling non-IID data and device heterogeneity. By 
optimizing model synchronization and dynamically 
adjusting local models, MOON reduces 
communication overhead and enhances efficiency. 
Although MOON does not have an inbuilt privacy 
protection mechanism, it can be combined with 
technologies such as differential privacy to further 
enhance privacy protection. Despite its outstanding 
performance in multiple experiments, MOON still 
faces issues such as communication efficiency and 
computational complexity in large-scale systems, 
especially in scenarios where data is highly uneven, 
and further optimization is still needed. 

This study proposes an improved federated 
learning algorithm to solve the training efficiency and 
performance problems in heterogeneous data 
environments. By introducing pruning technology to 
reduce redundant calculations and improve 
computing efficiency. To safeguard data privacy and 
guarantee that training is carried out without 
disclosing user information, differential privacy 
techniques are employed. In addition, 
hyperparameters such as learning rate, regularization 
parameter, and local learning rate are dynamically 
adjusted to accelerate model convergence and 
improve performance. The research goal is to reduce 

communication overhead, optimize computing 
resources, and improve the stability and robustness of 
the model under multi-party heterogeneous data 
while ensuring data privacy. 

2 ONLINE INTELLIGENT 
KINEMATIC CALIBRATION 
METHOD 

2.1 Question Statement 

Suppose there are 𝑁 participants 𝐴ଵ, 𝐴ଶ, … , 𝐴ே, each 
participant 𝐴௜ has a local dataset 𝑋௜. The objective is 
to secure data privacy while working together to train 
a global model 𝜃  through a central server while 
protecting data privacy. Because the distribution of 
local data is heterogeneous, updates during training 
may fluctuate greatly, impacting the model's 
performance and rate of convergence. At the same 
time, as the number of training rounds increases, 
storage and computing costs rise, resulting in a waste 
of resources. To this end, improving training 
efficiency is essential, reducing redundant computing 
and communication overhead, and ensuring that the 
model converges quickly and stably under 
heterogeneous data while ensuring privacy. 

2.2 Model Framework 

This paper proposes an improved federated learning 
algorithm - MOON-DPAP, which enhances the 
model's efficiency and privacy protection capabilities 
by introducing pruning, differential privacy, and 
dynamic parameter adjustment. Dynamic pruning 
reduces redundant parameters and improves 
computational efficiency; Dropout alleviates 
overfitting and enhances model adaptability; 
differential privacy protects data privacy by adding 
noise. Additionally, dynamic adjustment of the 
learning rate, contrastive loss temperature parameter 𝜏, regularization parameter 𝜇, and local learning rate 
accelerates model convergence and optimizes 
performance. 

In the algorithm process, in every round, the client 
receives the global model from the server. The client 
trains and updates the model using regional 
information, and by comparing the loss, it improves 
the similarity between both the regional and global 
models. During training, differential privacy protects 
data security, and dynamic pruning optimizes the 
model structure. After the updated model is uploaded 
to the server, the server updates the global model 
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through weighted averaging and adjusts the 
hyperparameters. This process effectively balances 
privacy protection and performance improvement. 

2.3 Dynamically Adjust Local 
Learning Rate and 
Hyperparameters 

In this research, to increase the effectiveness of model 
instruction and the end performance, a cosine 
annealing-based learning rate adjustment technique 
was applied. The learning rate adjustment follows the 
following (1)  
 
 𝜂௧  =  𝜂min  +   ଵଶ  ሺ 𝜂max  −  𝜂min ሻ  ቀ 1  +   𝑐𝑜𝑠 ቀ  గ ௧m்ax  ቁ   ቁ (1) 
 

Among them,  𝜂max  is the initial learning rate, 𝜂min is the minimum learning rate, 𝑇max is the entire 
amount of training rounds and 𝑡 is the current round 
number. The core idea of this formula is that the 
learning rate starts from 𝜂max and gradually decays to 𝜂min after training. This strategy gradually decays the 
learning rate through the cosine function, thereby 
maintaining a high learning rate at the beginning for 
more extensive exploration and lowering the learning 
rate later on in the training process to achieve fine 
optimization. To prevent the learning rate from 
excessive decay, this paper sets a lower limit for the 
minimum learning rate to ensure that the learning rate 
will not fall below this value during training. 

In addition, the learning rate adjustment can also 
be combined with the dynamic adjustment of other 
hyperparameters 𝜏𝜇  to improve the model's 
performance and convergence even more. During the 
training process, following (2) and (3), it is adaptively 
modified based on the current number of rounds. 
 
 𝜏௧ = 𝑚𝑎𝑥ሺ𝜏௠௜௡, 𝜏௠௔௫ − 𝛼 × 𝑡ሻ (2) 
 𝜇௧ = 𝑚𝑖𝑛ሺ𝜇௠௔௫, 𝜇௠௜௡ + 𝛽 × 𝑡ሻ (3) 
 

Tables Among them, 𝜏௠௜௡  and 𝜇௠௜௡  are the 
minimum values, 𝜏௠௔௫  and 𝜇௠௔௫  are the maximum 
values, and 𝛼 and 𝛽 are the adjustment steps. In non-
IID data scenarios, as training progresses, there will 
be a greater disparity between the local and global 
models, and the gradual reduction of 𝜏  helps to 
narrow this difference. In the early phases of training, 
the dynamic rise of 𝜇 can enhance the local model's 
contribution to the global model. Later in the training 
process, the global model's influence on the final 
model progressively grows, resulting in a more 
balanced model update. 

2.4 Differential Privacy 

Differential privacy causes the output to have noise, 
making the outputs of any two adjacent data sets 
almost indistinguishable. By knowing that the noise's 
standard deviation 𝜎  is determined by the gradient 
sensitivity Δ𝑓, the privacy budget 𝜖 and the privacy 
failure probability 𝛿, we can calculate (4). 
 

 𝜎 = ௱௙ఢ ට2 𝑙𝑛 ଵ.ଶହఋ  (4) 

 
Dynamic privacy adjustment is performed, and 

the privacy budget 𝜖ሺ𝑡ሻ gradually decreases with the 
training round 𝑡 , where 𝜖଴  is the initial privacy 
budget, 𝑡  is the current training round and 𝑇  is the 
total number of training rounds, as shown in (5). 
 
 𝜖ሺ𝑡ሻ = 𝜖଴ ቀ1 − ௧்ቁ (5) 
 

Differential privacy technology can effectively 
protect the privacy of participants by adding noise to 
the gradient update process to guarantee that each 
client's local data does not leak into the global model. 

2.5 Model Pruning 

This paper adopts a method that combines static 
pruning and dynamic pruning based on weight 
thresholds. The core idea of pruning is to remove 
parameters with small absolute weight values. These 
parameters have little impact on the model output and 
can be considered "redundant". Set the pruning 
threshold 𝑇, and the pruning rule of weight 𝑤 is as 
follows (6), where 𝑤ᇱ represents the pruned weight. 
 

 𝑤ᇱ = ൜𝑤, 𝑖𝑓|𝑤| ≥ 𝑇0, 𝑖𝑓|𝑤| < 𝑇  (6) 

 
To gradually increase the pruning ratio during the 

training process, a dynamic pruning threshold 
adjustment strategy is adopted to gradually increase 
the pruning threshold during the training rounds. The 
dynamic threshold calculation formula is (7), where 𝑇min  is the minimum pruning threshold. 𝑇max  is the 
maximum pruning threshold. 𝑇total is the total training 
rounds. 𝑡 is the current training round.  
 
 𝑇௧ = 𝑇min + ሺ𝑇max − 𝑇minሻ ⋅ ௧்total (7)  

In this way, the pruning ratio is progressively 
raised in the final phases of training to lower the 
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model's complexity, while more weights are kept in 
the initial phases to stabilize the training. 

3 EXPERIMENTAL VALIDATION 
AND DISCUSSION 

3.1 Experimental Setup 

To thoroughly assess the MOON-DPAP algorithm's 
performance, this research compares it with several 
advanced federated learning algorithms. Specifically, 
FedAvg, SCAFFOLD, MOON, and FedDyn are 
selected as comparison algorithms (McMahan, 
Moore, & Ramage et al., 2017; Karimireddy, Kale, & 
Mohri et al., 2020; Li, He, & Song, 2021; Jin, Chen, 
& Gu et al., 2023). By comparing with these methods, 
the accuracy, speed of convergence, computational 
efficiency, and privacy of MOON-DPAP's 
performance were all carefully examined. 

In the experiment, the FashionMNIST dataset was 
selected for testing (Xiao, Rasul, & Vollgraf, 2017). 
FashionMNIST is a 28x28 pixel image classification 
dataset with 10 categories. 

To ensure a fair comparison of each algorithm, the 
same network architecture and hyperparameter 
Settings are used in all experiments. A Convolutional 
Neural Network (CNN) serves as the foundational 
model of the FashionMNIST dataset. To be more 
precise, the network design is made up of two 
convolutional layers, a Max pooling layer, two fully 
connected layers, and a ReLU activation function at 
the end of each layer. 

All algorithms were implemented based on the 
PyTorch framework (Paszke, Gross, & Massa et al., 
2019), ensuring the reproducibility and efficiency of 
the experiments. All experiments were conducted 
under the same hardware environment, with the 
hardware configuration being an NVIDIA GPU. The 
optimizer used was SGD, with a learning rate of 
0.005, a batch size of 32, a local training round of 1, 
and a global training round of 200. 

To simulate non-independent and identically 
distributed data in real-world scenarios, this paper 
employs the Dirichlet distribution to generate data 
partitions among clients. In the experiments, 20 
clients were set up, and in each communication 
round, the participation ratio of clients was 1.0, unless 
otherwise specified. 

3.2 Accuracy Comparison 

For MOON-DPAP, the optimal batch size on the 
Fashion MNIST dataset is 32. For the hyperparameter 𝜇, the best 𝜇 on the FashionMNIST dataset is 0.01. 
Unless otherwise specified, these batch sizes and 𝜇 
settings are used in all subsequent experiments in this 
paper. 

Figure 1 shows the test accuracy and loss of 
various methods under the default settings mentioned 
above. When comparing different federated learning 
methods under the non-IID setting, it can be observed 
that MOON-DPAP consistently performs best with 
an accuracy of 83.6% and the lowest loss of 0.44 
across all tasks. It is 4.7% higher than FedAvg in 
average accuracy across all tasks. For MOON and 
Ditto, its accuracy is very close to FedAvg. For 
SCAFFOLD, its accuracy is much lower than other 
federated learning methods. 

(a) Accuracy 

(b) Loss 

Figure 1: Accuracy and loss of different methods in 
different rounds on the FashionMNIST dataset 
(Photo/Picture credit: Original). 

3.3 Security and Privacy Test 

The accuracy of the MOON-DPAP algorithm without 
differential privacy is marginally higher than that of 
the version with differential privacy, as shown in 
Figure 2. This indicates that although differential 
privacy plays an important role in protecting data 
security, differential privacy-introduced noise affects 
the model's performance, particularly during the 
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initial training phase. The convergence speed of the 
version with differential privacy is slow, while the 
version without differential privacy can reach a high 
accuracy faster (Dwork & Roth, 2014). 

As the training progressed, the version with 
differential privacy gradually stabilized, with a final 
accuracy of 77% and a loss of 0.71. This shows that 
while differential privacy improves data protection, it 
also weakens the model's prediction ability. However, 
the version with differential privacy showed a 
smoother accuracy change curve, showing better 
stability. 

This outcome illustrates the balance between 
differential privacy data security and model 
performance. In practical applications, to balance the 
impact of privacy protection and model performance, 
a fair privacy budget must be chosen based on the 
particular case. 

In the future, the negative impact of noise 
introduced by differential privacy on model 
performance will also be a focus of optimization 
(Dwork & Roth, 2014). In the future, we can try to 
adopt more efficient privacy protection methods, such 
as local differential privacy or adaptive noise 
strategies, to further optimize the balance between 
privacy protection and performance (Duchi, Jordan, 
& Wainwright, 2013). 

(a) Accuracy 

(b) Loss 

Figure 2: Comparison of different rounds before and 
after adding differential privacy to MOON-DPAP 
(Photo/Picture credit: Original). 

3.4 Scalability 

As shown in Table 1, among all the algorithms, 
MOON-DPAP shows strong scalability, and its 
accuracy and loss are better than other algorithms in 
the case of either 10 or 20 clients, and its performance 
is especially more stable in large-scale client 
scenarios. This shows that MOON-DPAP can 
effectively deal with data heterogeneity and 
communication bottlenecks and has better 
adaptability. In contrast, FedAvg performs stably 
with 10 clients, but the accuracy and loss vary greatly 
with 20 clients, showing a lack of scalability. Still, it 
is suitable for use in scenarios where the number of 
clients is small. FedDyn and SCAFFOLD perform 
relatively poorly, especially with 20 clients, showing 
a significant drop in performance, indicating their 
inadequacy in coping with data heterogeneity and 
training imbalance. 

According to experimental findings, all 
algorithms' performance often declines as the number 
of clients rises. This reflects the scalability challenges 
of federated learning, especially the increase in 
system heterogeneity and communication latency, 
which has a significant impact on model training, 
leading to a decrease in accuracy and a rise in loss 
value. 

Table 1: The effect of varying client numbers on the 
experiment. 

Algorithm Number Of 
Clients Accuracy Loss 

FedAvg 10 53.37% 1.22
20 48.85% 1.34

FedDyn 10 47.97% 1.64
20 43.38% 1.83

SCAFFOLD 10 43.37% 1.51
20 40.37% 1.57

MOON 10 53.65% 1.21
20 49.17% 1.34

MOON-
DPAP 

10 62.34% 1.13
20 58.60% 1.26

 

3.4 Ablation Analysis 

To explore how each component affects the model's 
performance, this paper conducted an ablation 
experiment, gradually removing key components 
such as dynamic learning rate adjustment, Dropout, 
and pruning, and recorded the changes in accuracy 
and loss, as shown in Table 2. 

Removing the dynamic learning rate adjustment 
significantly degrades the model performance, 
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indicating its important role in optimizing parameter 
updates and accelerating convergence. Removing 
Although dropout causes a small increase in loss and 
a slight fall in accuracy, it is nevertheless crucial for 
boosting the model's resilience. After removing 
pruning, the performance changes slightly, which is 
mainly reflected in improving computational 
efficiency, while the direct impact on model 
performance is limited. When all three are removed 
at the same time, the model performance degrades 
significantly, indicating that dynamic learning rate 
adjustment is the key factor in improving 
performance, and the synergy of the three is 
indispensable in improving training efficiency, 
optimizing regularization, and accelerating 
convergence. 

Table 2: Ablation analysis. 

Group Ablation Item Accuracy Loss
1 Baseline Model 83.71% 0.44

2 
Remove Dynamic 

learning rate 
Adjustment

81.03% 0.52 

3 Remove Dropout 80.98% 0.48
4 Remove Pruning 82.94% 0.47

5 
Remove Dropout, 
Pruning, Learning 
rate Adjustment 

78.77% 0.53 

4 CONCLUSIONS 

This study proposed the MOON-DPAP algorithm and 
evaluated its performance in terms of accuracy, 
computational efficiency, and privacy protection by 
comparing it with federated learning algorithms such 
as FedAvg, SCAFFOLD, MOON, and FedDyn. 
Experimental results show that MOON-DPAP 
exhibits significant advantages in multiple key 
dimensions, demonstrating its potential to address the 
challenges of federated learning. 

Firstly, MOON-DPAP performs well in accuracy, 
especially when dealing with scenes with large data 
heterogeneity, showing stronger stability and 
adaptability. According to the testing results, MOON-
DPAP can successfully handle the problem of 
unequal client data distribution, and after several 
communication rounds, its ultimate accuracy is 
considerably greater than that of other algorithms. 
This is because the algorithm's dynamic learning rate 
modification, pruning, and dropout methods boost the 
model's generalization capabilities in addition to its 
rate of convergence. Especially in heterogeneous 
environments, the robustness is further improved by 

optimizing resource utilization and inhibiting 
overfitting. 

To preserve excellent model performance and 
guarantee user data confidentiality, MOON-DPAP 
integrates the differential privacy technique. Despite 
the impact of noise introduced by differential privacy 
on the model accuracy, MOON-DPAP can still 
achieve a good balance between privacy protection 
and performance. Experiments show that MOON-
DPAP still has strong applicability in scenarios with 
high privacy requirements. In addition, in scalability 
tests, MOON-DPAP has demonstrated superior 
stability. As the number of clients increases, its 
accuracy decreases significantly less than other 
algorithms, and it performs better in terms of 
computational efficiency, proving its potential in 
large-scale federated learning scenarios. 

Nevertheless, MOON-DPAP has room for 
improvement in personalized learning and privacy 
protection, and the lack of a personalization strategy 
may affect its performance in heterogeneous data 
scenarios, and differential privacy noise also hurts 
performance. Future developments could introduce 
adaptive noise methods or local differential privacy to 
better balance privacy and performance. 

As mentioned above, the MOON-DPAP 
algorithm performs well in terms of accuracy, 
privacy, and scalability, showing strong potential for 
practical applications. Future research should 
concentrate on optimizing personalized learning and 
privacy protection techniques to further improve its 
performance and robustness in diverse scenarios. 
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