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Political discourse frequently leverages group identity and moral alignment, with weaponised victimhood
(WV) standing out as a powerful rhetorical strategy. Dominant actors employ WV to frame themselves
or their allies as victims, thereby justifying exclusionary or retaliatory political actions. Despite advance-
ments in Natural Language Processing (NLP), existing computational approaches struggle to capture such
subtle rhetorical framing at scale, especially when alignment is implied rather than explicitly stated. This
paper introduces a dual-task framework designed to address this gap by linking Named Entity Recognition
(NER) with a nuanced rhetorical positioning classification (positive, negative, or neutral - POSIT). By treating
rhetorical alignment as a structured classification task tied to entity references, our approach moves beyond
sentiment-based heuristics to yield a more interpretable and fine-grained analysis of political discourse. We
train and compare transformer-based models (BERT, DistilBERT, RoBERTa) across Single-Task, Multi-Task,
and Task-Conditioned Multi-Task Learning architectures. Our findings demonstrate that NER consistently
outperformed rhetorical positioning, achieving higher F1-scores and distinct loss dynamics. While single-
task learning showed wide loss disparities (e.g., BERT NER 0.45 vs POSIT 0.99), multi-task setups fostered
more balanced learning, with losses converging across tasks. Multi-token rhetorical spans proved challeng-
ing but showed modest F1 gains in integrated setups. Neutral positioning remained the weakest category,
though targeted improvements were observed. Models displayed greater sensitivity to polarised language
(e.g., RoOBERTa TC-MTL reaching 0.55 F1 on negative spans). Ultimately, entity-level F1 scores converged
(NER: 0.60-0.61; POSIT: 0.50-0.52), suggesting increasingly generalisable learning and reinforcing multi-
task modelling as a promising approach for decoding complex rhetorical strategies in real-world political
language.

1 INTRODUCTION

Political discourse frequently leverages group identity
and moral alignment, with weaponised victimhood
(WV) standing out as a powerful rhetorical strategy.
Dominant actors employ WV to frame themselves or
their allies as victims, thereby justifying exclusionary
or retaliatory political actions. Despite advancements
in Natural Language Processing (NLP), existing com-
putational approaches struggle to capture such subtle
rhetorical framing at scale, especially when alignment
is implied rather than explicitly stated.

This paper introduces a novel dual-task frame-
work designed to address this gap by linking Named
Entity Recognition (NER) with a nuanced rhetori-
cal positioning classification (positive, negative, or
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neutral). By conceptualising rhetorical alignment as
a structured classification problem directly tied to
entity references, our approach moves beyond sim-
plistic sentiment-based heuristics in order to yield
a more interpretable and fine-grained understand-
ing of complex political discourse. We train and
compare transformer-based models (BERT, Distil-
BERT, RoBERTa) across Single-Task, Multi-Task,
and Task-Conditioned Multi-Task Learning architec-
tures to evaluate their effectiveness.

Our findings reveal a promising dynamic: multi-
task learning setups, particularly standard MTL, of-
fer a robust framework for jointly addressing entity
recognition and rhetorical positioning. While imme-
diate gains in positioning F1 scores were modest or
mixed (e.g., DistilBERT dropped slightly from 0.51 to
0.48), MTL consistently promoted more stable and ef-
ficient shared learning, evidenced by converging loss
values across tasks, unlike the divergence seen in STL
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(e.g., BERT’s NER loss of 0.45 vs POSIT loss of
0.99). This convergence suggests the model is inter-
nalising both tasks in a more unified way, laying es-
sential groundwork for future refinements in rhetor-
ical classification, particularly in contexts requiring
nuanced understanding of identity and alignment.

2 RELATED RESEARCH

WV draws on a broad set of populist rhetori-
cal techniques, including identity framing, emotive
grievance, blame attribution, and the inversion of
power hierarchies. Though not always labelled ex-
plicitly as WV, such strategies have been examined
across diverse political and ideological contexts, from
US narratives of cultural loss and status anxiety (Be-
bout, 2022, 2019) to conservative and incel discourses
grounded in affective grievance and perceived disem-
powerment (Barton HroneSova and Kreiss, 2024; Ho-
molar and Lofflmann, 2022; Kelly et al., 2024). These
appeals typically reduce complexity into binaries of
victim and villain, legitimising reactionary responses
through moral positioning (Johnson, 2017; Zemby-
las, 2021; Pascale, 2019). While WV as a cohesive
phenomenon remains underexplored in NLP, its com-
ponents, such as emotional tone, stance, and identity
targeting, have been approached via sentiment analy-
sis, stance detection, and entity tagging (Teso et al.,
2018; Warin and Stojkov, 2023), often using lexicons
or simple classifiers to surface rhetorical dynamics.

SRL has also been used to support structured
analysis of rhetorical meaning, identifying roles such
as actor, affected, or instrument within a sentence.
While initially developed for formal text, SRL has
been adapted to conversational data like tweets (Liu
and Li, 2011; Xu et al., 2021), making it suitable for
political discourse. However, such contexts often in-
volve complex references, such as shifting pronouns,
compound identity phrases like the American people,
or ideologically marked groups like the radical left,
that go beyond standard named entity boundaries. To
capture these spans, researchers frequently use BIO
tagging, a scheme that assigns “B-" to the beginning
of an entity, “I-” to subsequent tokens, and “O” to
non-entity tokens. For instance, Zhou et al. (2023)
used BIO tagging to extract hate speech targets and
associated framing.

Our study addresses the gap between existing
component-level analyses and a more integrated mod-
elling of rhetorical strategies like WV. While prior
work has tackled sentiment, stance, and entities sep-
arately, few approaches link identity references to
rhetorical alignment in a structured, scalable way. We
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combine these elements to model how entities are
framed morally or politically, supporting future de-
tection of WV and similar discursive strategies.

3 METHODOLOGY

Our approach consisted of three main stages: (1)
identifying key rhetorical features of WV through
discourse analysis and SRL; (2) constructing and
annotating a training corpus drawn from a high-
density source of WV rhetoric; and (3) experiment-
ing with transformer-based architectures to evaluate
model performance on rhetorical framing tasks.

3.1 Discourse and Feature Design

Discourse analysis enables examination of how lan-
guage is used to construct identity, moral alignment,
and power. SRL complements this by identifying who
is acting, who is affected, and what the action is, re-
vealing how agency and blame are distributed in WV.
This pairing supports structured feature identification
in rhetorical positioning.

A defining feature of WV is the construction of
ingroups and outgroups. Ingroup references often ap-
pear via first-person plural pronouns (e.g., we, us)
or identity-based phrases (e.g., American workers,
our public health professionals). Outgroups are fre-
quently vague (e.g., they, these people), inviting ide-
ological projection. WV also commonly involves
a speaker positioning themselves as protector of a
threatened ingroup (Bebout, 2019). In this paper, we
focus specifically on these identity references—how
groups are invoked, labelled, and morally positioned
within political rhetoric. By modelling both the lin-
guistic form (namely pronouns, group identifiers and
identity-based phrases) and the rhetorical stance at-
tached to them (positive, negative, or neutral), we
aim to capture the alignment strategies central to
WYV discourse. This targeted approach offers a scal-
able foundation for analysing how speakers construct
legitimacy through appeals to shared identity and
grievance.

3.2 Corpus Construction and
Annotation

We draw on political speech corpora (USA Politi-
cal Speeches Dataset, 2022; Donald Trump’s Ral-
lies Dataset, 2020), totalling 595 speeches between
2015-2024. All were attributed to a speaker known
for frequent WV rhetoric. Annotation proceeded in

217



KDIR 2025 - 17th International Conference on Knowledge Discovery and Information Retrieval

two stages: first, entities were identified and tagged
across the corpus. These included pronouns (for ex-
ample, us, you, them), social groups and institutions
(Americans, the Senate), and also abstract ideas (like
the American Dream). Abstract references were in-
cluded because rhetorical positioning often involves
praise or blame directed at concepts rather than spe-
cific agents - for example, speakers may attack ideas
such as liberalism or defend notions like freedom or
our country without attributing them to a particular
group or individual. These abstract references still
carry alignment or hostility and are thus critical to un-
derstanding how identity and blame are constructed.

Once entities were identified, each was assigned a
rhetorical positioning label (POSITIVE, NEUTRAL, or
NEGATIVE) based on surrounding context. This la-
belling was done at the entity level rather than the
sentence level, as multiple entities within the same
sentence could be framed differently.

An initial broad pass of the corpus was used to an-
notate entities and their rhetorical positioning, gener-
ating a large pool of examples reflecting how various
entity types—pronouns, groups, institutions, and ab-
stract concepts—were framed in context. From this, a
smaller, balanced subset was curated for training, en-
suring diversity in entity—position combinations while
avoiding over-representation of repeated phrases or
named references. This variation supports both WV
detection and more robust generalisation overall.

Each speech was preprocessed by stripping times-
tamps and non-verbal metadata, then segmented into
context windows averaging 130-160 characters. This
segmentation strategy balances semantic coherence
with model efficiency, and aligns with the study’s
long-term goal of applying models to social me-
dia discourse (namely Reddit), where comments are
similarly brief and often fragmented. Smaller win-
dows also help isolate rhetorical structures, particu-
larly when multiple group references appear in close
proximity.

For example, the line:

‘They are attacking our families and destroy-
ing our country.”

contains multiple references, namely they, our fami-
lies, and our country, each annotated independently.
Clearly, this annotation schema does not assign
fixed ingroup or outgroup labels. Instead, it fo-
cuses on how each entity is rhetorically positioned
within the context (POSITIVE, NEUTRAL, or NEG-
ATIVE). This choice reflects how speakers may refer
not only to allies and adversaries, but also to adjacent
groups, institutions, or abstract concepts whose align-
ment is context-dependent. This is particularly valu-
able when the speaker’s stance is subtle, implied, or
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shifts across discourse. Even for human annotators,
determining group alignment often requires reread-
ing and interpretation. By foregrounding how en-
tities are positioned rather than what they are, this
schema supports more flexible and accurate mod-
elling of identity-related rhetoric.

3.3 Dataset Summary

The final dataset contains 5,103 labelled examples
drawn from 3,325 unique windows. More examples
appear than content windows because, as highlighted,
a window may contain multiple examples of entities.
Table 1 provides a breakdown by span type and posi-
tioning label.

Table 1: Breakdown of span types and rhetorical position-
ing labels.

Tag Type Count
PRONOUN 2,465
IDENTITY MARKER | 2,637
Total Examples 5,103
Positioning Label Count
POSITIVE 1,811
NEUTRAL 1,717
NEGATIVE 1,574

Although small, the dataset was carefully con-
structed and consistently annotated to test whether
fine-tuned transformer models could learn patterns of
rhetorical positioning from limited but high-quality
Input.

3.4 Model Selection

Transformer-based models such as BERT have be-
come central to NLP tasks requiring contextual inter-
pretation, including entity recognition and rhetorical
classification (Aldera et al., 2021; Botella-Gil et al.,
2024; Chaudhari and Pawar, 2022). Their capacity
to model relational and semantic nuance makes them
particularly suited to discourse-level tasks involving
alignment and framing.

This study evaluates three BERT-based variants:
BERT, RoBERTa, and DistilBERT. Each presents
a different trade-off between performance and ef-
ficiency. Table 2 summarises their comparative
strengths.

3.5 Process Flow and Model
Architecture

All models follow a consistent preprocessing
pipeline.  First, labelled span data is tokenised



Table 2: Overview of selected BERT variants with strengths
and limitations.

Model Strengths Limitations
BERT Strong general | High computa-
model;  good | tional cost; not
with context. task-specific.
RoBERTa Trained on | Resource-
more data than | heavy; slower
BERT; often | to train.
higher  accu-
racy.
DistilBERT | Smaller and | Slightly lower
faster; retains | accuracy on
95% of BERT’s | complex tasks.
performance.

and converted into BIO tags to delineate entity
boundaries. Token alignment checks are performed
to ensure that annotated spans map cleanly onto
subword tokens. The processed inputs are then
encoded into the format expected by the transformer
model, including input IDs and attention masks. The
architecture diverges at the training stage, depending
on how the NER and Positioning tasks are handled:

» Single-Task Learning (STL): Each task is
trained independently using a separate model.
There is no parameter sharing or interaction be-
tween tasks.

* Multi-Task Learning (MTL): A shared model is
trained to perform both tasks jointly. A single en-
coder processes the input, and two parallel classi-
fication heads are applied: one for NER, one for
Positioning. The model computes separate losses
for each task, which are then averaged to guide
weight updates. While this approach allows the
model to learn shared representations, it treats the
tasks as independent in output.

» Task-Conditioned Multi-Task Learning (TC-
MTL): This variant introduces directed task in-
teraction. The model first predicts NER spans,
which are passed through a fusion layer to pro-
duce entity-aware features used by the Positioning
head. This design reflects how human annotators
might work; first identifying an entity, then as-
sessing its rhetorical stance, potentially reducing
ambiguity by letting the model focus on position-
ing only after entity boundaries are known.

All models are trained end-to-end using BIO-
tagged supervision. Unlike standard BIO tagging,
which marks only span boundaries, our approach en-
codes both the span structure and the entity type.
‘We use B~ markers (namely B-PRONOUN, B-IDENTITY
MARKER) for the start of a tagged span, and corre-
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sponding I- markers to indicate continuation when
the span is more than one token. An equivalent
scheme is applied for rhetorical positioning, with tags
such as B-POSITIVE and I-NEGATIVE. Each entity is
therefore represented by two aligned BIO sequences:
one for entity recognition and one for positioning.
This structure allows models to learn from shared
span boundaries while treating classification tasks in-
dependently when needed.

Table 3: Example of dual BIO-tagged tokenised span (NER
and Positioning).

Token NER BIO POSIT BIO

They B-PRONOUN B-NEGATIVE

are 0 0

targeting | O 0

our B-IDENTITY_MARKER | B-POSITIVE

veteran I-IDENTITY_MARKER | I-POSITIVE

#its I-IDENTITY_MARKER | I-POSITIVE
0 0

During training, token-level predictions are de-
coded into spans and compared against gold anno-
tations, with alignment checks including both auto-
mated mismatch detection and manual review.

3.6 Training Details

All models were trained for five epochs with consis-
tent hyperparameters (Table 4), including a batch size
of 16 and learning rate of 5 x 1073, Early stopping
was not used to ensure full convergence.

In STL and MTL, B-tags were given greater
weight (e.g., B-PRONOUN = 2.0, [-PRONOUN =
1.0) to emphasise span boundaries and help the model
better learn where entities begin. The O tag was as-
signed minimal weight. In MTL, a weighted joint
loss (0.7 Positioning, 0.3 NER) was used to support
the more complex classification task. TC-MTL in-
troduced a warm-up phase in which the NER head
was trained alone for two epochs before Positioning
was added. This ensured the model had learned stable
entity representations before passing them to the Po-
sitioning head. Without this, early-stage noise from
untrained entity predictions could propagate, under-
mining Positioning accuracy. Once NER outputs had
stabilised, softmax probabilities were fused with en-
coder hidden states to predict Positioning tags.

3.7 Evaluation Metrics

Model performance was assessed with four categories
of metrics, reported separately for NER and Position-

ing:
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Table 4: Shared hyperparameters across all models.

Hyperparameter Value

Max sequence length | 512

Epochs 5

Learning rate 5%x107°

Optimiser AdamW

Loss CrossEntropy (ignore index = -100)
Batch size 16

Train/eval split 80/20 (seed = 42)

Random seed 42 (all frameworks)

* Overall: Weighted token-level accuracy, preci-
sion, recall, and F1 (includes O tags).

* Entity-Level: Macro-averaged scores across B-
/1- tags only (excludes 0).

* Per-Label: Precision, recall, and F1 for each spe-
cific tag (e.g., B-PRONOUN, I-NEGATIVE).

* Loss: Average final-epoch loss for each model.

We separate overall and entity-level metrics be-
cause overall scores include the O tag, which is both
the most common and the easiest to predict, poten-
tially inflating performance. Entity-level metrics ex-
clude 0 and focus only on B-/I- tags, offering a more
meaningful measure of how well the model identifies
and classifies relevant spans.

4 RESULTS

Having established a consistent training setup across
architectures, the following results provide an initial
comparison of model performance. Results are re-
ported separately for each model with attention to
both overall trends and task-specific observations.

4.1 STL

Full results for the STL tasks can be found in Table 5
and Table 6.

The STL results show consistently strong perfor-
mance across all models on the NER task, with over-
all Fl-scores ranging from 0.89 (RoBERTa) to 0.91
(BERT and DistilBERT). Entity-level F1-scores are
notably lower, peaking at 0.66 for both BERT and
DistilBERT, and slightly lower for RoOBERTa at 0.64.
This gap highlights the increased difficulty of pre-
cise boundary detection. B- labels generally outper-
form I- labels, reflecting their prominence in mark-
ing span starts and their slightly higher representa-
tion in the dataset. The particularly low F1 for I-
PRONOUN (e.g., 0.5181 for BERT) stems from the
rarity of multi-token pronouns, making I-PRONOUN
infrequent and harder to learn.
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In the POSIT task, overall performance remains
strong, with BERT achieving the highest overall F1-
score (0.88), closely followed by DistilBERT (0.87)
and RoBERTa (0.86). However, entity-level F1-
scores are more modest, ranging from 0.51 to 0.52
across models. Neutral spans proved most difficult
for all models, with I-NEUTRAL Fl-scores rang-
ing from 0.43 (DistilBERT) to 0.45 (RoBERTa).
RoBERTza also achieved the best performance on B-
NEGATIVE (F1: 0.5638), suggesting increased sen-
sitivity to more polarised language. Overall, STL pro-
vides stable and competitive results, though entity-
level detection—particularly of internally continued
spans—remains a key challenge.

4.2 MTL

Full results can be shown in Table 7 and Table 8.

The MTL results show strong NER performance
across all models, with BERT and DistilBERT achiev-
ing the highest overall F1 (0.89) and RoBERTa
slightly behind (0.87). Entity-level F1 remains lower,
with all models performing similarly. As with STL,
boundary detection proves challenging, especially for
internally continued spans, with precision trailing re-
call. DistilBERT shows the highest sensitivity to span
detection, while I-IDENTITY MARKER consistently
outperforms its B- counterpart, indicating improved
internal span modelling under MTL.

In the POSIT task, overall performance is com-
parable to STL, with Fl-scores of 0.87 for BERT
and DistilBERT, and 0.86 for RoOBERTa. Entity-level
F1 scores cluster around 0.50-0.51 across models.
RoBERTa performs best on B-NEGATIVE and B-
NEUTRAL, while BERT leads on I-POSITIVE. Neu-
tral spans remain the most difficult across all models,
particularly I-NEUTRAL, which shows the weakest
performance. Overall, MTL supports strong rhetor-
ical classification and internal span learning but con-
tinues to struggle with boundary precision and neutral
positioning.

43 TC-MTL

Results for this final style of architecture can be found
in Table 9 and Table 10.

TCMTL results show strong NER performance
across all models, with overall Fl-scores ranging
from 0.88 (RoBERTa) to 0.89 (BERT). BERT and
RoBERTa both achieve the highest entity-level F1
(0.61), though RoBERTa benefits from stronger re-
call (0.87) despite lower precision. I-IDENTITY
MARKER outperforms B-IDENTITY across models,
indicating improved internal span recognition.
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Table 5: Overall and entity-specific performance metrics for NER and POSIT tasks (STL pipeline).

Task Model Eval Loss | Overall Acc. | Overall Prec. | Overall Rec. | Overall F1 | Entity Prec. | Entity Rec. | Entity F1

NER BERT 0.45 0.90 0.93 0.90 0.91 0.53 0.87 0.66
DistilBERT 0.34 0.90 0.93 0.90 0.91 0.52 0.91 0.66
RoBERTa 0.30 0.88 0.92 0.88 0.89 0.51 0.89 0.64

POSIT | BERT 0.99 0.86 0.91 0.86 0.88 0.41 0.71 0.52
DistilBERT 0.94 0.85 0.91 0.85 0.87 0.40 0.71 0.51
RoBERTa 0.92 0.83 0.91 0.83 0.86 0.40 0.74 0.52

Table 6: Per-label precision, recall, and F1-scores for NER and POSIT tasks (STL pipeline).

Task Label BERT DistilBERT RoBERTa
P R F1 | R F1 P R F1
NER B-PRONOUN 0.60 095 0.74 | 057 097 0.72 | 0.59 098 0.74
I-PRONOUN 038 083 0521039 088 054 | 038 079 051

B-IDENTITY MARKER | 0.56 0.87 0.68 | 0.54 092 0.68 | 0.52 091 0.66
I-IDENTITY MARKER | 0.59 083 0.69 | 0.59 0.89 0.71 | 054 0.89 0.67

POSIT | B-POSITIVE 038 0.77 051 ] 037 0.79 050 | 038 081 0.52
I-POSITIVE 045 079 057 | 044 081 057 | 040 0.77 053
B-NEUTRAL 043 062 051 | 040 0.60 048 | 042 0.68 0.52
I-NEUTRAL 036 056 044 | 035 056 043 | 035 0.62 045
B-NEGATIVE 044 076 055|042 0.74 053 | 044 0.77 0.56
I-NEGATIVE 042 078 055 | 040 0.74 052 | 042 0.78 0.55

Table 7: Overall and entity-specific performance metrics for NER and POSIT tasks (MTL pipeline).

Task Model Eval Loss | Overall Acc. | Overall Prec. | Overall Rec. | Overall F1 | Entity Prec. | Entity Rec. | Entity F1

NER BERT 0.73 0.87 0.93 0.87 0.89 0.47 0.88 0.61
DistilBERT 0.90 0.87 0.93 0.87 0.89 0.47 0.92 0.61
RoBERTa 0.74 0.86 0.92 0.86 0.87 0.47 0.86 0.61

POSIT | BERT 0.73 0.85 0.91 0.85 0.87 0.42 0.71 0.51
DistilBERT 0.90 0.84 0.91 0.84 0.87 0.37 0.68 0.48
RoBERTa 0.74 0.83 0.91 0.83 0.86 0.39 0.73 0.51

Table 8: Per-label precision, recall, and F1-scores for NER and POSIT tasks (MTL pipeline).

Task Label BERT DistilBERT RoBERTa
P R F1 P R F1 P R F1
NER B-PRONOUN 0.54 096 0.69 | 054 096 0.69 | 0.57 097 0.72
I-PRONOUN 031 073 044 | 032 085 047 | 037 0.60 0.46

B-IDENTITY MARKER | 048 093 0.64 | 047 094 0.63 | 046 091 0.61
I-IDENTITY MARKER | 0.53 091 0.67 | 052 093 0.67 | 047 095 0.63

POSIT | B-POSITIVE 036 082 050 | 041 059 048 | 040 0.73 0.52
I-POSITIVE 041 081 055|045 065 053|041 079 054
B-NEUTRAL 048 059 053 | 031 0.73 043 | 038 0.76 0.51
I-NEUTRAL 046 040 043 | 028 0.70 040 | 032 0.69 0.44
B-NEGATIVE 040 078 053 | 041 0.72 052 | 045 0.71 0.55
I-NEGATIVE 041 083 054 | 038 0.69 049 | 039 0.69 0.50

Table 9: Overall and entity-specific performance metrics for NER and POSIT tasks (TCMTL pipeline).

Task Model Eval Loss | Overall Acc. | Overall Prec. | Overall Rec. | Overall F1 | Entity Prec. | Entity Rec. | Entity F1

NER BERT 0.89 0.88 0.93 0.88 0.89 0.47 0.89 0.61
DistilBERT 0.78 0.88 0.93 0.88 0.89 0.46 0.91 0.60
RoBERTa 0.67 0.86 0.92 0.86 0.88 0.47 0.87 0.61

POSIT | BERT 0.89 0.86 0.91 0.86 0.88 0.41 0.69 0.51
DistilBERT 0.78 0.85 0.91 0.85 0.87 0.40 0.69 0.50
RoBERTa 0.67 0.83 0.91 0.83 0.86 0.41 0.73 0.52
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Table 10: Per-label precision, recall, and F1-scores for NER and POSIT tasks (TCMTL pipeline).

Task Label BERT DistilBERT RoBERTa
P R F1 | R F1 P R F1

NER B-PRONOUN 0.54 097 069 | 053 097 0.69 | 0.55 097 0.70
I-PRONOUN 032 079 045 | 027 083 040 | 035 062 044
B-IDENTITY MARKER | 0.51 091 0.65 | 0.50 092 0.65 | 047 093 0.62
I-IDENTITY MARKER | 0.53 0.89 0.67 | 0.54 092 0.68 | 0.49 0.94 0.65

POSIT | B-POSITIVE 040 074 052|039 071 050|035 0.82 049
I-POSITIVE 045 074 056 | 046 0.68 055 | 039 083 053
B-NEUTRAL 042 0.67 052 | 043 056 049 | 047 0.61 0.53
I-NEUTRAL 033 059 042|039 0.63 048 | 0.40 051 045
B-NEGATIVE 042 070 053 | 036 080 050 | 043 0.79 0.55
I-NEGATIVE 041 0.68 051 | 037 079 050 | 040 0.82 0.54

In the POSIT task, overall F1 remains high
across models, BERT (0.88), DistilBERT (0.87), and
RoBERTa (0.86), with entity-level F1 tightly clus-
tered around 0.51-0.52. Precision remains low (sit-
ting at around 0.40), with recall helping offset perfor-
mance gaps. I-NEUTRAL continues to be the most
difficult label, though DistilBERT performs slightly
better than others. BERT achieves the highest I-
POSITIVE F1 (0.56), while RoBERTa leads on B-
NEGATIVE (0.55). TCMTL improves span consis-
tency but leaves challenges in neutral classification
and boundary precision.

S DISCUSSION

NER consistently outperformed POSIT across all ar-
chitectures, achieving higher entity-level Fl-scores
and, in the STL configuration, significantly lower
evaluation losses. For instance, BERT recorded a
loss of 0.45 on the NER task compared to 0.99 on
POSIT. However, in MTL and TC-MTL setups, loss
values were often identical across tasks within a given
model, suggesting that loss alone may not reliably
capture relative task complexity in multi-task config-
urations.

Rhetorical positioning spans proved more difficult
to model. Entity-level precision for POSIT remained
low across models, typically around 0.40 to 0.42,
and span fragmentation was a frequent error. Models
would often correctly tag salient identity tokens such
as “American” but fail to include the full expression
“the American people,” leading to incomplete repre-
sentations of rhetorical intent. Despite label weight-
ing, I-tags such as I-POSITIVE consistently achieved
higher F1-scores than their corresponding B-tags, in-
dicating stronger modelling of internal span content.
However, this pattern was less consistent for negative
spans, where [-NEGATIVE scores were often similar
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to or slightly lower than B-NEGATIVE.

RoBERTa showed consistently strong recall, such
as a score of 0.87 on the NER task in TC-MTL, but
underperformed in span precision. It frequently omit-
ted key contextual modifiers, such as possessives like
“our” in phrases like “our public health profession-
als.” In these cases, the model successfully identi-
fied the core entity (“public health professionals™) but
failed to capture the full rhetorical framing, diminish-
ing its ability to model speaker alignment or affilia-
tion.

MTL showed no clear gains in POSIT perfor-
mance. Entity-level Fl-scores remained flat or de-
clined compared to STL, for example, DistilBERT
dropped from 0.51 to 0.48, while TC-MTL produced
no consistent improvements across tasks. These re-
sults suggest that task conditioning may require more
data, architectural adjustment, or strategies such as
curriculum learning to realise its full benefits.

At the label level, BERT achieved the strongest
results on I-POSITIVE (F1: 0.56 in TC-MTL), while
RoBERTa led on B-NEGATIVE (F1: 0.55). How-
ever, all models struggled with -ZNEUTRAL, which
consistently had the lowest F1-scores across settings,
underlining the persistent difficulty of detecting sub-
tle or non-polar rhetorical positioning.

6 CONCLUSION

While MTL showed the most promise for learning
both entity and rhetorical positioning tasks, future
work will explore how to further optimise this setup,
particularly through better span boundary detection
and improved handling of neutral positioning. De-
spite its intuitive design, TC-MTL has not yet yielded
consistent gains, suggesting that the sequential depen-
dency it models may require more sophisticated in-
tegration or richer supervision to translate into mea-



surable improvements. One particular area of focus,
which should benefit all models going forward, will
be an expanded training dataset which includes more
diverse examples from a broader range of sources.

Beyond these models, we plan to test other trans-
former architectures (such as deBERTa or a BILSTM-
enhanced BERT model) and apply transfer learning
to new datasets from social media and news. These
domains will provide more diverse rhetorical strate-
gies and enable evaluation of generalisation beyond
the original corpus. Ultimately, we aim to scale this
framework toward more robust detection of WV dis-
course across varied contexts.
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