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Entity resolution (ER) is a foundational task in data integration and knowledge discovery, aimed at identify-

ing which information refer to the same real-world entity. While ER pipelines traditionally rely on matcher
symmetry (if @ matches b then b matches a) this assumption is challenged by modern matchers based on pre-
trained transformers, which are inherently sensitive to input order. In this paper, we investigate the asymmetric
behavior of transformer-based matchers with respect to input order and its implications for end-to-end (E2E)
ER. We introduce a strong asymmetric matcher that outperforms prior baselines, demonstrate how to integrate
such matchers into E2E pipelines via directed reference graphs, and evaluate clustering performance across
multiple benchmark datasets. Our results reveal that asymmetry is not only measurable but also materially
impacts clustering quality, highlighting the need to revisit core assumptions in ER system design.

1 INTRODUCTION

One of the key processes in knowledge discovery and
data integration responsible for determining which
data refer to the same real-world object is called en-
tity resolution (ER). It has many applications such
as eliminating potential duplicates in large datasets
to improve integration quality and reliability. More-
over, inferring links between records that refer to the
same real-world object from existing data is central to
knowledge discovery.

Most ER approaches rely on two core tasks match-
ing and clustering (Christophides et al., 2020; Binette
and Steorts, 2022). Matching determines the relative
pairwise similarity of data while clustering groups
data together based on their similarity. Some ER so-
lutions focus on matching (Mudgal et al., 2018; Li
et al., 2020) and others focus on clustering (Linacre
et al., 2022; Zeakis et al., 2023). More complete end-
to-end (E2E) ER solutions (Papadakis et al., 2018;
Saeedi et al., 2018) combine the two core compo-
nents into a single pipeline. Pipelining matching and
clustering introduces complexity. Graphs constructed
using the compared items as nodes, with the match-
ing items connected through edges weighted by a
similarity score offer the foundation needed to per-
form clustering based on matching output. They are

(2 https://orcid.org/0009-0006-7913-9276

208

Olar, A.

On the Asymmetrical Nature of Entity Matching Using Pre-Trained Transformers.
DOI: 10.5220/0013672900004000

Paper published under CC license (CC BY-NC-ND 4.0)

commonly referred to as similarity graphs (Papadakis
et al., 2018) or reference graphs (Bhattacharya and
Getoor, 2004). The latter term harkens back to the
notion of entity references denoting the items being
compared during matching.

Increasingly, deep learning is used for matching.
Systems like DeepMatcher (Mudgal et al., 2018) and
DeepER (Ebraheem et al., 2018), embed each individ-
ual entity reference independently before determin-
ing the relative similarity. In contrast, models like
Ditto (Li et al., 2020) take a more integrated approach
by encoding entire reference pairs using pre-trained
transformers to compute embeddings before classify-
ing the output as a match or non-match. The latter ap-
proach fixes the order in which entity references are
presented to the model during training, whereas the
former typically allows the model to learn representa-
tions that are invariant to the input order.

Most pairwise ER models assume that matching
is symmetric: if entity reference a matches b, then b
matches a (Fellegi and Sunter, 1969; Talburt et al.,
2007; Benjelloun et al., 2009). In our opinion this
symmetry holds post hoc: when a and b truly refer
to the same real-world entity, the relation is naturally
bidirectional. During ER, matching only estimates
such relations based on similarity, while the matcher
itself may be asymmetric. Asymmetry then becomes
a form of error—potentially informative in diagnos-
ing matcher behavior. This paper focuses on observ-
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ing the ramifications of using an asymmetric matcher,
deferring answering the question of how an asymmet-
ric matcher fits existing ER models to future work.
The topic is broached as a phenomenon that is intro-
duced by the sequence-aware nature of transformer-
based models. The exploration begins with an ER
matcher, closely modeled after Ditto, that learns la-
tent representations sensitive to training input order.
We then examine the design changes required for per-
forming clustering and simulate an E2E ER pipeline
with asymmetric matching.

Lastly, we evaluate the resulting system across
standard benchmarks for clustering quality. To study
how matcher asymmetry affects clustering, we build
our evaluation on the algebraic model of ER (Talburt
et al., 2007). This model treats ER as an equivalence
relation, which aligns with how many ER datasets de-
fine ground truth (i.e., ideal matchings). We use the
partitions induced by the ER equivalence relation to
evaluate ER clustering quality and establish baselines
under asymmetric conditions with respect to matcher
input order. A possible critique of this approach is that
it relies on symmetric ground truths while studying
asymmetric matchers. However, this does not pose a
problem in practice: the ground truth is defined inde-
pendently of any particular matcher and reflects the
symmetric notion of identity detailed in the previous
paragraph.

The next section presents backround information
and related work with an emphasis on terminology
and reference graphs. Next, the matcher is presented
followed by an experiment highlighting the practical
implications of asymmetric matchers over ER clus-
tering. A discussion of the findings precedes conclu-
sions and proposed future work.

2 BACKGROUND AND RELATED
WORK

This paper adheres to a design idiom that places
matching and clustering at the core of an ER
pipeline, as shown in both literature and in prac-
tice (Christophides et al., 2020; Binette and Steorts,
2022; Papadakis et al., 2018; Saeedi et al., 2018).
It departs from prior work by performing clustering
on directed reference graphs. Clustering started to
gain more interest in the early 2000s. Several re-
views thoroughly cover clustering algorithms for ER
on undirected similarity graphs (Hassanzadeh et al.,
2009; Saeedi et al., 2017; Papadakis et al., 2023). We
identify and evaluate a key design adaptation needed
to support clustering with asymmetric similarity: us-
ing directed reference graphs and algorithms capable

of handling directionality. To our knowledge, this is
among the first empirical baselines for ER clustering
that explicitly accounts for matcher asymmetry.

The use of pairwise similarity to construct graphs
in ER has deep roots. As early as (Fellegi and Sunter,
1969), record linkage was conceptualized in terms of
pairwise decisions that naturally map to edges in a
graph. The work of (Bhattacharya and Getoor, 2004)
was another turning point, transitioning from describ-
ing links among records to formalizing the reference
graph concept: undirected graphs in which nodes rep-
resent records and edges encode pairwise similari-
ties (Bhattacharya and Getoor, 2007). Since then, the
term similarity graph has become prevalent in both
scholarly works (Gruenheid et al., 2014) and broader
ER literature (Christen, 2012) to refer to the same
concept. Because similarity is conceptually linked
with symmetry and this paper addresses an asymmet-
rical setting, we revert to the term reference graph to
emphasize potential directionality.

ER clustering is sometimes evaluated using pre-
cision, recall, and F; score. These metrics are only
comparable when true/false positives and negatives
are defined consistently—which, in the literature we
examined, is not necessarily the case. While some
works (Draisbach et al., 2019) seem to rely on pair-
wise metrics (Menestrina et al., 2010) without an
explicit reference, others produce entirely custom
metrics (Hassanzadeh et al., 2009; Papadakis et al.,
2023) while referring to them using established met-
ric names in ER evaluation such as precision, recall
or Fy. In preparing this paper, we encountered a di-
rectly comparable metric when the generalized merge
distance (Menestrina et al., 2010) was used for evalu-
ating multi-source clustering performance (Draisbach
et al., 2019). Similarly, to improve the comparability
with other studies performed on the same benchmark
datasets we use the aforementioned pairwise metrics.
Additionally, we use cluster metrics (Huang et al.,
2006), the adjusted Rand index (Yeung and Ruzzo,
2001) or the Talburt-Wang index (Talburt et al., 2007)
for evaluating ER clustering performance. These met-
rics are implemented and documented in supporting
libraries (Olar and Diosan, 2024).
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3 E2E ER WITH
TRANSFORMERS

3.1 Matching Using Pre-Trained
Transformers

The first core operation of most E2E ER pipelines is
matching, which pairs similar entity references. The
input of the matcher is often formalised as a pair of
entity references. We refer to the totality of input pairs
passed to the matching engine throughout a single
ER pass as the comparison space. Our pipeline uses
a neural matcher architecture based on pre-trained
transformers, following the design of the Ditto (Li
et al., 2020) entity matcher. Figure 1 shows that the
architecture of the matching engine is almost identical
to the one used by Ditto. Our matcher similarly uses
BERT (Devlin et al., 2019) to encode a pair of entity
references instead of each entity reference individu-
ally. The main difference is the use of a single neu-
ron linear output layer with sigmoid activation, rather
than a two neuron softmax output layer. This simpli-
fies binary classification and reduces computational

overhead during training.
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Figure 1: Architecture of the matching engine which trans-
forms an input of two entity references (formatted as
strings) into a value ranged between 0 and 1 representing
the similarity between the two references.

Because the matcher encodes both entity refer-
ences as a single input, it learns an order-sensitive
representation during training and may produce
different results for the same data if the input order
changes at runtime. For example, ‘ COL name
VAL sony pink cyber-shot 7.2 megapixel
digital camera dscwl20p > and ‘ COL name
VAL olympus fe-360 digital camera pink
226540 ° are entity references from (Li et al.,
2020). Since the matcher encodes their concatena-
tion during training, its output becomes sensitive
to the order in which inputs are presented. If we
let R be the set of all entity references and T a
threshold above which the similarity score produced
by a matcher is considered to be a match then
3 a,b € R such that matcher(a,b) # matcher(b,a)
because matcher(a,b) >t and matcher(b,a) < T. Yet

210

such a construct still aligns with generic definitions
of a match function (Benjelloun et al., 2009): it
operates on a pair of records, the output depends
solely on the input records and it outputs a boolean
match/non-match decision.

While matcher asymmetry may be addressed in
various ways (e.g., using symmetric similarity func-
tions), we focus on the ramifications of matcher asym-
metry on the clustering step, thus enabling E2E ER
even when matching is asymmetric.

3.2 Clustering Algorithms

The other core operation of an E2E ER pipeline is
clustering and it focuses on the colocation of simi-
lar entity references as determined through matching.
Matchers with asymmetric results influence cluster-
ing by requiring the use of directed graphs. Given
a reference graph G = (V,E) and a matcher m, each
edge in G is weighted by m. If m is symmetric then
m(u,v) = m(v,u), ¥V u,v € V. In this case, the edge
(u,v) can be replaced with (v,u) and the reference
graph is undirected. If the matcher is asymmetric,
Ju,v €V | m(u,v) # m(v,u). For those u, v, the edge
(u,v) cannot be replaced with (v,u) and the reference
graph must be directed. Therefore, if the matcher is
symmetric the reference graph is undirected, whereas
if the matcher is asymmetric the reference graph is
directed. In short, a directed reference graph is both
necessary and sufficient to represent the output of an
asymmetric matcher.

The E2E ER solution proposed in this paper uses
clustering algorithms that must meet certain criteria.
They must handle directed graphs natively, operate in-
dependently of the number of ER data sources and
require no upfront configurations with respect to the
number of output clusters. Existing work on incre-
mental record linkage (Gruenheid et al., 2014), bi-
partite graphs (Papadakis et al., 2023) and transform-
ing pairwise duplicates to clusters (Draisbach et al.,
2019) should be consulted for clustering approaches
designed for undirected reference graphs. The effi-
cient computation of the transitive closure on a di-
rected graph is covered elsewhere as well (Nuutila,
1995). Next, we cover the clustering algorithms used
later in our experiment.

Ground Truth — Equivalence Class Partitioning.
To evaluate clustering, we convert the pairwise
ground truth—a subset containing the ideal match-
ings from the comparison space—into a clustered
ground truth by interpreting it as an equivalence re-
lation. As a reflexive, symmetric, and transitive re-
lation, it induces a unique partition over the entity
references (Talburt et al., 2007), enabling the use of
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standard partition similarity metrics for evaluation.
Singleton entities—those absent from the pairwise
ground truth—are included as degenerate equivalence
classes to complete the partition. Following the alge-
braic model of ER, the equivalence classes induced
by ER correspond to sets of references identifying
the same real-world entity. The pairwise-to-clustered
ground truth transformation is performed using the
union-find data structure (Tarjan, 1979). The effi-
ciency of this method, coupled with optimizations
like rank heuristics and path compression guarantee
near-constant amortized time per operation.

Weakly Connected Components. The connected
components (CC) algorithm (Tarjan, 1971) is a stan-
dard clustering method for undirected graphs and is
a widely adopted baseline in ER pipelines that rely
on undirected reference graphs (Saeedi et al., 2017;
Papadakis et al., 2023). Weakly connected compo-
nents (WCC) is an almost identical algorithm target-
ing directed graphs (Graham et al., 1972). Both al-
gorithms form clusters by grouping nodes connected
by a path—CC in undirected graphs, and WCC in di-
rected graphs by ignoring edge direction. They use
graph traversal to assign all reachable nodes from
each unvisited node to the same cluster. These al-
gorithms are deterministic, non-parametric, and scale
linearly with the number of nodes and edges, mak-
ing them suitable for large-scale ER applications. Be-
cause they treat all edges as symmetric (CC explicitly,
and WCC by disregarding direction), they are unable
to exploit directional signals that may emerge from
asymmetric matchers. Both algorithms are readily
available in the networkx (Hagberg et al., 2008) li-
brary, which we use in our implementation.

CENTER Clustering. The CENTER algo-
rithm (Haveliwala et al., 2000), based on C-
LINK (Hochbaum and Shmoys, 1985), is designed
for large-scale ER on web data modeled as directed
graphs, where directional similarity scores are
preserved and used in clustering. The algorithm
treats each similar pair as a directed edge and forms
clusters by designating the first node to appear in
a scan over the edge list as a cluster center. All
other nodes appearing in outgoing edges from this
center are assigned to its cluster, ensuring all cluster
nodes are directly reachable in the graph from the
center via a similarity edge. CENTER is efficient
and deterministic, requiring only a single pass over
the edge list and producing compact, star-shaped
clusters. Its reliance on edge direction makes it espe-
cially suitable in cases where asymmetric similarity
measures are meaningful. Our implementation of
this algorithm, called Parent CENTER (PC), uses a
path-compression technique to assign nodes to their

most similar reachable predecessor in an iterative
manner. The algorithm is implemented using the
networkx library (Hagberg et al., 2008) library and
available on GitHub'.

Markov Clustering. The Markov clustering (MCL)
algorithm (Van Dongen, 2008) is a graph cluster-
ing technique that simulates random walks to iden-
tify regions of dense connectivity. It has been ap-
plied across various domains to cluster similar en-
tity references based on probabilistic flow patterns.
MCL operates on the graph’s transition matrix, apply-
ing two key operations iteratively: expansion, which
models the spread of flow over multiple steps, and
inflation, which sharpens the clustering signal by
strengthening high-probability transitions and sup-
pressing weaker ones. This process continues until
convergence, yielding a block structure in the matrix
that corresponds to the final clusters. The algorithm is
deterministic, highly scalable, and flexible through its
inflation parameter, which controls cluster granular-
ity. Although commonly used with undirected graphs,
MCL naturally supports directed graphs, since flow
inherently respects edge direction. In our evaluation,
we apply MCL to directed reference graphs using the
implementation provided by the markov_clustering
library (Allard, 2025). We use the default parameter
settings of the library for our experiments.

4 EXPERIMENTS

The primary goal of our experiment is to empirically
evaluate matcher asymmetry-specifically, asymmetry
related to the order in which inputs are presented at
runtime. While asymmetry can arise from various
factors (e.g., input data type or record attribute pro-
cessing order), we focus on the runtime input order
versus training input order due to the textual nature
of the data: the matcher accepts free text inputs al-
though it was trained as described in Section 3.1. As
described there, the comparison space consists of se-
quential pairs of entity references fed to the matcher
individually. This space results from preprocessing
steps such as entity extraction, blocking, and filtering,
as established in prior work (Papadakis et al., 2020).
The benchmark datasets we use define a fixed com-
parison space, simplifying reproducibility. We refer
to the original order of entity pairs in this space as the
normal pair order. By reversing the order within each
pair, we construct a reversed pair order. To evaluate
input order asymmetry, we apply the matcher and the
earlier-described clustering algorithms to both orders

Uhttps://github.com/matchescu/clustering/
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and compare the outcomes.

The secondary objective of the experiment is to
explore how input order affects E2E ER, particularly
clustering quality. To that end, the normal and re-
versed directed reference graphs are derived from
each pair order, respectively. Baseline figures us-
ing our selection of clustering algorithms are com-
puted on both graphs. We retain the results from con-
nected components on an undirected graph (derived
from normal pair order) as a baseline for comparison
with work on undirected graphs.

4.1 Datasets

We selected benchmark datasets that were previously
used in the evaluation of Ditto (Li et al., 2020) and
DeepMatcher (Mudgal et al., 2018) for our exper-
iment. They are available in a GitHub repository
and their characteristics are summarized in Table 1.
To keep the experimental scope focused and man-
ageable, we restrict our selection to Clean-Clean ER
datasets, where duplicates occur only across data
sources (Christophides et al., 2020).

Table 1: L and R represent the left and right tables (e.g.,
‘Abt’ and ‘Buy’). Ar and Ag are their corresponding at-
tribute sets. CS represents the comparison space (i.e., all
evaluated entity reference pairs). 7 represents the pairwise
ground truth (i.e all matching entity reference pairs from the
comparison space). |- | represents the cardinality of the en-

each benchmark dataset for both input orders. Clus-
tering quality is evaluated using four representative
metrics: the pair comparison measure, the cluster
comparison measure, the adjusted Rand index, and
the Talburt-Wang index. The pair comparison mea-
sure and adjusted Rand index capture similarity at
the level of pairwise cluster composition, while the
cluster comparison measure and Talburt—Wang index
(TWI) gauge the alignment of entire clusters. TWI,
in particular, is tailored for partition-based evalua-
tion (Talburt et al., 2007), reinforcing the importance
of expressing clustering outputs as proper partitions.

4.3 Training the Matcher

We use the original training, validation and test splits
from each selected dataset without modification or
data augmentation. The matcher is trained using the
procedure outlined in (Li et al., 2020), in normal input
order only. Table 2 lists the training parameters and
corresponding validation scores for easier comparison
with Ditto.

Table 2: Matcher training parameters and results. o is the
initial learning rate because decay is employed. The match
threshold © € [0,1] is optimised on the validation split.
DittopggerineF1 scores were taken from (Li et al., 2020). Fj
column contains our matcher’s scores. Both F| scores were
reported on the ‘validation’ split.

. Name Batch Size  Epochs o T Dittopasetine Fi F
closed item. Abi-Buy 64 15 305 045 0.8174 09894
Name Domain L] lA] Rl |Ag| ILxR| __|cs] 17| Amazon-Google 64 15 3e-5 05 0.7004  0.9684
Abt-Buy e-commerce 1081 4 1092 4 1180452 9575 1028 Beer ED) 20 35 0.1 0.7344 1.0

Amazon-Google  software 1363 4 3226 4 4397038 11460 1167
Beer beer 4345 5 3000 5 13035000 450 68 DBLP-ACM b4 15 35 04 09865 09966
DBLP-ACM academic 2616 5 2294 5 6001104 12363 2220 DBLP-Scholar o4 15  3e5 04 09467 09981
DBLP-Scholar  academic 2616 5 64263 5 168112008 28707 5347 Fodors-Zagat 32 40 3e5 04 0.9676 1.0
Fodors-Zagat hospitality 533 7 331 7 176423 946 110 iTunes-Amazon 32 40 le-6 03 0.9138 1.0
iTunes-Amazon music 6907 9 55923 9 386260161 539 132 ‘Walmart-Amazon 64 15 3e-5 0.35 0.7695 0.9974

‘Walmart-Amazon  electronics 2554 6 22074 6 56376996 10242 962

Our matcher is implemented wusing Py-

Our choice of datasets is motivated primarily by
their accessibility and widespread adoption in the ER
community. Each dataset provides three standard
splits: training, validation, and test which consist of
entity reference pairs annotated with binary labels
with match/non-match semantics. We use the training
and validation splits for training the matcher, whereas
clustering evaluation is performed on the full dataset.

4.2 Metrics

We evaluate matcher asymmetry and clustering qual-
ity using the pyresolvemetrics library (Olar and
Diogan, 2024). Matcher asymmetry is assessed using
two indicators: raw scores produced by the matcher
and F; scores computed over the comparison space of
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Torch (Paszke et al., 2017) and the Huggingface
Transformers library (Wolf et al., 2020). We also
use the same pre-trained roberta-base (Liu et al,,
2019) transformer model used by Ditto. As shown in
Table 2 our matcher outperforms the Ditto baseline
on nearly all datasets, in some cases exceeding even
Ditto’s results with data augmentation.

4.4 Matcher Asymmetry

To quantify matcher asymmetry, recall from Sec-
tion 3.1 that a matcher m assigns a score in [0, 1] to
each entity pair (x,y) in a comparison space. We de-
fine A = m(x,y) —m(y,x) as the asymmetry measure
for each pair. Since symmetric matchers yield A = 0
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for all pairs, the distribution of A values is an indi-
cator of asymmetry. Figure 2 shows such a distribu-
tion of A values, including numerous outliers. This
raises a follow-up question: how does asymmetry af-
fect the F| score achieved by the matcher under dif-
ferent pair orders? Table 3 addresses this by reporting
our matcher’s Fj scores obtained for both the normal
and reversed pair orders.

1

0.5

of bt

~0.54

matcher(x, y) - matcher(y, x)

T T T T T T T T
3, 9 & %, %, o % 2
¢, ) S % J o 2 o
b, 20 S B, (2 or, e, Z

‘gaq% %), ‘esgst ‘s%e% ‘s%eon
Natacet Name

Figure 2: Distribution of values of the A described in Sub-

section 4.4. For symmetric operations, A would always be

0. The spread and number of outliers indicate a highly

asymmetric matcher.

Table 3: F} scores obtained by the matcher on each dataset,
comparing normal and reversed pair order at runtime.

Name Normal F;  Reversed F}
Abt-Buy 0.8872 0.5014
Amazon-Google 0.8517 0.7922
Beer 0.9130 0.8333
DBLP-ACM 0.9917 0.9903
DBLP-Scholar 0.9795 0.9671
Fodors-Zagat 0.9910 0.9955
iTunes-Amazon 0.8418 0.8383
Walmart-Amazon 0.9122 0.8819

The higher scores generally obtained for normal
pair order are expected because the pair order used at
runtime coincides with the pair order used in train-
ing. Changing the training pair order results in simi-
lar observations at runtime. The largest F| score dif-
ference, obtained on ‘Abt-Buy’, is explicable through
the larger size of the dataset and the richer textual de-
scriptions available in it. These characteristics allow
the matcher to learn more expressive representations,
making it more sensitive to input order in the absence
of symmetry enforcement. This line of thought is sup-
ported by observations on a smaller dataset with less
descriptive text (Fodors-Zagat), where a marginally
higher F) score is observed in reverse pair order.

4.5 Clustering Evaluation

Clustering performance is measured against the clus-
tered ground truth. We use CC, WCC, and PC with
default settings, and MCL with standard inflation and
expansion values (2.0). Figure 3 displays the results
for both normal and reversed reference graphs. Fol-
lowing prior work (Papadakis et al., 2023), CC is ap-
plied to an undirected graph derived from the nor-
mal pair order. WCC matches CC for the normal in-
put order-confirming expectations-while more direc-
tionally sensitive algorithms such as PC and MCL
slightly outperform on average WCC and CC. The
outcomes are not uniform across datasets, with di-
rectionally sensitive algorithms performing better on
some datasets (‘Amazon-Google’) and worse on oth-
ers (‘DBLP-Scholar’). To enable comparison, the ref-
erence CC values from the normal graph are kept
when reversing input order. PC and MCL perform
worse than CC, even when the matcher’s performance
is similar (e.g., ‘DBLP-Scholar’). Conversely, WCC
performs comparably to CC on all but one dataset
(‘Abt-Buy’). This holds even when the matching F;
score was significantly lower than under normal pair
order (e.g., ‘Amazon-Google’, ‘Beer’). This high-
lights that the effects of matcher asymmetry on E2E
ER can be reduced by the choice of clustering al-
gorithm. Figure 4 shows average clustering perfor-
mance, revealing a slight advantage in favour of direc-
tionally sensitive algorithms (PC, MCL) under nor-
mal pair order. Under reversed pair order, PC and
MCL show a notable drop in performance relative to
WCC and CC. This suggests that matcher asymmetry,
induced by input order at runtime, has a substantial
impact on clustering quality.

We refrain from making definitive claims about
clustering algorithm performance, as PC and MCL
show inconsistent results across datasets. Neverthe-
less, input order introduces a new, previously under-
explored dimension when using the matcher architec-
ture described in this paper. Future work may explore
other forms of asymmetry or investigate how direc-
tionality can be leveraged to improve clustering (for
example, to address the bad triplet problem (Ailon
et al., 2005)).

S CONCLUSIONS

This paper examined the implications of using trans-
former matchers in end-to-end (E2E) entity resolu-
tion (ER). Because transformers are sequence-aware,
the similarity score they output depends on the or-
der of input entity references. We visualized the
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Figure 3: Clustering metric scores across datasets using normal (top row) and reversed (bottom row) pair order.

asymmetry and showed that it entails represent-
ing similarity relations in directed reference graphs,
which can be integrated into existing pipelines by
using specialized clustering algorithms. We also
revealed that clustering performance varies signifi-
cantly with respect to matcher asymmetry and in-
put order. While weakly connected components per-
formed comparably to undirected baselines, more di-
rectionally sensitive algorithms exposed clear differ-
ences—suggesting a trade-off between directional fi-
delity and aggregate clustering quality. These find-
ings emphasize the need to reconsider long-held as-
sumptions in ER system design. In particular, they in-
vite further exploration into matcher-clustering com-
patibility and the role of directionality as a tunable
dimension in overall system behavior.
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