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Abstract: Federated learning (FL) is a process that allows multiple participants to train a model locally and share the 
model parameters. This approach reduces the risk of data leakage. To improve privacy protection, researchers 
have proposed a range of techniques that are designed to preserve privacy. These include differential privacy, 
homomorphic encryption, and secure multi-party computation, which enhance privacy protection by 
operating at different levels. Nevertheless, further research is required to achieve a balance between privacy 
and model performance in the context of FL. The present paper commences with an exposition of the notion 
of FL, clarifying its definition and rationale. Subsequently, a comprehensive review of extant architectures 
and classifications of FL is presented. The subsequent discussion focuses on the root causes of privacy threats 
in FL and analyses the risks that may be caused by data sharing and other links. On this basis, the advantages 
of privacy-preserving techniques such as differential privacy, homomorphic encryption, and secure multi-
party computation in combination with FL are described in detail. These advantages include enhanced data 
security and privacy protection. The limitations of these techniques are also discussed. Finally, it 
comprehensively discusses the challenges of privacy protection in FL, such as the contradictory nature of 
ensuring both high model accuracy and efficient algorithms and the lack of unified quantitative standards. 
The paper also provides an outlook on future development directions, which will doubtless serve as a reference 
for subsequent research and practice. 

1 INTRODUCTION 

Artificial intelligence has been widely applied in 
many different industries in recent years. Federated 
learning (FL) is a new distributed machine learning 
system that addresses data privacy issues by 
distributing model parameter updates among several 
computers without transferring the original data. 
However, the data's sensitivity creates significant 
difficulties for model training. There is mounting 
concern among the public, the media, and 
governments worldwide regarding data leaks. For 
example, Facebook suffered a massive data breach, 
which has led to increased public attention to privacy 
and security issues. The European Union (EU), to 
strengthen data security and privacy, has issued the 
General Data Protection Regulation (GDPR), which 
provides for the protection of the personal data and 
privacy rights of EU citizens, as well as regulating the 
processing and use of personal data by businesses 
(Goddard, 2017). China has also introduced laws to 
emphasise the importance of personal privacy 
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(National People's Congress of the People's Republic 
of China, 2021).  

Recent years have seen considerable progress in 
the application of privacy-preserving techniques in 
the context of FL. For example, there has been a 
notable advancement in the field of differential 
privacy techniques, particularly in the integration of 
local and global differential privacy strategies. A 
recent study proposes an approach that combines 
local differential privacy (LDP) and global 
differential privacy (GDP) in a manner that 
safeguards data privacy while minimising the impact 
on model performance (Zhu, &Chen, 2025). In 
addition, techniques such as secure multi-party 
computation and homomorphic encryption have been 
further explored in FL. These techniques ensure that 
the model update information of the client is not 
leaked even in an untrusted server environment by 
encrypting the process. 

Based on this, this paper aims to provide a 
comprehensive theoretical framework and practical 
guidance for privacy protection in FL. By deeply 
analysing the privacy threats and their protection 
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techniques in FL, it reveals its potential and 
challenges in data privacy protection and provides 
valuable references for researchers and practitioners. 

2 FEDERATED LEARNING 

2.1 Introduction to Federated Learning 

To solve the privacy protection issue, Google 
developed federated learning techniques (McMahan, 
Moore, & Ramage, 2017). The technology effectively 
protects user privacy and security by keeping the data 
storage and model training process on the local device 
and exchanging model update information only with 
a central server. 

In a practical application scenario, Suppose N 
clients ሼ𝐸ଵ, … 𝐸௜ሽ  hold their own dataset ሼ𝐷ଵ, … 𝐷௜ሽ 
and cannot access each other's data directly. It 
contains four basic steps: 
 The server sends an initial model to each client; 
 Client 𝐸௜  does not need to share its resource 

data and trains its model 𝑀௜ with local data 𝐷௜; 
 The server aggregates the collected individual 

local models ሼMଵ, … M୧ሽ  into a global model Mᇱ; 
 Issues updates of the global model 𝑀ᇱ to each 

client's local model. 
From this, it appears that federated learning 

technologies have the following characteristics: the 
data of all parties are kept locally, which effectively 
avoids the problems of privacy leakage and violation 
of laws. Secondly, under the federated learning 
system, the identities and status of each participant 
are equal and no one party dominates. Finally, the 
modelling effect of FL is comparable to or less 
different from the effect of modelling the whole 
dataset centrally, which ensures the performance and 
accuracy of the model. 

2.2 The Architecture of Federated 
Learning 

2.2.1 Centralized Federated Learning 
Architecture 

A central server acts as the coordinator in this 
architecture, transmitting the original model to the 
clients and compiling the model updates—usually 
model parameters or gradients—that the clients 
provide. Using local data, the client trains the model 
and communicates updates to the central server. 
These updates are combined by the central server to 

create a global model, which is then repeated until the 
model converges or training is finished. 

2.2.2 Decentralized Federated Learning 
Architecture 

Parties communicate directly with each other in this 
architecture without a central server. Each party 
updates and encrypts its model and sends it to other 
parties. This architecture requires more cryptographic 
operations and all model parameter interactions are 
encrypted to ensure data security and privacy. At 
present, it can be realized by secure multi-party 
computation, homomorphic encryption, and other 
technologies. 

2.3 Categorization of Federated 
Learning 

FL can be divided into three categories based on the 
distribution of the data: federated transfer learning, 
vertical federated learning, and horizontal federated 
learning. The danger of privacy leakage and 
protection strategies is also impacted by the training 
and intermediate settings needed for various data 
division techniques. 

Suppose 𝐿௨ represents the data held by client 𝑢, 𝐿௣ represents the data held by client 𝑝, 𝐽௨ represents 
the sample ID of client 𝑢, 𝐽௣ represents the sample ID 
of 𝑝, 𝑌௨ represents the dataset label information of 𝑢, 𝑌௣ represents the dataset label information of 𝑝, 𝑋௨ 
represents the dataset feature information of 𝑢, and 𝑋௣  represents the dataset feature information of 𝑝 . 
Therefore a complete training data set 𝐷 should be 
composed of ሺ 𝐽, 𝑌, 𝑋 ሻ (Yang, Liu, & Chen, 2019). 

2.3.1 Horizontal Federated Learning (HFL) 

HFL is suitable for data where multiple parties have 
different users, but these data have the same set of 
features. The formula is expressed as follows. 𝑋௨ = 𝑋௣, 𝑌௨ = 𝑌௣, 𝐽௨ ≠ 𝐽௣, ∀𝐿௨, ∀𝐿௣, 𝑢 ≠ 𝑝 (1) 

In HFL, the datasets of each party are identical in 
the feature space but non-overlapping in the sample 
space, that is the datasets contain different instances 
or records but each instance has the same attributes or 
features. Gradient processing and communication in 
HFL may reveal users' private data. A common 
solution is to perform homomorphic encryption, 
differential privacy, and secure aggregation as a way 
to ensure security when exchanging gradients in HFL. 
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2.3.2 Vertical Federated Learning (VFL) 

VFL applies when multiple participants have data 
about different characteristics of the same set of users. 
The formula is expressed as follows. 𝑋௨ ≠ 𝑋௣, 𝑌௨ ≠ 𝑌௣, 𝐽௨ = 𝐽௣, ∀𝐿௨, ∀𝐿௣, 𝑢 ≠ 𝑝 (2) 

In the VFL, participants share the same sample 
but each possesses distinct feature data. To illustrate, 
consider a scenario where a bank and an e-commerce 
company possess a similar customer base. However, 
the nuances of their respective data sets diverge. 
While the bank holds information pertaining to the 
customer's financial transactions, the e-commerce 
company focuses on customer shopping behaviour 
patterns. This scenario is an exemplification of the 
application of VFL. 

2.3.3 Federated Transfer Learning (FTL) 

FTL is suitable for participants who may have a small 
number of overlapping or completely different 
datasets, but all hope to utilise the knowledge of the 
other participants to improve the performance of their 
own models. The formula is expressed as follows. 𝑋௨ ≠ 𝑋௣, 𝑌௨ ≠ 𝑌௣, 𝐽௨ ≠ 𝐽௣, ∀𝐿௨, ∀𝐿௣, 𝑢 ≠ 𝑝 (3) 

By integrating the decentralized training approach 
of FL with the knowledge transfer capabilities of 
transfer learning, participants can collaborate to 
develop a shared global model without the need to 
exchange raw data, thereby preserving their data 
privacy. The primary aim of FTL is to leverage prior 
knowledge to enhance the learning process for new 
tasks, addressing issues related to insufficient data 
and labels. 

In the above three types of FL, the data of each 
participant is always kept locally and the data exists 
independently. The parameters exchanged during 
joint training are encrypted and the communication 
also adopts strict encryption algorithms, making it 
difficult to leak the original data information. 
Compared with traditional centralised machine 
learning training, it has higher privacy protection. 
However, FL itself does not provide comprehensive 
and sufficient privacy protection and still faces the 
threat of information leakage. Only by recognizing 
the risk of privacy leakage can the overall direction of 
privacy protection methods for FL be found. As the 
current protection methods of VFL and FTL are 
similar to HFL, the privacy protection technologies 
investigated below are HFL scenarios unless 
otherwise specified. 

3 ROOTS OF PRIVACY THREATS 
IN FEDERATED LEARNING 

FL reduces the risk of leakage of centrally stored data 
by processing and training data on edge devices but 
also poses new privacy protection challenges. In 
horizontal federated learning, participants need to 
upload gradient parameters to the server for 
aggregation, which may leak private information 
about the local data. In vertical federated learning, a 
malicious adversary may steal sensitive information 
through gradient swapping due to overlapping data 
features but not shared labels. Federated transfer 
learning is also prone to exposing private information 
in the process of data backpropagation. This 
subsection lists the major privacy threats in FL. 

3.1 Unauthorized Access and 
Extraction by Malicious 
Participants 

In FL, model gradients and parameter updates are 
shared among multiple participants even though the 
data never leaves the local device. This sharing 
mechanism provides potential attack opportunities 
for malicious participants. For example, one 
participant may try to infer the characteristics of other 
participants' data by analysing the uploaded gradient. 
This phenomenon is known as a gradient leakage 
attack (Yang, Ge, & Xue, 2023). In addition, if a 
participant is infected with malware, it may 
unknowingly leak data or intentionally upload 
gradients containing malicious code to disrupt the FL 
process or steal data from other participants. Research 
has now evaluated gradient inversion attacks and their 
defense mechanisms, pointing out that a malicious 
participant can partially recover the client's private 
data by analysing the gradient (Huang, Gupta, & 
Song, 2021). 

3.2 Privacy Breaches and Attacks on 
the Central Server 

The central server plays the role of aggregating the 
gradients of each participant in FL, thus it becomes a 
potential privacy leakage point. If the server is under 
the control of an attacker or if there is an internal 
malicious actor, then the uploaded gradient 
information may be intercepted and analysed to 
reveal sensitive data (Sharma, & Marchang, 2024). 
Furthermore, software and hardware vulnerabilities 
of servers can also be exploited to steal or tamper with 
data. To protect privacy, server security needs to be 
ensured. Including the use of encryption to protect 
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data transmission and the implementation of strict 
access control and monitoring mechanisms. 

3.3 Malicious Multi-Party Conspiracy 
to Steal Privacy 

In FL, the cooperation of multiple participants is the 
key to improving model performance. If multiple 
participants collude, however, they may work 
together to analyse gradient information to 
extrapolate data from other participants (Luo, Li, & 
Qin, 2024). This collusive attack is more difficult to 
defend against than an attack by a single participant 
because it involves the concerted action of multiple 
seemingly legitimate participants. To combat this 
threat, mechanisms need to be devised that can detect 
and deter collusive behaviour. For example, by 
randomising the gradient or using differential privacy 
techniques to make it harder for attackers to steal 
information. 

4 PRIVACY PROTECTION 
TECHNOLOGY IN 
FEDERATED LEARNING 

4.1 Secure Multi-Party Computation 
(SMPC) 

SMPC allows multiple participants to collaboratively 
compute an agreed function without mutual trust and 
a trusted third party. It also ensures that each 
participant cannot extrapolate the raw data of the 
other participants from the data interacted during the 
calculation process, except for the results of the 
calculation. This means that privacy and security are 
guaranteed in multi-party data fusion calculations, 
where each participant has absolute control over the 
data it owns, guaranteeing that basic data and 
information will not be leaked. However, the 
implementation of SMPC is relatively complex, 
which can lead to performance bottlenecks and 
increased computational and communication 
overheads (Gamiz, Regueiro, & Lage, 2025). To 
solve this issue, researchers have investigated the 
problem of latency in SMPC. They have proposed a 
lazy sharing approach with a view to reducing 
communication overhead and computational burden 
(Li, Zhang, & Lin,2024). 

SMPC allows multiple participants to collaborate 
on computations without revealing their private data, 
so it is well suited for collaboration between multiple 
organisations. This ability to collaborate with 
multiple parties makes SMPC useful in scenarios that 
require joint computation by multiple independent 

data providers, such as financial collaboration or 
analysis of healthcare data. In response to the central 
server and multiple participant collusion, researchers 
have proposed a jointly secure multi-party deep 
learning protocol that incorporates additive 
homomorphic encryption and differential privacy, 
which can demonstrate better security, accuracy, and 
efficiency in supporting FL for large-scale user 
scenarios (Hao, Li, & Luo, 2019). Experimental 
results on the MNIST dataset show that the protocol 
achieves an average accuracy of 90.8% at ε =0.5, δ = 10ିହ and 97.5% at  ε = 2, δ = 10ିହ, which 
is a good indication of the protocol's ability to 
maintain high accuracy and efficiency while 
protecting privacy (Hao, Li, & Luo, 2019). 

4.2 Differential Privacy (DP) 

The core idea of DP is to add noise to the computation 
process to ensure that information about individual 
data points cannot be extrapolated backward from the 
results of the analysis. In FL, DP is mainly applied in 
the aggregation phase of model parameters. Instead of 
directly aggregating the local model parameters from 
each participant upon receipt, the central server first 
trims the parameters to limit their range and then adds 
noise to obscure their exact values. In this way, even 
if the attacker intercepts the noisy model parameters, 
the original data of any participant cannot be 
recovered from them. Current research has explored 
the use of DP in data analysis, pointing out that 
adding noise to model updates can effectively prevent 
attackers from inferring information about individual 
training samples from the model (Subramanian, 
2023). The researchers present a knowledge transfer 
method called PrivateKT that aims to enable effective 
and privacy-preserving knowledge transfer in FL (Qi, 
Wu, & Wu, 2023). Experimental results show that on 
the MNIST dataset, PrivateKT's accuracy is only 
2.5% lower than that of centralised learning under ϵ =  2, which proves that PrivateKT can effectively 
transfer high-quality knowledge while protecting 
privacy (Qi, Wu, & Wu, 2023). 

Noise introduced by DP may lead to degradation 
of model performance. It has been shown that adding 
noise can provide better privacy protection, but may 
harm the accuracy of the model (Zhang, Mao, & Tu, 
2023). Some researchers have successfully deployed 
differential privacy within a FL framework for 
analysing health-related data, but experiments have 
demonstrated that DP may result in large function 
loss values (Choudhury, Gkoulalas-Divanis, & 
Salonidis, 2019). Therefore, the balance between DP 
and model accuracy needs to be carefully studied and 
adjusted. 
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4.3 Homomorphic Encryption (HE) 

HE is a special type of encryption. It allows 
calculations to be performed on encrypted data and 
decrypted when the result is obtained and the result is 
the same as if the same calculation had been 
performed on the original data. The core feature of this 
technology is that the data can be counted invisible, 
which means that the data can be processed and 
analysed without decryption. The absence of 
transmission of both the data itself and the underlying 
models ensures that the other party is unable to make 
any deductions. Consequently, the probability of 
leakage at the raw data level is minimal  (Hong, 2025). 

HE allows computation on encrypted data, 
meaning that clients can train local models without 
decrypting the data, thus protecting the privacy of 
client data. However, HE is usually computationally 
intensive and can increase the computational burden 
on the client, especially on resource-constrained 
devices. HE can be a performance bottleneck in FL 
systems due to the high computational overhead. 
Researchers have now proposed FedML-HE, an 
efficient privacy-preserving FL system based on 
homomorphic encryption, which employs selective 
parameter encryption and significantly reduces 
communication and computation overheads, making 
FL based on HE more efficient in real scenarios (Jin, 
Yao, & Han, 2023). Experiments have demonstrated 
that FedML-HE significantly reduces overheads, by a 
factor of about 10 for the ResNet-50 model in terms 
of both computation time and communication file 
size, and by a factor of about 40 for the BERT model 
(Jin, Yao, & Han, 2023). 

5 CHALLENGES AND FUTURE 
DIRECTIONS 

Due to its unique architecture and training process, 
FL encounters various privacy invasion methods and 
urgent privacy protection requirements. To predict 
the future direction of FL privacy protection, it is 
important to first identify and understand the 
problems encountered in the balance, cost-
effectiveness, and practical application of current 
privacy protection technologies. 

5.1 Privacy-Preserving Approaches or 
Techniques for Vertical Federated 
Learning and Federated Transfer 
Learning 

The primary focus of current research endeavours 
pertains to the realm of privacy protection and 

security defence in the context of horizontal federated 
learning. Relatively little research has been done on 
longitudinal federated learning and federated transfer 
learning (Liu, Lv, & Guo, 2024). These two models 
require deeper levels of data interaction and 
cooperation, so the development of reliable security 
protocols or hybrid strategies integrating multiple 
privacy-preserving technologies to achieve optimal 
privacy protection at each step is the key to future 
research. 

5.2 Balancing the Contradictions of 
Privacy Protection, Model 
Accuracy, and Algorithm 
Efficiency 

Building efficient and highly accurate privacy-
preserving security algorithms is the main problem 
that needs to be addressed by current FL. Existing 
privacy protection methods generally enhance 
privacy protection at the expense of efficiency or 
model accuracy (Zhang, Kang, & Chen, 2023). If the 
encryption degree is too weak, it will increase the risk 
of privacy leakage, while if the encryption degree is 
too strong, it will cause large computational overhead 
and may affect the global model performance. 
Computational and communication overheads need 
to be addressed for privacy-preserving technologies, 
especially encryption technologies. Future research 
can develop privacy protection schemes that integrate 
multiple technologies, reasonably select suitable 
privacy protection schemes for different application 
scenarios, reduce scheme complexity, and optimise 
model accuracy and training efficiency. In this way, 
privacy can be protected while avoiding large 
performance loss and data encryption protection and 
communication security can be complementary 
guarantees. 

5.3 Establish the Metrics of Privacy 
Leakage and Privacy Protection 
Degree 

FL currently lacks a unified privacy metric, making it 
difficult for researchers to accurately assess the 
effectiveness of privacy-protecting programmes and 
for users to know exactly how well they are protecting 
their privacy (Jagarlamudi, Yazdinejad, & Parizi, 
2024). Attempts to systematically measure the degree 
of user privacy protection and the amount of 
protection provided by different technologies can 
help refine evaluation metrics and facilitate iterative 
research on privacy attacks and protection schemes. 
At the same time, the privacy leakage risk assessment 
system of each link in the FL system is not perfect. 

ICDSE 2025 - The International Conference on Data Science and Engineering

44



For example, the aggregation results observed by the 
server in the secure aggregation mechanism may 
cause privacy leakage, so it is necessary to further 
study and evaluate the risk of exposure of 
intermediate parameters. Overall, the construction of 
a unified and perfect privacy protection metric is 
crucial for privacy protection in FL systems, which 
can provide evaluation metrics and promote the 
development and optimisation of privacy protection 
techniques. 

6 CONCLUSION 

In recent years, with the rapid development of 
artificial intelligence, there have been numerous 
reports on the Internet about artificial intelligence 
leaking personal privacy, and people have begun to 
pay more attention to data privacy. The emergence of 
FL has brought new hope and methods to researchers 
to a certain extent. However, with the deepening of 
research, FL also faces the risk of privacy leakage 
different from other machine learning methods. 

The present paper conducts an exhaustive 
investigation and in-depth analysis of the latest 
research on privacy leakage risks and protection 
technologies of FL. The architecture and 
classification of FL are introduced, the root causes of 
privacy risks are analysed and a list of three privacy 
protection technologies is provided: secure multi-
party computation, differential privacy and 
homomorphic encryption. This paper first briefly 
introduces these technologies, and then 
comprehensively analyses their communication 
efficiency and privacy protection effects when 
combined with FL. Among them, secure multi-party 
computation is suitable for protecting multi-agency 
collaboration scenarios, differential privacy protects 
data parameters by adding noise, and homomorphic 
encryption focuses on protecting the original data. 
Finally, according to the shortcomings of the existing 
research, the future research direction was discussed. 
In the process of realising FL applications, there are 
still some unresolved challenges. In particular, the 
three major issues of developing privacy-preserving 
solutions applicable to different types of FL, 
balancing the contradiction between accuracy and 
efficiency, and establishing a unified metric deserve 
more in-depth research. 
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