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Abstract: Unmanned Aerial Vehicles (UAVs) are increasingly deployed in safety-critical, weather-sensitive operations. 
However, the direct use of Numerical Weather Prediction (NWP) model outputs often fails to address the 
specific operational thresholds and spatial–temporal needs of UAV missions. This study introduces a machine 
learning (ML) framework that translates standard NWP forecasts into UAV-specific feasibility assessments. 
We integrate both global (GFS) and local high-resolution (ARPEGE, AROME) models to generate real-time, 
interpretable indices or GO/NO-GO indicators tailored to UAV performance limits. Our case study over 
Nantes (France) for the 2017–2023 period demonstrates the added value of ML-enhanced predictions in terms 
of spatial precision, temporal consistency, and decision-support utility. The proposed approach also offers an 
effective method to fill gaps in local model availability by learning from global models, ensuring continuity 
and operational resilience. By combining observation statistics, NWP forecasts, and ML interpretation, this 
methodology supports scalable, automated pre-flight planning under varying weather scenarios.  

1 INTRODUCTION 

Weather forecasts play a critical role in aviation and 
other domains requiring safety-critical, time-sensitive 
decisions. In crewed aviation, meteorological 
products are issued under strict national and 
international guidelines (e.g., WMO, ICAO), with 
standardized thresholds, formats, and declared 
accuracy metrics. With the increasing use of 
unmanned aircraft systems (UAS) for specialized and 
autonomous missions, however, the demand for more 
precise, localized, and machine-readable weather data 
is growing rapidly (Simone et al., 2022). 

This shift introduces new challenges. UAS 
operations often rely on fine-grained, asset-specific 
environmental thresholds—yet conventional 
numerical weather prediction (NWP) systems are 
inherently coarse in resolution and computationally 
expensive. Addressing this gap requires techniques 
that can translate general NWP outputs into 
personalized, actionable products tailored to a 
specific platform or task. 
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Recent advances in machine learning (ML), deep 
learning (DL), and IoT offer promising pathways. 
These methods have demonstrated success in 
enhancing NWP through spatiotemporal pattern 
recognition (Ren et al., 2021; Ahmad et al., 2023), 
automated statistical post-processing (Rio et al., 
2019), real-time data fusion via IoT networks (Wang 
et al., 2022), localized forecasting through 
crowdsourced systems (Bindhu, 2020). 

While, most studies focus on improving generic 
forecast accuracy, operationally relevant 
forecasting—e.g., predicting when a UAV can or 
cannot fly—remains underexplored. Few works 
address how meteorological data can be mapped to 
mission-specific thresholds, or how learning models 
can be adapted to different assets. 

This leads to our central research question: 

How well can we predict the personalized operational 
limits of specific assets based on various 
meteorological data? 

This study focuses on learning asset-specific 
operational limits from heterogeneous meteorological 
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data. Specifically, two integration strategies are 
employed: (1) Data-driven ML forecasting, which 
learns from historical data or reanalysis (e.g., ERA5) 
to generate lightweight, high-resolution predictions 
(Ben-Bouallegue et al., 2023), (2) Hybrid ML-NWP 
post-processing, where ML enhances assimilation 
and post-processing steps (Dong et al., 2023) 

Before deploying such systems in aviation, both 
benefits and challenges must be considered: 
• Benefits: improved accuracy (Sengoz et al., 

2023; Patriarca et al., 2023), faster computation 
(Weyn et al., 2020), and enhanced forecast 
calibration (Bouallègue et al., 2023) 

• Challenges: smoothness bias, difficulty 
predicting extremes, integration hurdles, and 
regional data inconsistencies (Zhong et al., 2023) 

2 DATA AND METHODS 

This study builds on the concept of performance 
indexes as representations of prediction metadata 
(Lombardi et al., 2025) to explore a complete pipeline 
for a fully automated weather-based decision support 
system. A central challenge is the inhomogeneity of 
meteorological data—in format, resolution, content, 
and timing. 

As Lombardi et al. (2025) note, forecast products 
vary significantly across lead times, shifting from 
coarse global models to fine-scale local outputs and 
finally to real-time observations. We address this with 
an ML-based method that supports seamless 
transitions between forecast products across planning 
and operational phases. 

For UAV mission planning, we define seven 
categories of meteorological inputs: 
• Climate Data – Long-term atmospheric trends 

relevant to asset performance. 
• Global NWP Forecasts – Medium- to long-

range outputs, up to 21 days ahead. 
• Local NWP Forecasts – High-resolution data 

available ~72 hours before operations. 
• TAF Forecasts – Standard aviation text 

forecasts, issued ~24–30 hours in advance. 
• Landing Forecasts – Final high-resolution 

updates for the approach phase. 
• Current Observations – Real-time data from 

radar, METARs, or satellites. 
• Secondary Products – Crowdsourced or site-

specific data (e.g., webcams, field reports). 
This taxonomy enables phase-specific use of 
meteorological products, and highlights the need for 

adaptive ML models that handle heterogeneous 
inputs. 

Proposed framework deals with the transition 
between the products described in the Table 1 with 
basic ML algorithms. 

Table 1: Overview of the sources interpreted in this study. 

Source Information provided 

Climate 
Data 

Average annual flyable hours
Optimal asset type selection based on 

historical patterns 

Global 
Model 

General operational suitability for a 
selected asset (VRFI) 

Anticipated energy consumption 
(EER)

Local 
Model 

Forecasts with high spatial resolution 
Forecasts with hourly granularity

 

Given the differing nature of Terminal Aerodrome 
Forecasts (TAF) and Landing Forecasts provided by 
professional meteorologists, as well as nowcasting 
methods that rely on real-time observations and 
measurements, our current focus is on these available 
sources. 

2.1 Operational Principles 

As UAV operations scale, meteorological systems 
must move beyond single-airport support. Our 
proposed framework is built on the following 
principles: 
• Automation – End-to-end, minimal human input; 
• Machine Readability – Output in gridded formats 

(e.g., NetCDF) for autonomous systems; 
• Objectivity – Data-driven decision logic; 
• Transparency – Traceable inputs and outputs; 
• Relevance – Context-aware, concise outputs; 
• Localization – Tailored to local conditions; 
• Scalability – Compatible with diverse sources 

and missions; 
• Human-Like Output – Visuals that support 

expert validation; 
This framework ensures accurate, scalable, and 

interpretable support for automated UAV operations 
in an evolving technological and regulatory 
landscape. 

2.2 Machine Learning Algorithms 

We adopt a classification-based ML approach, aiming 
to determine whether forecasted conditions are 
favourable or unfavourable for a specific asset—a 
binary classification problem labelled by finally 
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observed conditions. For mapping transitions 
between forecast runs and lead times, regression tasks 
are used. The selected models span a range of 
complexity, interpretability, and robustness, as 
summarized in Table 2. 

Table 2: Utilised ML algorithms with their expected role in 
the study. 

Model Remark 
Logistic 

Regression 
Simple, interpretable, effective with 

linearly separable data 
Decision 

Tree 
Handles non-linearity; 

interpretable; prone to overfitting 
Random 
Forest 

Reduces overfitting, handles 
imbalanced data with class weighting 

Gradient 
Boosting 

Powerful, reduces bias, effective 
with imbalanced data 

AdaBoost Focuses on misclassified cases, 
robust to outliers 

KNN Non-parametric, works well with 
small datasets, sensitive to imbalances 

2.3 Performance Indicators 

Building on previously published work (Lombardi et 
al, 2025), we use a framework of indices (Table 3) 
that label a prediction based on its relevance to the 
flying asset. 

Table 3: Selected performance indicators as established by 
previous research (Lombardi et al, 2025). 

Name Description Value 
Vehicle 
Related 
Feasibility 
Index 
(VRFI) 

Probability that the 
predicted values will not 
exceed the thresholds 
specified for the vehicle 
in the mission

0 – surely worse 
than threshold 
1 – surely better 
than threshold 

Energy 
Efficiency 
Rating 
(EER) 

Estimated energy cost of 
flight (direction-
dependent) 

0 – min 
+∞ – max 

These indexes used as labels allow us to assess 
both forecast accuracy and operational utility, 
bridging physical forecasts with mission-specific 
decision-making. 

2.4 Observations Statistics 

We use METAR reports from Nantes Atlantique 
Airport (LFRS) covering 2011–2023, compliant with 
ICAO Annex 3. These include wind direction and 
speed, visibility, weather phenomena (e.g., fog, 

precipitation), temperature and dew point, cloud 
cover and ceiling. This dataset serves as: 
• Ground truth for model validation 
• Basis for computing performance indices (VRFI 

and EER) 

2.5 NWP Models 

We use both global and local NWP models to support 
different forecast horizons. 

2.5.1 Global Model 

The Global Forecast System (GFS) by NOAA (0.25° 
× 0.25° resolution) provides up to 16-day forecasts, 
ideal for long-range planning. Key It is initialized at 
00, 06, 12, and 18 UTC with forecast intervals: 12-
hour steps, then 3-hour steps below 240h horizon. 

As noted in the literature (Benjamin et al., 2016; 
Baars et al., 2005), effective GFS use requires 
attention to: (1) Forecasted values, (2) Temporal 
trends and lead-time consistency, (3) Model 
reliability and bias characteristics. 

Because raw GFS output is complex, we translate 
it into probabilistic, threshold-based forecasts, 
answering: 

“What is the probability this forecast meets 
operational limits?” 

This aligns with our use of performance indices 
(Section 2.3) and supports actionable decision-making. 

2.5.2 Local Models 

Local models capture mesoscale phenomena critical 
to UAV operations. For the Nantes region, we use: 
ARPEGE (5 km resolution, Météo-France) and 
AROME (1.3 km resolution, convection-permitting) 

A key innovation is predicting local model output 
from global model input, enabling early 
approximation before high-resolution forecasts are 
available. This supports: 
• Continuous forecasting across model transitions 
• Uncertainty quantification before local model 

initialization 
Though global and local models share similar data 

structures (e.g., GRIB, NetCDF), the higher fidelity 
of local models improves classification near critical 
thresholds. 

3 RESULTS 

In this section, we present the interpretation of each 
data product and demonstrate their integration across 
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forecasting horizons, focused on a use case near the 
French city of Nantes. The scenario involves 
unmanned aerial vehicle (UAV) flight planning under 
operational constraints: Wind limits of 10, 12, or 
15 m·s⁻¹, Temperature range between −10 °C and 
40 °C, Visual Meteorological Conditions (VMC) 
required for operation. 

These constraints were applied consistently 
across observations and forecast models to evaluate 
the Vehicle Related Feasibility Index (VRFI) under 
both historical and predictive scenarios.  

3.1 Observations 

The statistical overview offers essential long-term 
insight into UAV operational feasibility at the target 
site. Instead of presenting separate charts for each 
variable (e.g., wind, visibility, temperature), we use 
an integrated heatmap approach to visualize overall 
operational suitability over time. 

The following heatmap (Figure 1) captures 
seasonal and diurnal patterns. Darker cells from June 
to September indicate fewer weather-related 
constraints, while lighter cells in winter—especially 
January—highlight adverse conditions in up to 50% 
of hours, often due to IMC, strong winds, or freezing 
precipitation.  

 
Figure 1: Percentage of hours of flight viability by month 
and the three-hour window in Nantes Airport. 

Such patterns simulate expert forecaster knowledge: 
• Morning fog in colder months from radiation or 

advection processes; 
• Afternoon convection in summer causing 

temporary disruption. 
These observations support operational planning 
(e.g., identifying optimal months or times) or risk 
mitigation (e.g., reserving backup windows or 
alternate sites). 
Overall, the heatmap serves as: 
• A compact, user-friendly climate overview 

tailored to UAV limits; 
• A static data layer for clustering or meta-model 

integration. 
At Nantes airport, for example, long-term 

unsuitability in January contrasts with generally 
favourable summer months. These insights enable 
statistical prediction and planning aligned with UAV-
specific thresholds. 

3.2 Global Models 

To assess medium-range forecasting potential, we 
applied both Random Forest and AdaBoost machine 
learning models to data from the GFS global model, 
focusing on a forecast horizon of 168 hours (7 days) 
to 6 hours prior to the intended UAV operation. For 
this analysis, we performed the training on 80/20 
train/test split dataset from years 2015-2022. 

These algorithms were selected based on their 
superior performance during initial validation, and 
were used to compute the Vehicle-Related Feasibility 
Index (VRFI)—i.e., the probability that the mission 
will be feasible given forecasted conditions. 

Despite the relatively coarse spatial resolution of 
the GFS (0.25° grid), the models accurately captured 
synoptic-scale signals, including a cold frontal 
passage on 2nd November 2023 that led to a notable 
decrease in predicted feasibility (Figure 2). 

 
Figure 2: Probability of wind gust lower than 12 m.s-1 
meaning feasibility of mission predicted by Random Forest 
and AdaBoost 168 to 6 hours before flight. 

Both Random Forest and AdaBoost models 
exhibited consistent temporal trends, though Random 
Forest tended to underestimate feasibility (i.e., more 
pessimistic) and AdaBoost was slightly more 
optimistic in its predictions. 

Despite the high complexity of the situation, these 
outputs demonstrate that even one week in advance, 
a well-trained model can provide meaningful early 
warning to decision-makers, allowing for adaptive 
scheduling or contingency planning. 
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3.3 Local Models  

In this part of the study, we tested whether global 
model forecasts (specifically GFS) can serve as 
reliable proxies for high-resolution local model 
outputs (ARPEGE, AROME), particularly when 
local forecasts are unavailable or delayed. The goal is 
to bridge spatial and temporal resolution gaps using 
machine learning (ML). 

We trained regression models (Random Forest, 
Gradient Boosting, Support Vector Regression) on 
forecasts from 2017–2019, using GFS data to predict 
ARPEGE outputs (Figure 4). These models were then 
applied to AROME forecasts (1.3 km resolution) 
over ~300 grid points in the Nantes region. (Figure 3). 

 
Figure 3: Comparison of Random Forest (blue), Gradient 
Boosting (green), and SVM (yellow) algorithms predicting 
ARPEGE wind speed predictions in Nantes area based on 
the GFS global predictions. (Highest values: Max error, 
middle: MSE, lowest values: MAE). 

The models performed well, especially for 10 m wind 
speed: 
• Mean Absolute Error (MAE) was consistently 

<2 m·s⁻¹ within a 24-hour lead time. 
• Maximum errors rarely exceeded 5 m·s⁻¹, even 

up to a week ahead. 
• Day-ahead forecasts showed good agreement, 

with errors stabilizing around 4 m·s⁻¹. 
These results suggest ML-based smoothing of global 
forecasts can approximate local outputs with high 
fidelity during synoptic stability. Larger 
discrepancies were observed during convective 
activity, frontal transitions, or terrain-driven 
turbulence—primarily due to limitations in input data 
resolution, not ML model design. 

Despite this, local models remain essential for: 
• Vertical profiling and convection-permitting 

outputs; 
• Finer representation of terrain and 

mesoscale features; 
• Improved gradients in wind and temperature 

fields. 

Combined with ML, local models offer a smoother, 
more interpretable depiction of atmospheric 
conditions. For example, we used wind-related 
predictions to estimate UAV energy consumption, 
presenting wind influence as a color-contoured field 
instead of traditional wind barbs (Figure 4).  

On 6 June 2017, this approach captured the 
evolution of operational conditions as a frontal 
system passed over Nantes. Early in the day, forecasts 
indicated generally favorable flying conditions 
(Figure 6 left), but by late afternoon, feasible flight 
zones were restricted to the eastern urban area (Figure 
6 right). 

 
Figure 4: Energy Efficiency Rating for flight to the 
northeast in Nantes on 6th June 2017 showing transition of 
the headwind in NE part and tailwind in the SW. 

However, as the front advanced and passed over 
the region, the area with a high probability of safe 
UAV operations narrowed—eventually being limited 
to the eastern urban area of Nantes (Figure 7).  

 

  
Figure 5: Vehicle Related Feasibility Index (VRFI) over 
Nantes based on ARPEGE model on 06th June 2017 at 00 
UTC and 15 UTC. Roads shown in black. 

High-resolution AROME forecasts provided even 
more detailed insights with hourly resolution. ML 
models maintained predictive stability above 97%, 
enabling confident classification of GO/NO-GO 
decisions based on platform-specific wind thresholds. 
For instance, Drone 1 and 3 had a max limit of 
10 m·s⁻¹; Drone 4 was configured for 15 m·s⁻¹. 
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Figure 6: Vehicle Related Feasibility Index (VRFI) for 
drone of operational maxima of wind speed 10 m·s⁻¹ (left) 
and 15 m·s⁻¹ (right) for 12 and 16-19 UTC during passage 
of the frontal system over the area (City district contours 
represented by black lines). 

These results show that ML-enhanced local 
models can effectively track dynamic atmospheric 
features and translate them into operationally relevant 
outputs. Minor timing offsets between ARPEGE and 
AROME were observed, but spatial patterns 
remained consistent. The ML confidence scores also 
served as a proxy for model reliability, offering 
valuable metadata for decision support in UAV 
operations. 

4 DISCUSSION 

As UAV deployments expand across critical 
infrastructure, emergency response, and logistics, the 
need for predictive tools supporting real-time 
operational decision-making continues to grow. 
Traditional aviation forecasting relies heavily on 
human interpretation of multi-source model data and 
TAFs. However, this study contributes to the ongoing 
shift toward automated, user-specific forecast 
interpretation using machine learning (ML), 
particularly via the Vehicle Related Feasibility Index 

(VRFI) and Energy Efficiency Rating (EER) 
(Lombardi et al., 2025). 

Our primary objective was to develop and 
validate a modular ML framework that translates 
NWP outputs into actionable UAV mission guidance. 
Special attention was given to handling forecast 
transitions—from GFS to ARPEGE to AROME—
which vary in spatial resolution and update 
frequency, posing challenges to consistency. We 
addressed this via a predictive chain that classifies or 
regresses meteorological data into mission-relevant 
outputs and harmonizes across forecast products 
using learned statistical relationships. 

A secondary goal was to assess whether global 
model outputs (GFS) could approximate local model 
behaviour (ARPEGE, AROME), providing 
continuity during periods when high-resolution data 
are unavailable. 

Building on the concept of prediction metadata 
indices (Lombardi et al., 2025), our method shifts 
from raw meteorological values to decision-oriented 
scores. Prior works have focused on MOS and short-
term nowcasting (e.g., Baars et al., 2005; Benjamin et 
al., 2016), often limited to single-model input or short 
lead times. We extend this by integrating multi-tiered 
ML pipelines, combining long-range global data with 
high-resolution forecasts, while preserving 
interpretability through standardized indices. 
Our results demonstrate that ML can: 
• Predict AROME wind speed from GFS inputs 

with good accuracy (MAE < 2 m·s⁻¹), 
• Translate raw forecasts into binary GO/NO-GO 

decisions, aligned with UAV safety thresholds, 
• Detect transitions and instabilities, such as 

frontal passages, up to 7+ days in advance using 
GFS alone. 

VRFI-based predictions showed consistency 
across models (Random Forest, AdaBoost), with 
model confidence often exceeding 97%, indicating 
robustness under synoptic-scale predictability. 
Additionally, AROME-based urban-scale forecasts 
enabled high-resolution spatial visualizations, 
including GO/NO-GO maps and energy efficiency 
gradients, supporting user-facing decision tools. 

These outcomes support a paradigm shift in 
aviation meteorology—from static, generalized 
products to dynamic, asset-specific prediction 
workflows. The proposed framework enables: 
• Real-time translation of forecasts into UAV-

relevant indices, 
• Seamless model transitions across forecast 

horizons, 
• Continuous situational awareness in both 

strategic and tactical windows. 
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Such capabilities can be embedded into 
operational platforms for UAV operators, civil 
protection agencies, or airport authorities. 

Despite encouraging results, several limitations 
remain: 
• Convective and mesoscale phenomena led to 

greater errors (e.g., peak wind deviations > 4 
m·s⁻¹), likely due to coarse input resolution 
rather than model limitations. 

• The geographic scope was limited to the Nantes 
region; generalizability to other climates or 
terrains (e.g., mountainous or tropical) requires 
further validation. 

• While index-level interpretability was achieved, 
internal model explainability (e.g., SHAP values, 
feature importance) was not explored in depth. 

Additionally, while our focus was on forecast-based 
decision support, nowcasting remains critical, 
particularly in the final 0–2 hours before take-off or 
landing. Previous work (Lombardi et al., 2025) 
identified this as the most tactically significant 
period. Future work will enhance this window using 
high-resolution satellite, radar, and in-situ data. 
Planned extensions of this research include: 
• Transitioning to probabilistic classification, 

incorporating additional indices (e.g., Vehicle 
Source Reliability Index, VRSRI). 

• Integration of ensemble NWP systems (e.g., 
ECMWF-EPS) for enhanced uncertainty 
modelling. 

• Utilization of the latest geostationary sounding 
satellite data for improved verification. 

• Applying meta-learning techniques to 
dynamically adapt model selection and feature 
prioritization by region and mission profile. 

5 CONCLUSIONS 

This study demonstrated the feasibility of a fully 
automated, ML-based framework for forecasting 
UAV-operational weather conditions across all 
planning phases. By integrating global (GFS) and 
local (ARPEGE, AROME) NWP models with 
METAR observations, we addressed key challenges 
in aviation meteorology, notably the transition across 
forecast products with differing resolutions and 
update cycles. 

Our results show that ML models can reliably 
translate raw forecasts into actionable, asset-specific 
indices such as the Vehicle Related Feasibility Index 
(VRFI) and Energy Efficiency Rating (EER). This 
supports consistent decision-making from long-range 

planning to short-term execution, even during data-
sparse periods. 

Moreover, user-centered outputs like GO/NO-GO 
maps and climatological heatmaps enhance the 
interpretability and relevance of forecast products for 
UAV mission planning. 

Despite strong performance in synoptic regimes, 
limitations remain in capturing convective and fast-
evolving weather patterns—highlighting the need for 
future integration of nowcasting methods and real-
time observational data. 

Overall, the proposed framework offers a scalable 
foundation for operational, data-driven UAV 
forecasting and sets the stage for further research into 
adaptive, real-time meteorological decision support 
systems. 
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