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Abstract: Autonomous volumetric scanning in three-dimensional environments is critical for environmental monitoring,
infrastructure inspection, and search and rescue applications. Efficient coordination of multiple Unmanned
Aerial Vehicles (UAVs) is essential to achieving complete and energy-aware coverage of complex spaces.
In this work, a Reinforcement Learning (RL)-based framework is proposed for the coordination of a leader-
follower UAV system performing volumetric scanning. The system consists of two heterogeneous UAVs
with directional sensors and constant mutual orientation during the mission. A centralized control policy is
learned based on Proximal Policy Optimization (PPO) to control the leader UAV, which produces trajectory
commands for the follower to achieve synchronized movement and effective space coverage. The observation
space includes a local 3D occupancy map of the leader and both UAVs’ battery levels, enabling energy-aware
decision-making. The reward function is carefully designed to favor exploration and visiting new regions
without penalizing collision and boundary crossing. The proposed method is verified using both simulation
experiments and real-world experiments on the ArduPilot platform, showing the applicability of RL to scalable
autonomous multi-UAV scanning operations.

1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are finding core
platforms in environmental monitoring, disaster re-
sponse, infrastructure inspection, and precision agri-
culture applications due to their autonomous opera-
tion and ability to acquire high-resolution data (Mo-
hebbi et al., 2024). However, a vast majority of ex-
isting UAV missions remain founded upon single-
drone missions, which restrain efficiency, scalabil-
ity, and precision (Mohsan et al., 2023). To ad-
dress these challenges, coordinated multi-UAV sys-
tems have been conceptualized, with the ability to al-
low simultaneous collaboration among a number of
drones to undertake large-scale and time-critical mis-
sions. In such a scenario, parallel flight has been
a foundational capability, as it ensures simultaneous
control among a number of UAVs and provides a basis
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for higher-level cooperative tasks, including environ-
mental scanning over large areas and taking a quick
situation assessment (Chen and Deng, 2023).

One significant use of parallel flight coordina-
tion involves the observation of emissions from gases,
particularly methane (CH4), which is highly potent
greenhouse gas causing global warming (Shaw et al.,
2021; Filonchyk et al., 2024). Existing UAV-based
monitoring techniques are typically two-dimensional
scans, which neglect vertical dispersion within gases
to provide incomplete surveys. Because gases are dif-
fused within a three-dimensional (3D) volume, volu-
metric scans are required to achieve complete and ac-
curate mapping of concentration levels within gases
(Tosato et al., 2019). This necessity suggests a need
to develop intelligent UAV systems to achieve opti-
mized volumetric scans by adaptive controls.

To address these challenges, a volumetric scan-
ning system with parallel coordination of UAVs in-
spired by reinforcement learning is proposed here.
The system integrates concurrent maneuvering of
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multiple UAVs with a Proximal Policy Optimization
(PPO) algorithm to, in real time, dynamically recal-
culate flight paths so as to attain maximum coverage
of methane concentrations with minimized energy ex-
penditures. This developed system has the capability
to operate adaptively within uncertain environments
and can be scaled up to larger UAV swarms to attain
scalable environmental monitoring.

The contributions of this work are summarized as
follows:

• Parallel Flight Coordination: Running a single-
input control scheme to obtain coordinated oper-
ation among UAVs, increasing scalability and op-
erational efficiency.

• Volumetric Scanning Method: Application of
a 3D environmental monitoring method to accu-
rately chart gases, beyond 2D scan limitations.

• Optimization of Reinforcement Learning: De-
veloping a PPO policy to enable autonomous path
planning with better coverage and energy opti-
mization.

• Scalability with Multi-UAV Systems: Develop-
ment of a system that can be deployed within large
UAV swarms to be applicable to adaptive monitor-
ing of extensive regions.

2 LITERATURE REVIEW

Various methods have been proposed to achieve co-
ordination between pairs of UAVs, generally catego-
rized into two strategies: physical interconnections
and wireless communications. Both approaches have
been shown to enhance stability, improve coordina-
tion, and increase operational efficiency, particularly
in scenarios requiring precise synchrony under di-
verse environmental conditions.

Physical interconnecting approaches have focused
primarily on improving stability during cooperative
maneuvers. In this regard, Sato et al. (Sato and
et al., 2020) employed interconnected rods or strings
to reduce the influence of rotor downwash during gas
measurements to improve reliability in detecting. In
similar endeavors, Six et al. (Six et al., 2018) envi-
sioned a hard-bodied articulated body with a higher
payload capacity but reduced aerodynamic interfer-
ences, resulting in higher precision and stable maneu-
vers. Spurny et al. (Spurny et al., 2019) showed a co-
operative transportation system with a suspended pay-
load from a two-cable system by adopting a Rapidly-
Exploring Random Tree (RRT)-based path planning
algorithm to improve safety during external missions.
Bulka et al. (Bulka et al., 2022) further showed

the potential advantages of mechanical linkages dur-
ing payload delivery missions but emphasized robust
communication protocols to achieve proper coordina-
tion. Despite these advantages, physical interconnect-
ing approaches are inherently constrained by limited
scalability and adaptability to dynamic environments,
leading to the consideration of alternative solutions
(Liu et al., 2021).

Wireless communication-based approaches were
generally popular because of their ability to easily
coordinate multiple UAVs. Rafifandi et al. (Rafi-
fandi et al., 2019) employed a Leader–Follower (L-
F) control structure involving visual positioning and
Proportional-Derivative (PD) controllers to obtain
collision-free denser formations. Walter et al. (Walter
et al., 2019) created Ultraviolet Direction and Rang-
ing (UVDAR), an ultraviolet positioning system that
provides stable relative localization irrespective of
ambient conditions. Chen et al. (Chen et al., 2018)
exceeded the classical approaches of L-F methods by
synergistically combining Ultra-Wide Band (UWB)
distance measurements with GPS navigation, result-
ing in higher precision coordination. Similarly, Zhang
et al. (Zhang et al., 2022) improved formation con-
trol with encircling potentials with consensus-based
observers, while Cross et al. (Cross, 2023) created
a macroscale UAV system with real-time communi-
cations and adaptive response, supporting real small-
scale implementations. Individually, these research
articles show robust communicative mechanisms and
adaptive algorithms to attain reliable multi-UAV col-
laboration.

Although both approaches are effective, hard-
wired interconnections restrict operational flexibility,
and wireless methods are hampered by issues such as
latency and drift in dynamic environments (Li et al.,
2021). Previous work using L-F control has been
dedicated to formation control strategies, with no ad-
ditional work given to adaptive strategies with Re-
inforcement Learning (RL) as a foundation. To our
knowledge, no study has previously applied any com-
bination of RL with L-F strategies to achieve coordi-
nation with parallel flight. The neglect inspires our
present study, which provides an RL-based approach
that integrates synchronized UAV maneuvering with
adaptive optimization to achieve enhanced stability,
scalability, and performance with multi-UAV sys-
tems.

3 METHODOLOGY

To enable efficient, collision-free volumetric scan-
ning, an RL framework coordinates a swarm of UAVs
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in a L-F setup. Each agent consists of two UAVs:
the leader handles navigation and issues high-level
commands, while the follower mirrors movements.
Both maintain continuous sensor alignment since the
methane sensor is split between them, measuring con-
centration via a laser scanning the air volume between
leader and follower.

This paper focuses on navigation and coordination
of the UAV pair. Training uses PPO to maximize vol-
umetric coverage, minimize collisions, and prevent
excursions beyond scan boundaries. Built in ArduPi-
lot, the simulation supports strong sim-to-real trans-
fer with tests in both simulated and physical envi-
ronments. The policy is hierarchical: the leader runs
the RL policy, commanding the follower to maintain
sensor alignment and avoid terrain collisions through
controlled positioning and rotation.

3.1 Problem Formulation

The environment is represented as a 3D occupancy
grid, discretized into a finite set of volumetric ele-
ments (voxels). It is encoded as a Boolean tensor:
O ∈ {0,1}X×Y×Z where X ,Y,Z ∈N denote the spatial
resolution along each axis. Each voxel O(x,y,z) is as-
signed a value of 0 if it corresponds to free space, or
1 if it is occupied by an obstacle.

A UAV agent is modeled as a coordinated pair of
UAVs, indexed by i ∈ {1,2}, referred to as the leader
and the follower, respectively. At each discrete time
step t ∈ T = {t0, . . . , tterminal}, the state of the UAV i
is given by: ai,t = (pi,t ,bi,t) where pi,t ∈ N3 denotes
the position of the UAV in the voxel grid, and bi,t ∈
[0,1] is its normalized battery level, interpreted as the
remaining movement budget.

At each timestep, a volumetric measurement is ob-
tained via a laser-based sensor system that scans the
air volume between the two UAVs. This measurement
is valid only if the line of sight between them is unob-
structed. The set of measured voxels is defined as:

Mt =

{
line(p1,t , p2,t), if ∀v ∈ line(p1,t , p2,t) : O(v) = 0
/0, otherwise

(1)
Here, line(p1,t , p2,t) are the discrete set of voxels

along the straight-line segment joining p1,t and p2,t ,
computed using a 3D extension of Bresenham’s line
algorithm.

Let Ut represent the set of all voxels that have
been successfully measured up to time t. The mis-
sion’s objective is to maximize the number of previ-
ously unmeasured voxels over the entire time hori-
zon: max∑

tterminal
t=0 |Mt \Ut | subject to the update rule:

Ut+1 = Ut ∪ Mt . Accordingly, the UAVs must co-
ordinate their trajectories to continuously reposition

themselves so as to yield new, non-redundant mea-
surements at each timestep. Simultaneously, battery
constraints must be respected to ensure operational
feasibility throughout the mission.

3.2 Framework Overview

The L-F coordination approach addresses the problem
by running the dynamic coverage planner only on the
leader UAV. The method depends on maintaining a
direct line-of-sight between leader and follower, con-
verting sensing into volumetric line-based measure-
ments, and extending the single-agent planner from
earlier work (Bialas et al., 2023).

The deep reinforcement learning-based path plan-
ner trains the leader to maximize exploration of un-
seen voxels. Unlike prior single-agent methods, the
framework leverages spatial separation of two coor-
dinated UAVs for broader visibility. The follower re-
ceives high-frequency position updates and maintains
a constant distance to ensure line-of-sight sensing.

To improve navigation safety in cluttered environ-
ments, a control mechanism lets the leader command
follower rotations for lateral corrections. Clockwise
or counterclockwise turns are issued to preserve line
of sight and avoid potential collisions.

3.3 RL Coverage Path Planner

The leader UAV’s coverage path planner is designed
as a partially observable Markov decision process
(POMDP) (Littman, 2009) using the same architec-
ture as in previous work (Bialas et al., 2023). A
POMDP is defined as (S,A,Ω,Ta,O,R), where: S is
the state space, A is the action space, Ω is the obser-
vation space, Ta is the transition function under action
a, O is the observation function, and R is the reward
function.

The objective of the RL agent is to learn an op-
timal policy to maximize the overall reward by mov-
ing through the environment and executing volumet-
ric coverage.

3.3.1 State Space

The state space contains both environmental and
agent-specific information required for decision-
making. It is described as:

S = {0,1}X×Y×Z︸ ︷︷ ︸
O

×{0,1}X×Y×Z︸ ︷︷ ︸
U

× N2×3︸ ︷︷ ︸
p1,t ,p2,t

× [0,1]2︸ ︷︷ ︸
b1,t ,b2,t

.

(2)
Where O is the 3D occupancy representation of

the environment in which each voxel is either empty
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or blocked. U is the accumulated set of observed
voxels by the UAVs as a record of previous measure-
ments. The third factor represents the current loca-
tions of both the leader and follower UAVs at time t.
The last component represents their respective battery
levels normalized in the range [0,1].

This formulation ensures the agent’s decisions are
guided by spatial constraints and energy limitations to
allow it to safely and efficiently explore and maximize
new voxel coverage.

3.3.2 Action Space

The agent operates within a discrete action
space composed of nine predefined actions:
A = {0,1,2,3,4,5,6,7,8}.

Six actions control translational movement along
the Cartesian axes—north, south, east, west, up,
and down—moving both leader and follower syn-
chronously to maintain formation.

Two actions adjust the follower’s orientation via
orbit maneuvers, rotating it around the leader clock-
wise or counterclockwise for adaptive positioning in
constrained or dynamic spaces. An explicit Return-
To-Launch (RTL) command ends the episode and di-
rects both UAVs back to their launch points, enabling
safe mission termination under critical conditions like
battery depletion or blocked paths.

3.3.3 Observation

At each time step, the agent receives an observation
vector that describes the spatial and operational con-
text. Central to this is a local occupancy map cen-
tered on the leader UAV’s position within a fixed spa-
tial window. The map represents static obstacles and
visited areas in a compact form, giving an immedi-
ate environment state. The map’s resolution and up-
date rate trade off accuracy for computational speed,
so the map is suitable for real-time use in simulations
and physical tests.

The perception also incorporates L-F levels of the
battery, b1,t and b2,t , so the agent is able to consider
energy constraints, reduce unnecessary motion, and
plan energy-optimal routes. The integration of spatial
and resource information enables the model to strike
a balance among exploration efficiency, safety, and
staying power.

3.3.4 Reward Function

The reward function guides the RL agent to maxi-
mize volume coverage efficiently while minimizing
risk and waste. It combines positive and negative
terms to encourage safe, effective exploration in 3D
environments (Nguyen et al., 2020).

Positive reward comes from scanning previously
unvisited voxels. At each step, the agent is re-
warded based on new voxels uncovered via the leader-
follower line-of-sight, driving it to seek novel view-
points and maintain wide coverage. This prevents lo-
cal saturation and supports area-wide surveillance in
3D scan tasks.

Penalties promote safety and feasibility. Colli-
sions with terrain incur strong negative rewards, and
leaving operational limits—such as exceeding alti-
tude or scanning boundaries—triggers critical mis-
sion penalties. These act as hard constraints, steering
policies away from unsafe behavior.

Energy efficiency is enforced by penalizing low-
battery, energy-hungry maneuvers or redundant high-
speed motion, pushing the agent toward sustainable
flight to extend mission time.

Together, these rewards create a structured signal
that fosters high coverage, collision avoidance, and
endurance-aware strategies. As a result, cooperative
behaviors emerge between leader and follower UAVs
for adaptive, redundant exploration of unknown 3D
environments.

Positive Reward – Scanning The primary positive
reward is obtained from scanning new voxels, incen-
tivizing the agent to explore unvisited areas and max-
imize the overall volumetric coverage of the environ-
ment.

Rscan(st ,at) = rscan · |Mt \Ut |. (3)

Negative Rewards – Safety Violations. Penalties
are applied for violations of operational constraints,
such as collisions, exceeding altitude limits, or mov-
ing outside the designated scanning area.

• Collision Penalty:

Rcollision(st ,at) =−rcollision ∑
i∈{1,2}

1collision(pi,t), (4)

• Boundary Violation Penalty:

Rboundary(st ,at)=−rboundary ∑
i∈{1,2}

1out of bounds(pi,t),

(5)

• Battery Depletion Penalty:

Rbattery(st ,at) =−rbattery ∑
i∈{1,2}

1battery depleted(bi,t).

(6)

3.3.5 Policy Optimization with PPO

The agent’s objective is to learn a policy π that maps
observed states to a distribution over possible actions,
thereby maximizing the expected cumulative reward
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over time. Formally, the policy is defined as a proba-
bilistic function parameterized by θ:

π : Ai ×S → [0,1], (ai,s) 7→ π(ai | s;θ), (7)

where Ai is the action space for agent i, S is the state
space, and π(ai | s;θ) denotes the probability of se-
lecting action ai in state s under the current policy pa-
rameters θ.

The goal is to find the optimal policy π∗ that
maximizes the expected cumulative discounted re-
ward across a trajectory {s0, . . . ,stterminal}: π∗ =
argmaxθEπθ

[R0], where the cumulative reward from
timestep t is given by: Rt = ∑

tterminal−t
k=0 γkrt+k with

γ ∈ [0,1) representing the discount factor, which pri-
oritizes immediate rewards over distant future ones.
The immediate reward at time t is defined as a func-
tion of the current state st and the actions sampled
from the policy:

rt = R(st ,st+1) = ∑
i∈U

R(st ,π(ai,t | st ;θ)), (8)

where U is the set of agents—in this case, the leader
and follower UAVs.

In order to obtain the policy, PPO is employed.
This is an on-policy RL algorithm that is highly re-
garded for its balance between training stability and
exploration. The policy is optimized through the re-
finement of a surrogate objective, within which a clip-
ping mechanism is utilized to constrain deviations be-
tween the new and old policies. By doing this, train-
ing is more consistent and dependable, with the avoid-
ance of sudden or harmful shifts throughout the learn-
ing process.

The PPO objective is expressed as:

LCLIP(θ) = Êt [min(rt(θ)At , clip(rt(θ),1− ε,1+ ε)At)] ,
(9)

where:

rt(θ) =
πθ(at | st)

πθold(at | st)
. (10)

is the probability ratio between the new and old poli-
cies, At is the estimated advantage function at time
t, quantifying the relative value of action at in state
st compared to the expected value of the current pol-
icy, and ε is a small hyperparameter (typically ε =
0.1–0.3) controlling the allowed deviation.

By maximizing this clipped objective, the PPO
algorithm ensures that policy updates improve per-
formance while preserving stability and sample effi-
ciency. This makes PPO particularly suitable for real-
time UAV coordination tasks in complex and partially
observable 3D environments, where large and unsta-
ble policy changes could lead to erratic behaviors or
unsafe trajectories.

4 EXPERIMENTAL RESULTS

This section details experimental testing of the UAV
parallel flight system for volumetric scanning tasks.
The system uses an RL-based control policy opti-
mized with PPO to manage UAV maneuvers in real-
time 3D environments, aiming to maximize scan cov-
erage while ensuring efficiency, stability, and safety.

Validation involved both simulations and real-
world tests in controlled indoor and outdoor settings.
Scenarios evaluated the UAVs’ ability to perform co-
ordinated parallel flight for full volumetric explo-
ration. Key performance metrics included maneuver
stability, trajectory accuracy, scan completeness, and
responsiveness to environmental constraints.

The RL agent was first trained in a custom 3D sim-
ulator where PPO optimized policy through episodic
interaction. The learned policy was then deployed on
real UAVs to test robustness and sim-to-real transfer.
For benchmarking, RL coordination was compared
with a rule-based control scheme to highlight perfor-
mance gains.

4.1 L-F UAV Coordination

In order to validate the performance of the proposed
L-F coordination scheme, extensive testing was con-
ducted in simulation as well as in outdoor real-world
environments. The intent was to validate the follower
UAV’s ability to emulate the flight trajectory of the
leader with high accuracy and with minimal response
delay. Special emphasis was made on the stability of
the formation and the preservation of even inter-UAV
separations through dynamic multi-axis maneuvers.

In the simulation stage, a representative set of
3D trajectories was carried out by the leader UAV,
such as paths with sharp direction changes as well
as vertical transitions. The follower UAV was pro-
vided with real-time waypoints and performed corre-
sponding maneuvers with negligible deviation. The
recorded trajectories in Figure 1 show high correla-
tion between the leader (blue) and follower (orange),
reflecting successful synchronization as well as re-
sponsiveness over a variety of path complexities.

Experiments in real-world scenarios involved a
specially designed UAV platform with onboard sens-
ing, processing, and communications modules. Even
in the presence of environmental perturbations like
wind, as well as occasional loss of accuracy by the
GPS, tracking performance, as well as formation co-
hesion, was stable. These findings validate robust-
ness and deployability in real-world scenarios of the
L-F architecture proposed for cooperative volumetric
scanning operations in controlled as well as uncon-
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Figure 1: 3D flight trajectories of the leader (blue) and fol-
lower (orange) UAVs.

trolled environments.

4.1.1 Latency Estimation in L-F Coordination

Latency in the parallel flight system was analyzed by
measuring absolute delay and its components using
MAVLink logs of leader and follower UAV positions.
The follower’s response lag was quantified via mean
absolute error (MAE) of speed discrepancies across a
range of follower delays.

MAVLink logs were parsed, timestamps con-
verted to UNIX time, and velocity components (VN,
VE, VD) derived from the Exogenous Kalman Fil-
ter (XKF1). Cubic spline interpolation produced
smooth 20ms time-series, enabling precise alignment
of leader and follower velocity profiles.

The follower’s speed profile was incrementally
time-shifted (0–3s in 5ms steps), computing MAE for
each shift. As shown in Figure 2, the MAE curve
formed a U-shape with a minimum at 1.3s, giving
the system’s absolute latency.

To validate, total UAV speeds were graphed over
the full flight duration. Figure 3 shows the follower’s
speed mirroring the leader’s with a consistent 1.3s
lag; peaks and troughs confirm the MAE estimate, vi-
sually verifying cooperative flight delay dynamics.

4.1.2 Command Propagation Delay

For further supplement to overall latency evaluation,
the time lag from position updates provided by the
leader UAV to the follower UAV’s resulting action
was measured. The time lag, called the command
propagation delay, represents the time taken for trans-
mission and translation of movement commands. A
specific measurement procedure was used, including

Figure 2: MAE of L-F speed difference across simulated
delays.

Figure 3: Speed profiles of leader and follower UAVs with
observed latency.

noting the time at which the position was requested
from the leader and the time at which the follower be-
gan its action. The mean delay measured over a num-
ber of trials was about 70 milliseconds, indicating a
low-order level of latency in receipt of command and
its execution.

4.1.3 Position Update Frequency

In addition to latency in execution, the time granu-
larity in the position broadcasting was also examined.
Of particular interest was the time interval of adjacent
GLOBAL POSITION INT messages received by the
leader UAV. Inspection of the logging showed that the
intervals were consistently 0.07 seconds, equating to
an approximately 14 Hz update interval. That’s the
native capability of the system’s motion update mech-
anism, which is waypoint-based and imposes an up-
per bound on granularity in motions.

4.1.4 Latency Composition and Remaining Gaps

From the combined analysis, the overall system la-
tency experienced in coordinated UAV flight is about
1.3 seconds. This delay is caused by a variety of fac-
tors. Firstly, there is a contribution of about 70 mil-
liseconds from the command propagation delay and
a similar contribution of about 70 milliseconds from
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the position update interval. These factors account for
a total of 140 milliseconds of delay.

This still results in a remaining latency of greater
than 1.1 seconds. The unexplained delay could be the
result of internal buffering, processing of flight con-
trol systems in the UAVs, variable network transmis-
sions, or other conditions such as asynchronous exe-
cution of the control loops. The origin of the unex-
plained latency is left as an open problem for further
research, particularly for those applications involving
greater coordination or real-time response.

4.2 RL Framework

The RL module enabled autonomous exploration of
a bounded 3D world using a high-dimensional voxel
state. PPO trained the agent to maximize coverage,
avoid collisions, and meet operating constraints in
procedurally generated environments. Performance
was measured via accumulated reward, reflecting ex-
ploration effectiveness and safety.

Efficient policy learning was supported by
systematic hyperparameter tuning and large-scale
episodic training. The impact of key parameters and
overall learning dynamics are detailed in later subsec-
tions.

4.2.1 Hyperparameter Optimization

An exhaustive hyperparameter search was conducted
to find the optimal policy configuration. The key
parameters were tuned across three values each:
discount factor γ ∈ 0.90,0.95,0.99, learning rate
α ∈ 1×10−4,5×10−4,1×10−3, and policy network
depth L ∈ 2,3,4. Each combination was evaluated
over 100 simulation episodes to ensure statistically
meaningful comparisons.

The best setup used γ = 0.9, α = 1× 10−4, and
a two-layer policy network, yielding the highest and
most stable rewards. Higher γ values overly favored
long-term reward, producing conservative behaviors,
while higher learning rates introduced instability and
high variance. These results show that for voxel-
based, spatially constrained dual-agent search, a low
discount factor and conservative learning rate are crit-
ical. The strong sensitivity to these parameters high-
lights the need for careful tuning in complex multi-
agent RL systems.

4.2.2 Training Performance and Convergence
Behavior

The final policy was trained with PPO over 3,000
episodes in a procedurally generated 3D simulator.
Cumulative reward per episode served as the main

metric for policy improvement. Despite significant
variability from stochastic terrain and randomized
spawn points, training revealed a clear upward per-
formance trend.

The logged results trace episodic reward through-
out the training horizon. Early episodes tended to
show large variability, but when the rewards were
smoothed, they exhibited clear increases. For the
first 1,000 episodes, average cumulative reward rose
from about −60 to greater than 950, indicating that
the agent learned basic exploratory behavior. Contin-
ued training further refined the policy, and by episode
3,000, the agent was reaching an average reward of
1,300. The slower progressions and additional vari-
ability observed in the training were likely due to the
environmental randomness inherent in the task, but
they further highlighted the robustness of PPO even
in adversarial environments. Raw episodic rewards
for this set of trials varied greatly, with extreme highs
above 3,000 and extreme lows below −1,000. The
extreme lows came mainly from unfortunate spawn
points in obstructed terrain that limited movement,
which also limited exploration. In an open, easily
configurable space, this agent would have been able
to gather an immense amount of reward.

Despite these fluctuations, the cumulative reward
trajectory confirms stable learning and policy conver-
gence. The smoothed graph reflects sustained perfor-
mance gains and the agent’s ability to generalize ex-
ploration across diverse conditions, a critical trait for
real-world applications with inherent uncertainty and
spatial variability.

5 CONCLUSION AND FUTURE
OUTLOOK

This research proposed an RL architecture for a
leader-follower UAV duo to autonomously and safely
explore unfamiliar 3D environments. With PPO and
limited action space, complexity was reduced, and ef-
ficient training became viable. The supervisory agent
was trained to maximize coverage, prevent collisions,
and satisfy operational constraints. Training in proce-
durally generated environments produced diversified,
robust policies that transferred to successful real flight
tests, verifying policy generalization and the general
framework construction. Physical tests also identi-
fied that the follower response delay is 1.3s, high-
lighting synchronization as the major obstacle for the
following real-time coordination optimizations. The
results also reveal the viability of RL for expansive-
scale autonomous surveillance and lay solid ground
for intelligent UAV coordination in bounded or unfa-
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miliar 3D spaces, including survey, inspection, and
search-and-rescue missions. Future work includes
scaling to multi-agent scenarios for addressing dis-
tributed decision-making and in-real-world tests, such
as in agriculture, wildfire, or environmental surveil-
lance.
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