
Gait-Based Prediction of Penalty Kick Direction in Soccer

David Freire-Obregón a, Oliverio J. Santana b, Javier Lorenzo-Navarro c,
Daniel Hernández-Sosa d and Modesto Castrillón-Santana e

SIANI, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain

Keywords: Penalty Kick Prediction, Soccer Analytics, Gait Analysis, LSTM, Action Anticipation, Sports Analytics.

Abstract: Understanding and predicting penalty kick outcomes is critical in performance analysis and strategic decision-
making in soccer. This study investigates the potential of gait-based biometrics to classify the intended shoot
zone of penalty takers using temporal gait embeddings extracted from multiple state-of-the-art gait recognition
backbones. We compile a comprehensive evaluation across several models and datasets, including baseline
models and other models such as GaitPart, GLN, GaitSet, and GaitGL trained on OUMVLP, CASIA-B, and
GREW. A standardized LSTM-based classifier is trained to predict the shooting zone from video-level gait
sequences, using consistent train-test splits to ensure fair comparisons. While performance varies across
model-dataset pairs, we observe that certain combinations yield better predictive accuracy, suggesting that
the gait representation and the training data influence downstream task performance to some degree. This
work demonstrates the feasibility of using gait as a predictive cue in sports analytics. It offers a structured
benchmark for evaluating gait embeddings in the context of penalty shoot zone prediction.

1 INTRODUCTION

Penalty shootouts represent one of professional soc-
cer’s most critical and psychologically demanding
scenarios. Despite their brief duration, these isolated
events often carry disproportionate weight in deter-
mining the outcome of tightly contested matches. In
recent FIFA World Cups, over a quarter of knockout-
stage games have been decided from the penalty
mark, highlighting this phase’s strategic and emo-
tional significance. As a result, understanding the dy-
namics of penalty kicks has become increasingly rel-
evant for players, coaching staff, and analysts.

Given the high pressure and game-deciding na-
ture of penalties, the ability to anticipate the direc-
tion of a penalty shot could provide a strategic advan-
tage to goalkeepers and analysts alike. While physi-
cal attributes, such as body orientation and approach
angle, have been studied extensively, the subtler pre-
shot movement patterns—specifically, the shooter’s
gait—remain underutilized in predictive modeling.
Developing systems that can interpret a player’s
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movement sequence before the shot and reliably pre-
dict shot direction could augment goalkeeper training
and real-time match analytics.

Penalty kick prediction and related tasks have
been approached by analyzing body motion, pose es-
timation, and temporal movement patterns, frequently
supported by player tracking and activity recognition
frameworks. For instance, random forests combined
with context-conditioned motion models to detect and
track players under dynamic conditions, enabling ac-
tion inference (Liu and Carr, 2014). A comprehen-
sive review of player tracking methods has outlined
the challenges posed by occlusion and pose variabil-
ity, pertinent to pre-kick movement analysis, such
as gait (Manafifard et al., 2016). Interaction mod-
eling between players and the ball has also been in-
vestigated, incorporating physical constraints to im-
prove the interpretability of motion dynamics (Maksai
et al., 2016). Recently, penalty scenarios have been
addressed using Human Action Recognition (HAR)
models (Freire-Obregón et al., 2025). However, un-
like that work, which focuses solely on the running
and kicking stages by cropping the sequence, our ap-
proach considers the entire penalty sequence without
truncation at any moment. This decision is grounded
in the observation that, although gait models are ef-
fective at capturing individual walking patterns, their
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ultimate goal is subject identification. Consequently,
we aim to provide as many temporal and contextual
cues as possible by preserving the full sequence. De-
spite these developments, the temporal modeling of
fine-grained kinematic features, particularly gait dur-
ing a penalty approach, has received limited attention.
This gap highlights the potential for sequence-based
representations to enhance predictive modeling in this
context, mainly when used with recurrent neural ar-
chitectures.

In this work, we propose a deep learning approach
based on Long Short-Term Memory (LSTM) net-
works to predict the shot zone of a penalty taker using
their gait sequence leading up to the shot. We con-
struct a consistent experimental framework by lever-
aging several gait backbones pretrained with publicly
available datasets for penalty kick scenarios. Each
video is segmented into fixed-length sequences, and
a neural network is trained to classify the final shot
direction into one of three zones. To ensure fair com-
parisons, we apply a shared train/test split across all
datasets and repeat experiments multiple times, sav-
ing only the best-performing model for each.

Our contributions are threefold: (1) we design a
standardized and reproducible LSTM-based pipeline
for predicting penalty kick direction leveraging gait
pretrained backbones; (2) we benchmark this pipeline
across multiple gait datasets using consistent data
splits and repeated trials to account for variance in
training outcomes; and (3) we conduct a qualitative
error analysis of the best-performing models, reveal-
ing that most misclassifications occur between adja-
cent shoot zones. This indicates that gait patterns
associated with neighboring shot directions are often
subtly different and challenging to distinguish based
on pre-kick motion alone.

2 RELATED WORK

Computer vision applications in sports have evolved
to support coaching, broadcasting, and analytics
through player tracking, event recognition, and mo-
tion analysis. In soccer, this has led to technolo-
gies like TRACAB and Hawk-Eye, which are used
for player tracking and goal-line detection, respec-
tively (ChyronHego, 2017; Innovations, 2017). These
systems rely on calibrated multi-camera setups and
computer vision pipelines for real-time data extrac-
tion. However, their focus is primarily on posi-
tional and event-level data, offering limited insight
into biomechanical features such as gait.

Tracking players for tactical and performance
analysis is a significant research focus. For instance,

Manafifard et al. provide a survey of player track-
ing techniques in soccer, noting challenges such as
occlusions, appearance similarity, and erratic move-
ments (Manafifard et al., 2016). Techniques ranging
from model-based detection to context-conditioned
motion models have been proposed to tackle these
problems (Liu and Carr, 2014). Still, these ap-
proaches focus on position rather than motion style,
leaving gait-specific analysis underexplored.

Motion analysis of athletes has traditionally re-
lied on marker-based motion capture systems, which
are impractical for in-game scenarios. Markerless
systems using multiple or single cameras have been
explored to visualize motion trails or generate pose
sequences (Figueroa et al., 2006). These visualiza-
tions are often used for coaching or broadcast en-
hancements but lack integration into predictive mod-
els. Furthermore, pose estimation accuracy under re-
alistic conditions, such as during soccer penalty kicks,
remains a technical challenge.

Event detection in sports has been another key
area of study. Kapela et al. proposed methods for de-
tecting goals, shots, and fouls through visual analysis
and scoreboard interpretation (Kapela et al., 2014).
Recent work has also examined the use of visual
and temporal features for predicting shot outcomes,
including the classification of ball-on-goal positions
based on the kicker’s shooting action (Artiles et al.,
2024), as well as large-scale performance analyses
in other sports domains such as running, highlight-
ing the value of motion-based modeling across dis-
ciplines (Freire-Obregón et al., 2022). While this
supports high-level game understanding, such meth-
ods do not typically incorporate pre-shot motion cues,
such as approach gait, which may reveal a player’s in-
tention during set-pieces like penalty kicks.

Our work complements and extends this body
of research by applying gait embeddings, commonly
used for biometric identification, to predict shot
zones in soccer penalty scenarios. Unlike previous
approaches focused on spatial position or detected
events, we explore how temporal motion patterns can
serve as predictive features. This represents a novel
intersection of gait recognition and sports analytics,
leveraging insights from both domains.

3 METHODOLOGY

This section details the overall approach used to
model and classify penalty kick directions based on
visual motion cues. Our methodology is structured
into three main components: formal problem defini-
tion, gait-based feature extraction, and shot direction
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Figure 1: Pipeline overview. The kicker is isolated from each video to generate silhouette sequences encoded using a pre-
trained gait model. The resulting embeddings are processed by an LSTM-based classifier to predict shot direction, R, C, and
L correspond to Right, Center, and Left from the goalkeeper’s perspective.

classification. By using recent advances in human
motion analysis and lightweight temporal modeling,
we aim to evaluate the effectiveness of gait represen-
tations in anticipating a penalty kicker’s intent. Each
component is described in the subsections that follow.

3.1 Problem Definition

Let there be m instances of penalty shooters, where
each instance is defined as a tuple o(i) =(V (i),z(i)), for
i = 1 . . .m. In this formulation, V (i) represents the in-
put sequence derived from video data, and z(i) denotes
the class label corresponding to the direction of the
shot. The classification task involves three possible
categories: z(i) ∈ {R,C,L} corresponding to Right,
Center, and Left from the goalkeeper’s perspective.
The objective is to learn the model parameters θ that
minimize the cross-entropy loss over the dataset:

J(θ) =− 1
m

m

∑
i=1

n

∑
k=1

p(z(i) = k) log(p(ẑ(i) = k)), (1)

where n = 3 is the number of output classes, p(z(i) =
k) is the ground truth probability for class k, and
p(ẑ(i) = k) is the predicted probability for class k for
instance i.

3.2 Gait Embedding

To extract motion features relevant to penalty kick-
ers, input sequences derived from video data V (i) are
first converted into silhouette sequences, focusing ex-
clusively on the kicker (see Figure 1). Neither the
ball nor the goalkeeper is considered, and the only
visible silhouette in each sequence corresponds to the
player performing the kick. Detection and tracking
are performed using YOLOv8x-pose-p6 (Jocher et al.,
2023) and Bot-SORT (Aharon et al., 2022), while
high-precision silhouettes are obtained with SAMU-
RAI (Yang et al., 2024).

Each silhouette sequence is then processed using
a pre-trained gait recognition model BGAIT, trained

on large-scale public datasets such as CASIA-B (Yu
et al., 2006), OUMVLP (Takemura et al., 2018), and
GREW (Zhu et al., 2021). Rather than producing
a temporal embedding, BGAIT encodes the sequence
into a set of spatial gait descriptors corresponding
to vertically partitioned body regions. This structure
captures local motion characteristics across the body
from top to bottom. The embedding output is defined
as:

Ei = BGAIT(V (i)) ∈ RP×D,

where P denotes the number of spatial body parti-
tions (e.g., P = 62 using Horizontal Pyramid Pool-
ing), and D is the embedding dimension per region.
To improve generalization and comparability across
samples, the embeddings are standardized using the
training set mean µtrain and standard deviation σtrain,
followed by L2 normalization:

Ẽi[p] =
Ei[p]−µtrain

σtrain
, Êi[p] =

Ẽi[p]
∥Ẽi[p]∥2

.

The resulting normalized embedding matrix Êi ∈
RP×D is then passed to a lightweight classification
model.

Although Êi is not a temporal sequence, we treat
the vertical ordering of body parts (from head to foot)
as a structured sequence to capture spatial depen-
dencies. By applying a Recurrent Neural Network
(RNN) such as an LSTM over the P body partitions,
the model can learn hierarchical spatial interactions
across regions (e.g., how lower-body motion relates
to upper-body posture). This sequential processing
allows the classifier to aggregate global pose infor-
mation while remaining sensitive to subtle localized
variations in movement style.

3.3 Shot Direction Classification

A simple temporal classification model is employed
to evaluate the predictive value of gait embeddings
for penalty kick direction. The objective is to learn
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a mapping from the normalized gait sequence Êi ∈
RT×D to the shot label z(i) ∈ {right,center, left}.

The model is defined as a composition of standard
neural network layers:

fθ(Êi) = Softmax
(

W2 ·ReLU
(
W1 ·LSTM32(Êi)

+ b1
)
+b2

)
(2)

Where LSTM32(·) denotes a unidirectional LSTM
layer with 32 hidden units, W1 ∈ R32×16 and W2 ∈
R16×3 are weight matrices of the fully connected lay-
ers, and b1 ∈ R16 and b2 ∈ R3 are the correspond-
ing bias vectors. Softmax(·) converts the output logits
into a categorical distribution over the three classes.

This lightweight architecture is deliberately cho-
sen to avoid overfitting and isolate the gait embed-
dings’ representational quality. By limiting model ca-
pacity, performance differences across backbone net-
works can be more confidently attributed to the dis-
criminative power of the extracted features, rather
than architectural complexity. Additionally, the
model’s transparent structure and low computational
cost make it suitable for fast benchmarking and itera-
tive experimentation.

4 EXPERIMENTAL SETUP

Gait Backbones. Silhouette-based gait recognition
methods aim to extract discriminative motion features
from binary human outlines to characterize walk-
ing behavior. For this study, we adapt a range of
representative architectures, including GaitBase (Fan
et al., 2023), GLN Phase 1 and 2 (Hou et al., 2020),
GaitGL (Lin et al., 2021), GaitPart (Fan et al., 2020),
and GaitSet, for the task of predicting penalty kick
direction. Though all these models process silhou-
ette sequences, their internal mechanisms differ sig-
nificantly. GaitSet treats sequences as sets of inde-
pendent frames, using pooling operations to summa-
rize features over time, but it does not explicitly en-
code spatial continuity. GaitPart enhances this design
by focusing on horizontal body partitions through Fo-
cal Convolution, capturing localized motion patterns
but introducing potential sensitivity to pose misalign-
ment. GaitGL extends the modeling capacity by in-
tegrating global and part-based branches, alongside
3D convolutions, to extract joint spatial-temporal fea-
tures. While more expressive, its increased com-
plexity may limit performance consistency in real-
world applications. The GLN models adopt a la-
tent grouping mechanism. In a first phase (Phase
1), grouped feature representations are built, and in

a second phase (Phase 2), progressive refinement lay-
ers are introduced to increase representation granu-
larity across the network. Lastly, GaitBase provides
a deeper residual network baseline demonstrating the
effectiveness of capacity and depth without additional
architectural innovations.

As described in Section 3, the models were eval-
uated using embeddings trained on three benchmark
datasets: OU-MVLP, CASIA-B, and GREW. OU-
MVLP provides large-scale indoor sequences under
uniform conditions, while CASIA-B introduces con-
trolled variability through clothing, carrying objects,
and multi-view setups. Captured in the wild, GREW
presents more realistic challenges, such as occlusion
and lighting variation, which better reflect our target
domain. Not all backbones were trained on every
dataset, as architectural complexity and data variabil-
ity required careful pairing to ensure feasible training
and reliable feature extraction.

Dataset Collection and Filtering. The dataset
was constructed from publicly available footage span-
ning international matches, professional leagues, and
highlight compilations. Metadata about match level
was manually checked where available. Inspired by
the data acquisition strategies highlighted in prior
sports vision research (Thomas et al., 2017), the col-
lection focused on maximizing visual diversity re-
garding pose dynamics, camera distance, and illu-
mination. A targeted search using terms such as
“penalty-kick shootout” yielded a collection of raw
video clips, each manually trimmed to retain only the
relevant sequence, from the start of the run-up to the
outcome of the kick (see Figure 2).

To ensure temporal consistency and viewpoint
suitability, only clips recorded from optimal angles
(typically side or diagonal views of the kicker) and
with sufficient temporal resolution (minimum of 64
frames) were retained. This filtering process yield
to a dataset to 432 penalties. Each clip was anno-
tated with a shot direction label, where class 0 corre-
sponds to shots aimed left, 1 to center, and 2 to right.
The final label distribution was imbalanced, with 209
samples in class 0, 66 in class 1, and 157 in class
2, which reflects real-world tendencies and must be
accounted for during model training and evaluation.
Goalkeepers appearing in the footage were not the fo-
cus of analysis but were used for the human baseline
by recording their initial dive direction.

Implementation details. The corresponding gait
embeddings were structured into fixed-length se-
quences per penalty clip for each gait backbone under
evaluation. To preserve class distribution, a consis-
tent 80/20 train-test split was applied using stratified
sampling based on the shot direction label. The same
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Figure 2: Silhouette sample frames from an RGB penalty sequence showing the kicker during the run-up and kick. The
silhouette view is cropped to include only the kicker, excluding the goalkeeper, to focus on the kicker’s motion patterns.

Table 1: Performance comparison of gait models and baselines for penalty kick direction classification. Accuracy and
weighted recall are equal in this setting due to the use of single-label, multi-class classification with one prediction per
sample. The goalkeeper baseline (human decision) is highlighted in gray, while the computational baseline (GaitBase) is
highlighted in blue.

Model Pretrained Dataset Accuracy Precision F1-Score
Goalkeeper N/A 46.0% N/A N/A
GaitBase (Fan et al., 2023) OUMVLP 48.3% 45.2% 46.4%
GaitBase (Fan et al., 2023) CASIA-B 51.7% 50.7% 51.1%
GaitPart (Fan et al., 2020) OUMVLP 51.7% 54.3% 51.1%
GaitPart (Fan et al., 2020) GREW 57.5% 57.3% 57.3%
GaitSet (Chao et al., 2018) OUMVLP 50.6% 50.8% 50.6%
GaitSet (Chao et al., 2018) CASIA-B 54.0% 52.4% 52.6%
GaitSet (Chao et al., 2018) GREW 52.9% 54.8% 52.4%
GLN Phase 1 (Hou et al., 2020) CASIA-B 56.3% 55.9% 55.5%
GLN Phase 2 (Hou et al., 2020) CASIA-B 52.9% 52.1% 52.0%
GaitGL (Lin et al., 2021) OUMVLP 54.0% 54.9% 53.9%
GaitGL (Lin et al., 2021) CASIA-B 56.3% 52.9% 53.7%
GaitGL (Lin et al., 2021) GREW 58.6% 49.9% 53.9%

split was reused across all models to ensure repro-
ducibility, with index mappings stored and reloaded
as needed. To account for variability due to model
initialization and training dynamics, each experiment
was repeated five times, and the resulting perfor-
mance metrics were averaged to provide a robust es-
timate of model effectiveness.

The classification network was trained for up to
200 epochs with early stopping, using mini-batch
size 32 and the Adam optimizer with default learning
rate parameters. Class imbalance in the labels was
addressed through weighted loss computation, using
class weights derived from label frequency. As de-
scribed in Section 3, the model architecture consisted
of a single LSTM layer with 32 hidden units, fol-
lowed by a dropout layer (rate 0.5), a ReLU-activated
dense layer of size 16, and a softmax output layer with
three units corresponding to the directional classes.
Performance was measured using accuracy, precision,
and F1-Score. Accuracy and weighted recall give the

same result here because the model makes one pre-
diction for each video, and each video has only one
correct answer. Both metrics measure the same since
we count how many predictions are correct overall.

Baselines. Two types of baselines were consid-
ered to contextualize the performance of gait-based
models. The first is a human decision baseline derived
from the goalkeeper’s initial dive direction. Impor-
tantly, this does not indicate whether the goalkeeper
successfully stops the shot. Instead, it simply reflects
the goalkeeper’s direction to dive, as recorded in the
dataset. In some cases, goalkeepers may initiate their
dive after the ball has already been struck. Therefore,
this baseline can be seen as a best-case scenario for
human anticipation, assuming access to all available
cues before the shot is taken.

In addition to the human benchmark, a compu-
tational baseline was established using a lightweight
gait recognition model commonly referred to as Gait-
Base. This architecture was selected due to its sim-
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plicity, reproducibility, and solid performance across
controlled and unconstrained environments. Prior
work has shown that even minimalistic gait encoders
can yield competitive representations (Fan et al.,
2023), making GaitBase a strong reference point
for evaluating the added value of more sophisticated
backbone designs in the context of penalty kick anal-
ysis.

5 EXPERIMENTAL EVALUATION

Evaluating various gait recognition models for
penalty kick direction classification reveals interest-
ing patterns across training datasets and model ar-
chitectures (see Table 1). Notably, the highest-
performing model overall was GaitGL trained on
GREW, achieving an accuracy of 58.6% and an F1
score of 53.9%. This suggests that models trained
on more diverse and in-the-wild datasets like GREW
may better generalize to the natural variability present
in broadcast soccer footage. GREW likely captures
broader pose, scale, and environmental variation com-
pared to more controlled datasets like OUMVLP or
CASIA-B, which may contribute to its superior trans-
fer performance.

Across the board, models trained on CASIA-
B tended to perform more consistently than those
trained on OUMVLP. CASIA-B’s multi-view setup
and moderate variability might offer a balance be-
tween structured feature learning and generalization
to new domains. For example, GLN Phase 1 (trained
on CASIA-B) achieved a strong F1 score of 55.5%, ri-
valing GaitGL’s performance on GREW. GaitGL and
GaitSet trained on CASIA-B also performed reliably,
with F1 scores of 53.7% and 52.6% respectively. This
trend highlights that while CASIA-B is a more con-
trolled dataset, its design may still support domain
transfer reasonably well for motion-based tasks.

In contrast, models trained on OUMVLP con-
sistently yielded lower performance, despite the
dataset’s large scale. GaitPart, GaitSet, and GaitGL
trained on OUMVLP all clustered around mid-range
F1 scores, achieving 51.1%, 50.6%, and 53.9% re-
spectively. The baseline model trained on OUMVLP
lagged behind at 46.4% F1, suggesting that size alone
does not guarantee effective transfer. OUMVLP’s
treadmill-based gait recordings may lack the natu-
ralistic movement patterns found in soccer approach
runs, reducing their representational relevance for this
task.

In terms of design, GaitGL emerged as one of
the most robust backbones across different training
domains. It achieved top-tier results on GREW and

CASIA-B and held up respectably on OUMVLP. Its
performance consistency indicates a strong capac-
ity for encoding discriminative motion dynamics in
downstream classification tasks. GaitPart, although
effective in surveillance-style gait recognition, per-
formed moderately in this setup, likely due to its local
part-based focus, which might miss out on full-body
motion nuances relevant to shot prediction.

GLN also showed promise, especially in its
Phase 1 variant trained on CASIA-B. It matched
GaitGL in accuracy and demonstrated solid precision
and recall values, supporting its suitability for fine-
grained action prediction. Phase 1 corresponds to
an intermediate checkpoint in the training of GLN,
where the backbone is already capable of extracting
meaningful gait representations but has not yet under-
gone full optimization for identity recognition. In-
terestingly, the Phase 2 variant, representing the final
stage of training, underperformed slightly, with an F1
score of 52.0%. This performance drop may suggest
that the additional training in Phase 2 biases the model
more toward identity-specific features, potentially at
the expense of general motion cues relevant to ac-
tion understanding. Meanwhile, GaitSet exhibited a
balanced yet unremarkable profile across all datasets,
suggesting that while effective, its aggregation-based
design may lack the temporal expressiveness needed
for predicting dynamic actions like kicks.

Lastly, the baseline models served as important
reference points. The CASIA-B-trained baseline out-
performed the OUMVLP version by a notable mar-
gin (F1: 51.1% vs. 46.4%), reinforcing that training
data characteristics critically shape downstream per-
formance. While none of the baselines matched the
top-performing models, their inclusion is crucial for
interpreting the added value of more complex archi-
tectures. The results demonstrate that advanced gait
models, especially GaitGL, GaitPart, and GLN, can
extract semantically meaningful motion features for
predictive tasks beyond identity recognition.

Error Analysis. Figure 3 presents the confu-
sion matrices for GaitGL and GaitPart trained on
the GREW dataset, revealing distinct misclassifica-
tion patterns despite their similar overall accuracies
(58.6% for GaitGL and 57.5% for GaitPart). GaitGL,
while slightly more accurate, exhibits a pronounced
bias toward predicting the Right class. Notably, it
misclassifies 69.2% of actual Center kicks and 40.6%
of Right kicks as Right, failing entirely to predict the
Center class. This indicates potential overfitting to di-
rectional features dominant in right-sided kicks, pos-
sibly stemming from imbalances in pose or silhouette
orientation during the run-up phase. Moreover, center
kicks exhibit less exaggerated lateral body motion and
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Figure 3: Normalized confusion matrices for models trained
on GREW. Each matrix shows prediction performance
across left, center, and right shot directions.

subtler preparatory cues than left or right shots. These
traits may lead GaitGL to underrepresent or overlook
the fine-grained temporal features critical for distin-
guishing center shots, especially in penalty scenarios
where deceptive uniformity is typical.

In contrast, GaitPart demonstrates more balanced
predictions across all three classes. While its con-
fusion matrix still reflects a tendency to overpredict
Right for ambiguous cases, it is the only model among
the two that assigns non-zero predictions to the Cen-
ter class (38.5% for true center kicks). Additionally,
GaitPart maintains a better trade-off between preci-
sion and recall (57.3% and 57.5%), indicating that
it is less prone to skewed predictions and captures
a broader range of gait dynamics. This is particu-
larly evident in its handling of true Right kicks, where
it correctly classifies 56.2%, compared to 59.4% by
GaitGL, but with fewer extreme misclassifications.

These observations suggest that while GaitGL
may achieve marginally higher accuracy by confi-

dently predicting dominant classes, it lacks nuance
in handling more ambiguous gait patterns, especially
those associated with central shot directions. Gait-
Part, despite its slightly lower accuracy, appears to
better generalize across class boundaries. This trade-
off highlights an important consideration: models
with higher overall accuracy may still perform poorly
on minority or difficult-to-classify cases, and con-
fusion matrix analysis is essential for understanding
these hidden weaknesses.

6 CONCLUSIONS

This study explored gait-based representations for
predicting penalty kick direction in soccer, extending
gait recognition beyond its usual role in identity ver-
ification. We used pre-trained gait backbones and a
lightweight temporal classifier to assess whether mo-
tion patterns during the run-up could reliably indicate
shot direction. To support this, we curated a new
dataset of broadcast penalty sequences and evaluated
the transferability of gait embeddings across various
architectures and training domains.

Results showed that both the choice of backbone
and training data significantly impact performance.
Models trained on GREW, an in-the-wild dataset,
performed best overall, with GaitGL achieving the
highest accuracy and F1 score. However, this came
with strong class bias, particularly toward right-side
predictions. GaitPart, though slightly less accurate,
yielded more balanced results across all directions, in-
cluding the underrepresented center. This highlights
the need to go beyond global metrics and consider
per-class behavior in imbalanced tasks.

These findings suggest that gait encodes meaning-
ful information about players’ motor intentions, even
in dynamic, high-pressure contexts like penalty kicks.
Our approach builds on recent work using Human
Action Recognition (HAR) models for penalty anal-
ysis (Freire-Obregón et al., 2025), which focus on
cropped segments like the run-up or kick. In contrast,
by preserving the entire sequence, our model captures
a broader range of kinematic and contextual cues.
While this may limit some traditional gait applica-
tions, such as short-cycle identification, it enables ex-
ploration of richer temporal patterns. Notably, despite
departing from standard gait usage, the results show
that extended motion cues carry predictive value. This
opens the door to personalized modeling of penalty
direction, potentially tailored to each player’s unique
movement signature.

This research paves the way for practical sports
applications, such as decision-support tools, player
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diagnostics, and automated video analysis. Incor-
porating features like foot orientation, ball trajec-
tory, or goalkeeper behavior could boost accuracy and
contextual understanding. Future work may explore
multi-modal fusion or adapt gait models to better cap-
ture sport-specific movement patterns.
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