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Abstract: With the development of autonomous driving technology, path planning has become one of the core issues, 
aiming to ensure the safety and efficiency of vehicles in complex and dynamic environments. However, 
traditional path planning methods, especially graph-based algorithms, have limitations when facing changing 
traffic and environmental factors. Therefore, it is particularly important to find more efficient and adaptive 
path-planning strategies. In recent years, deep reinforcement learning (DRL) has provided new solutions for 
path planning and promoted the advancement of related technologies. The theme of this paper is to review 
the research progress of path planning for autonomous driving vehicles, focusing on the evolution from 
traditional graph algorithms to modern deep learning methods. This paper will review from the following 
perspectives: first, discuss traditional path planning methods and their limitations; second, analyze the 
application and advantages of deep reinforcement learning in path planning; finally, explore the latest research 
progress of combining deep learning with traditional path planning methods. In addition, this paper will 
summarize the shortcomings of current research and look forward to the direction of future development.

1 INTRODUCTION 

1.1 Traditional Path-Planning Methods 

Path planning is an essential element of autonomous 
vehicle navigation, designed to provide safe, 
efficient, and optimal transit between destinations. 
The primary challenge lies in developing algorithms 
that can effectively navigate diverse and 
unpredictable road conditions, while also maintaining 
a balance between computational efficiency and real-
time adaptability. Traditional methods, such as graph-
based approaches, have long been employed for 
navigation and routing, with Dijkstra’s algorithm 
being a cornerstone for shortest-path determination. 
While these classical methods offer structured 
solutions, they often fall short when applied to real-
world scenarios, particularly in dynamic 
environments where conditions can change 
unpredictably. 
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1.2 Static vs. Dynamic Path Planning 

A key distinction in autonomous vehicle path 
planning lies in static versus dynamic environments. 
Static path planning assumes that environmental 
factors remain unchanged, enabling the 
precomputation of optimal paths. However, real-
world driving requires dynamic path planning, which 
adapts to moving obstacles, fluctuating traffic 
patterns, and environmental changes. Insights from 
Planning and Learning: Path-Planning for 
Autonomous Vehicles emphasize the importance of 
real-time adaptability in robust path-planning 
algorithms, highlighting the need for predictive 
modeling and sensor-based decision-making 
(Osanlou, Guettier, Cazenave, & Jacopin, 2022). 

1.3 Machine Learning and Deep 
Reinforcement Learning 

Recent breakthroughs in machine learning, especially 
deep reinforcement learning (DRL), have provided 
transformative solutions for path planning. In contrast 
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to conventional systems reliant on precomputed 
routes and reactive modifications, DRL empowers 
vehicles to formulate adaptive navigation strategies 
via environmental interaction. Deep Reinforcement 
Learning in Autonomous Car Path Planning and 
Control: A Survey explores how neural networks 
process large volumes of sensor data, enhancing 
decision-making in highly dynamic traffic conditions 
and allowing autonomous systems to learn efficient 
driving behaviors from experience (Chen, Ji, Cai, 
Yan, & Su, 2024). 

1.4 Integration of Deep Learning and 
Classical Path-Planning Methods 

As the field progresses, the integration of deep 
learning with classical path-planning methods has 
gained traction. Survey of Deep Reinforcement 
Learning for Motion Planning of Autonomous 
Vehicles highlights how machine learning 
techniques, particularly neural networks and 
reinforcement learning, are being applied to enhance 
real-time decision-making and obstacle avoidance in 
autonomous navigation (Zhang, Hu, Chai, Zhao, & 
Yu, 2020). This shift underscores the increasing 
reliance on data-driven models to improve 
computational efficiency and adaptability in 
unpredictable driving environments. 

1.5 Paper Structure and Objectives 

This paper presents a comprehensive review of path-
planning strategies for autonomous vehicles, tracing 
the evolution from classical graph-based methods to 
machine learning-driven approaches. The discussion 
is structured as follows: Section 2 covers traditional 
graph-based and heuristic algorithms, Section 3 
explores optimization techniques for constrained 
environments, and Section 4 delves into the latest 
advancements in deep reinforcement learning-based 
path planning. Section 5 provides further insights into 
current limitations and future development directions. 
By synthesizing insights from diverse research 
studies, this review aims to highlight the current state 
of autonomous vehicle path planning and outline 
future directions in the field. 

2 GRAPH SEARCH-BASED PATH 
PLANNING 

Path planning is a fundamental application of graph 
search algorithms. They work best in static, fully 

predictable environments. This section covers two 
major ones: Dijkstra's algorithm and A*. It accounts 
for their foundations, advantages, and the obstacles 
they face in changing environments. 

2.1 Classical Graph Search Algorithms 

The earliest and most famous method for determining 
the shortest path is Dijkstra's algorithm. It carefully 
examines all potential routes from the source node to 
the destination node. This algorithm assigns a 
provisional distance value to each node: zero for the 
source node and infinity for all others. It subsequently 
iteratively selects the node with the minimal distance, 
updates the distance values for its adjacent nodes, and 
continues this procedure until it identifies the shortest 
path. This process is clearly demonstrated in the 
flowchart of Dijkstra's algorithm in Figure 1 
(Osanlou, Guettier, Bursuc, Cazenave, & Jacopin, 
2022) to visualize the node iterative evaluation and 
update process. 
 

 
Figure 1: Dijkstra Algorithm Flow Chart (Osanlou et al, 
2022). 
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Figure 2: A Hybrid Example of Graph Search and Neural 
Networks (Osanlou et al, 2021). 

Dijkstra's algorithm guarantees the optimal result 
when the search space is static and fully known, but 
it suffers from computational cost. It considers every 
alternative path, no matter how unpromising. Recent 
developments have been aimed at addressing this 
inefficiency. For instance, the neural network 
structure Figure 2 (Osanlou et al, 2021) shows a 
hybrid approach of graph search and neural networks. 
This method employs machine learning to determine 
the most likely successful paths, streamlining the 
search process and conserving computational 
resources while delivering consistently high-quality 
results. 

2.2 Advantages of A* 

A* is an optimized version of Dijkstra's algorithm 
that makes use of heuristics. It uses a heuristic 
function, h(x), to predict the cost left to reach the 
destination from a specific node. This makes A* 
focus on paths preparing beforehand to reach the 
destination and reduce exploration to areas that are 
less expedient. This balance between exhaustive 
search and heuristic guidance often makes A* faster 
than Dijkstra's algorithm. 

Table 1 (Table 1 from (Osanlou et al, 2022)) 
compares the performance of A* and Dijkstra's 
algorithm in several scenarios. It indicates that A* is 
the most efficient in terms of computation, especially 
when the environment has clearly defined goal states. 
As a result, A* is very well-suited for use cases where 
speed and accuracy are both important 
considerations, like robotics and video game 
pathfinding. Its speed in finding near-optimal 
solutions has made it a standard for these fields. 

2.3 Challenges in Dynamic Settings 

While A* is optimal for static scenarios, it is not 
suitable for dynamic or partially known worlds. 
When new elements are introduced in the 
environment (for example, new obstacles or paths 
become inaccessible), A* has to find a new entire 
path from scratch. This issue dramatically raises 
computational costs, as observed in assessments from 
(Osanlou, Bursuc, Guettier, Cazenave, & Jacopin, 
2021). This recalculation process is not fast enough 
for real-time handling, especially in highly dynamic 
environments such as autonomous driving. 

Moreover, it has led to hybrid approaches and 
machine learning techniques that allow the algorithm 
to adapt more quickly to fluctuations in their 
environment. The goal of these methods is to retain 
the inherent benefits of A* but to minimize its 
dependency on static assumptions. 

Table 1. The Applicable Environment and Conditions of the Algorithm (Osanlou, Guettier, Bursuc, Cazenave, & Jacopin, 
2022) 

Classifi- 
cation Algorithm Name Applicable Environment And Conditions 

Path planning 
algorithm based 

on search 

Dijkstra 
algorithm 

(1) Applicable to higher abstract graph theory levels and 
directed graphs, but cannot account for the presence of 
negative edge directed graphs. 
(2) Address the issue of traversal path planning. 
(3) Solve the problem of determining the shortest path 
and compare it to the length of the path without a 
specific path. 
(4) Utilize in global path planning.
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A* 
algorithm 

(1) Appropriate for intricate yet moderately sized 
directed graphs. 
(2) Addresses the challenge of determining the shortest 
route. 
(3) Utilized for both global and local path planning. 
(4) This approach is relevant when a specific path needs 
to be determined.

Path planning 
algorithm based 

on sampling 

Rapidly- 
exploring 

Random Trees 
(RRT) 

algorithm 

(1) Suitable for two-dimensional and high-dimensional 
spaces. 
(2) Effectively solves path planning problems in 
complicated and dynamic environments. 
(3) Utilized for both global and local path planning. 

Probabilistic Roadmap 
Method 
(PRM) 

algorithm 

(1) Appropriate for high-dimensional spaces. 
(2) Addresses path planning challenges in complex and 
dynamic environments. 
(3) Utilized for both global and local path planning. 
(4) Completion of the entire process necessitates the use 
of a search-based algorithm.

 

3 SAMPLING-BASED PATH 
PLANNING 

For complex, high-dimensional space navigation, 
sampling-based path planning algorithms are 
necessary. When deterministic approaches are 
computationally impossible, they shine. This section 
delves into Rapidly-exploring Random Trees (RRT), 
Probabilistic Roadmap Method (PRM), and Gaussian 
Process-based Sampling, showcasing their 
capabilities and capacity to adapt to real-time 
settings. 

3.1 Introduction to Sampling-Based 
Algorithms 

Algorithms like RRT and PRM that rely on sampling 
try to discover workable routes in complicated 
settings without necessitating a full-space model. In 
order to find a workable route, these algorithms take 
a random sample from the configuration space and 
join them. Because of their probabilistic nature, they 
are adept at navigating complex, multi-dimensional 
spaces. 

Figure 3 (Osanlou et al, 2021) shows the 
Processing pipeline for Graph Convolutional 
Networks (GCNs), which shows how graph models 
can be integrated with algorithms based on sampling. 
It shows how GCNs improve computing efficiency, 
optimize the search process, and use learned features 
to improve sample selection. By combining them 
with new learning-based techniques, conventional 
sampling methods are strengthened to withstand 
changing environments. 
 

 
Figure 3: Processing pipeline for path planning using GCNs. The GCN accepts an adjacency matrix containing costs and an 
instance as input. Graph convolutional layers evaluate each node in conjunction with its adjacent nodes. New features are 
generated for each node in the hidden layers. In the concluding layer, these features are input into a fully linked layer, 
succeeded by a softmax function. The softmax layer identifies the subsequent node in the optimal trajectory (Osanlou et al, 
2021). 
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3.2 Reinforcement Learning 
Enhancements 

When applied to dynamic settings, reinforcement 
learning greatly enhances the adaptability of 
sampling-based approaches. Algorithms like RRT 
and PRM, which incorporate DRL (Deep 
Reinforcement Learning), can optimize their 
sampling tactics over time. An application of this is 
demonstrated in Deep Reinforcement Learning-
Based Optimization for path planning, wherein the 
model adjusts its sampling distribution in real-time 
based on environmental input (Jin et al., 2023). 

With reinforcement learning, path quality may be 
preserved while the number of samples needed is 
decreased. Because of this, RRT and similar 
technologies are better suited to real-time 
applications that require computational efficiency 
and flexibility. 

4 COMBINATION OF GRAPH 
SEARCH AND SAMPLING-
BASED METHODS 

The integration of deterministic and probabilistic 
approaches represents a significant advancement in 
vehicle path planning. By combining the structured 
reliability of graph search with the adaptability of 
sampling-based methods, hybrid models address 
limitations present in either approach individually. 
This section explores the architecture, case studies, 
real-world applications, and the role of artificial 
potential fields in enhancing hybrid systems. 

4.1 Introduction to Hybrid Approaches 

Hybrid models leverage the strengths of both 
deterministic and probabilistic methods. They utilize 
graph-based algorithms for precision while 
incorporating sampling techniques for flexibility in 
dynamic environments. The processing pipeline for 
path planning using GCNs Figure 3 (Osanlou et al, 
2021) demonstrates how hybrid systems integrate 
GCNs with sampling. This pipeline highlights how 
GCNs enhance the decision-making process by 
predicting promising regions in the search space, 
enabling faster and more efficient hybrid path 
planning. 

4.2 Case Studies and Examples 

4.2.1 Performance Improvements in 
Dynamic Environments 

The hybrid approach’s ability to adapt to dynamic 
conditions is evident in the Optimal Solving of 
Constrained Path-Planning Problems with Graph 
Convolutional Networks and Optimized Tree Search 
(Osanlou et al, 2021). Evaluation charts from this 
study show significant performance improvements, 
particularly in environments with shifting obstacles 
or constraints. These results underscore the hybrid 
model’s advantage in combining structured 
exploration with real-time adaptability. 

4.2.2 Handling Traffic Dynamics 

Figure 4 (Chen, Jiang, Lv, & Li, 2020) illustrates a 
road condition selection area that demonstrates how 
hybrid methods manage dynamic traffic scenarios. By 
integrating reinforcement learning with sampling-
based techniques, the model adapts to real-time traffic 
changes, ensuring smooth and efficient navigation. 

 
Figure 4: Road Condition Selection Area (Chen et al, 2020). 

4.3 Real-World Applications 

4.3.1 Optimization During Training 

Improved Deep Reinforcement Learning Algorithm 
for Path Planning provides insights into hybrid 
methods during the training phase (Osanlou et al, 
2021). Figure 5 and Figure 6 (Jin, Jin, & Kim, 2023) 
present preliminary pathfinding results, showcasing 
how the integration of deterministic and probabilistic 
techniques optimizes decision-making even at early 
training stages (Jin, Jin, & Kim, 2023). This 
capability makes hybrid approaches well-suited for 
environments where learning must occur on-the-fly. 
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Figure 5: Depiction of the Simulated Environment (Jin et 
al., 2023). 

 
Figure 6: Preliminary Path Finding (Jin et al., 2023). 

4.3.2 Fine-Tuning Hybrid Models 

Figure 7 (Chen et al., 2020) highlights how hybrid 
methods can be fine-tuned by adjusting parameters to 
balance exploration and exploitation. This real-world 
application demonstrates the practical effectiveness 
of hybrid systems in diverse scenarios, such as 
autonomous vehicle navigation through 
unpredictable environments. 

 
Figure 7: The Influence of the Probability of Greedy 
Algorithm (ε) on Path Selection (Chen et al., 2020). 

4.4 Artificial Potential Fields in Hybrid 
Models 

Artificial Potential Fields (APF) contribute to hybrid 
systems by providing local navigation efficiency. 
Reference (Rehman, Tanveer, Ashraf, & Khan, 2023) 
explains how APF principles, such as attractive and 
repulsive forces, can be integrated into hybrid 
methods to improve obstacle avoidance and goal-
seeking behaviors. These contributions enhance the 
precision of hybrid models without compromising 
their adaptability. 

4.5 Addressing Hybrid System 
Limitations 

APF systems also address specific limitations in 
hybrid models. Discussions in (Rehman et al., 2023) 
highlight how APF techniques can handle edge cases, 
such as narrow corridors or complex obstacle layouts, 
where traditional methods may fail. By bridging these 
gaps, APF ensures smoother navigation in real-world 
applications. 

5 FUTURE DIRECTIONS 

Advancements in deep learning and path planning 
have paved the way for further research in 
autonomous vehicle navigation. Future studies should 
focus on enhancing real-time decision-making, 
optimizing energy efficiency, integrating multi-
criteria constraints, and addressing scalability 
challenges. 

5.1 Reinforcement Learning 
Integration for Real-Time Decision-
Making 

The integration of DRL into autonomous vehicle path 
planning can significantly improve adaptability and 
decision-making in dynamic environments. By 
utilizing DRL, vehicles can learn from past 
experiences to optimize routes, avoid obstacles, and 
respond to real-time traffic conditions. Figure 8 (Jin 
et al., 2023) illustrates the reward trend over 
iterations, demonstrating how DRL models refine 
their decision-making processes through iterative 
learning. This trend highlights how reinforcement 
learning enhances model adaptability and robustness 
in varied driving scenarios.
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Figure 8: DRL-PP algorithm’s reward trend over 2,000 iterations (Jin et al., 2023).

5.2 Environmental Factors: Fuel 
Efficiency and Energy 
Optimization 

Energy consumption and fuel efficiency are critical 
considerations for autonomous vehicle path planning. 
Factors such as air resistance, terrain variations, and 
acceleration control significantly impact fuel 
economy. Figure 9 (Chen et al., 2020) showcases the 
relationship between vehicle distances and air 
resistance, indicating that efficient path planning can 
minimize fuel consumption and environmental 
impact. Future research should focus on integrating 
energy optimization strategies with deep learning-
based path planning to enhance sustainability. 

 
Figure 9: The Relationship between Vehicles Distance and 
Air Resistance (Chen et al., 2020). 

5.3 Multi-Criteria Optimization for 
Real-World Constraints 

Real-world autonomous navigation requires 
balancing multiple constraints, such as safety, traffic 
efficiency, and user preferences. Learning-Based 
Preference Prediction for Constrained Multi-Criteria 
Path-Planning proposes a preference-based approach 
to optimize path planning under diverse constraints 

(Osanlou, Guettier, Bursuc, Cazenave, & Jacopin, 
2021). By integrating multi-criteria optimization with 
deep learning, future research can develop more 
robust navigation systems that dynamically adjust to 
real-world conditions while aligning with user-
defined priorities. 

5.4 Challenges in Scalability and Real-
Time Performance 

Despite advancements in DRL, scalability and real-
time performance remain major challenges in 
autonomous vehicle path planning. DRL Based 
Optimization for Autonomous Driving Vehicle Path 
Planning highlights computational bottlenecks and 
efficiency issues when scaling DRL models to larger 
and more complex driving environments (Jin, Jin, & 
Kim, 2023). Addressing these challenges requires 
improved algorithms, hardware acceleration 
techniques, and hybrid models that balance accuracy 
and computational efficiency. 

6 CONCLUSIONS 

This article has examined various deep learning-
based approaches for path planning in autonomous 
vehicles, highlighting key methodologies, challenges, 
and future research directions. 

A comparative analysis of different path-planning 
methods, as summarized, reveals the strengths and 
weaknesses of various approaches. While traditional 
methods offer reliability and predictability, deep 
learning-based techniques enhance adaptability and 
learning capability. However, each method comes 
with trade-offs in terms of computational complexity, 
data requirements, and real-world applicability. 
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Hybrid models that combine classical path-
planning algorithms with machine learning 
techniques hold significant promise for future 
advancements. Optimization techniques play a 
crucial role in refining model performance, as 
evidenced by improvements in loss function curves 
during training. Additionally, real-world applicability 
highlights the importance of bridging theoretical 
advancements with practical deployment to enhance 
autonomous navigation systems. 

Recent developments in the optimal resolution of 
constrained path-planning issues emphasize the 
application of GCNs and optimized tree search 
techniques. These enhancements markedly diminish 
computational burden and boost path-planning 
efficacy, rendering real-time decision-making 
possible. 

While deep learning has revolutionized path 
planning for autonomous vehicles, challenges such as 
scalability, energy efficiency, and real-world 
adaptability remain. Future research should focus on 
refining hybrid models, integrating multi-criteria 
optimization, and improving computational 
efficiency to enable more robust and scalable 
autonomous navigation systems. 
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