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Abstract: This study explores the aviation industry's shift from reactive and proactive safety strategies towards 
predictive safety management, focusing on Maintenance, Repair and Overhaul (MRO) operations. It 
introduces a novel complex emergent safety model designed to integrate predictive analytics into existing 
Safety Management Systems (SM) via occurrence reporting data. Moving beyond traditional linear causation 
models, the proposed framework leverages machine learning and data mining techniques to identify hazards 
and assess risks, thereby reducing the frequency and severity of incidents and minimising maintenance 
disruptions. Using the DMADOV methodology, the study aims to extract actionable insights from unexploited 
safety data, despite challenges such as data quality variations and the stochastic nature of safety. Ultimately, 
this research advocates for a unified, AI-driven approach to enhance safety capabilities across the aviation 
industry.

1 INTRODUCTION 

Highly technological and risk systems in high 
reliability industries such as aviation are becoming 
increasingly complex, raising the potential for 
catastrophic consequences when failures occur. 
(Qureshi, 2008) Accidents in aviation, as per ICAO 
Doc 9156 (ICAO, 1987), are defined as events leading 
to serious injuries, significant aircraft damage, or the 
aircraft being missing or inaccessible, during 
passenger embarkment and disembarkment. Incidents, 
on the other hand, are occurrences that could impact 
flight safety, ranging from aircraft operations, 
technical issues, to interactions with air navigation 
services and environmental factors. The distinction 
between accidents and incidents primarily lies in their 
severity and impact. (ICAO, 1987), (European 
Parliament and Council, 2015) Understanding both 
accidents and incidents is crucial, leading to the 
development of various safety causation models, 
approaches and methodologies. This evolving safety 
thinking underlines the industry’s commitment 
towards safety reassurance, especially when 
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considering how relatively young the aviation industry 
is. (J. J. a Stoop & Kahan, 2005). 

Safety causation models are theoretical 
conceptual frameworks that generate a reasoning of 
occurrences. They try to explain how and why 
accidents occur. Accident modelling can be traced to 
as early as the 1920s. Upon such safety causation 
models, accident investigations are used to describe 
and explain the occurrences. (HaSPA (Health and 
Safety Professionals Alliance), 2012; Reason, 1990) 
This reactive method did not assist in identifying the 
problem and subsequently could not prevent a similar 
incident. In the 1950s, aviation safety investigations 
shifted from identifying technical factors, to human 
factors and then moved towards organisational factors 
to try to understand and solve accidents. Initially, as 
the aircraft was considered as a complex technological 
marvel, the main factor for failure was equipment. 
Then, as technology became more reliable, the focus 
shifted towards human factors. This Era brought about 
the concept of Crew Resource Management and was 
solely focused on the individual. Towards the 1990s, 
this progressed into considering the operational 
context of a complex environment within an 
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organisation. This systemic perspective led into 
providing the basis for the development of a Safety 
Management System, SMS. (Reason, 1990)  

SMS emerged as a central pillar of modern 
aviation safety strategy, placing greater emphasis on 
regulations, organisations and real-time decision-
making for safety improvements. Defined by ICAO, 
SMS encompasses managing organisational 
structures, responsibilities, and procedures to enhance 
safety through occurrence reporting. (Gerede, 2015; 
Yeun et al., 2014) Moving beyond traditional 
prescriptive approaches, SMS adopts a realistic view 
of the world, encouraging a paradigm shift towards 
proactive and predictive safety measures. (Gerede, 
2015) EU Regulation 376/2014 reflects this evolution 
by advocating for the integration of proactive methods 
with reactive systems for more effective safety 
improvements. (European Commission, 2014) SMS 
fosters a safety culture by merging reactive, proactive, 
and predictive strategies across organisational levels, 
showing early benefits and driving continuous safety 
advancements. Reactive methods focus on immediate 
incident response and mitigation, while proactive and 
predictive strategies aim to prevent future incidents by 
identifying and anticipating risks, creating a 
comprehensive approach to organisational safety 
management. These are illustrated as per Figure 1. 
(Safety Management System | Federal Aviation 
Administration, n.d.) 

 
Figure 1: Reactive-Proactive-Predictive methodologies. 

Regulations and traditional safety management 
practices aim to incorporate corrective, preventive, 
and predictive methodologies into SMS, with a focus 
on corrective measures and an encouragement of 
preventive actions. Following EU Regulation 
376/2014 (European Commission, 2014), one of the 
key tools for SMS is occurrence reporting or safety 
investigations (Elkhweldi & Elmabrouk, 2017), which 
involve fault analysis for corrective actions and cause 
analysis for preventive measures. Stoop and Dekker 
(J. Stoop & Dekker, 2012) question the proactiveness 
of safety investigations, highlighting the importance 
of feedback from real-world data for insights into 

complex systems. This knowledge is crucial for future 
designs and strategies, making safety investigations a 
proactive element that complements other safety 
improvement strategies. However, even though the 
predictive phase of SMS is recognised it is yet to be 
defined, clarified, encouraged and enforced by 
regulations and authorities to organisations.  

The predictability of incidents, applied in a 
maintenance, repair and overhaul (MRO), which 
makes up just one aspect of the aviation industry, 
presents a complex and critical challenge. This is due 
to the multifaceted nature of aviation systems, the 
variability in operational environments, and the 
stringent safety standards required. The primary 
challenge lies in the development and limitations of 
current safety causation models that are reductionist, 
linear and resultant. The illusion of containment or 
preventing ‘losses’ gives the impression that incidents 
and accidents alike can be controlled. Many models 
have a Newtonian Cartesian ideology, that the incident 
or accident can always be broken down. This leads to 
a hunt for a broken component. Currently, with no 
universally accepted model (Grant et al., 2018), the 
pessimistic conclusion would be that the models are 
not scientific enough, practical enough, not specific 
enough nor holistic enough to fully understand how 
incidents occur. (Hovden et al., 2010) In light of the 
(r)evolution of many safety causation models,(HaSPA 
(Health and Safety Professionals Alliance), 2012) 
unfortunately, their outlook in the current predictive 
approaches remains limited. The continuous growth 
and advancements in all aspects of the aviation 
industry necessitate further developments, which 
include the way accidents are viewed and their 
methodologies applied (Amankwah-amoah, 2021). 

A complex emergent model that integrates all 
three rationales – reactive, proactive and predictive is 
required. This research aims to lay the foundation for 
complex, non-linear safety thinking in both incident 
and accident investigations. By integrating a 
predictive-probabilistic analysis approach into the 
existing SMS this approach will enhance the capacity 
to foresee and mitigate safety risks. It aims to 
statistically reduce the frequency and severity, while 
minimising disruptions to maintenance operations. 
(Bartulović & Steiner, 2023).  

2 LITERATURE REVIEW 

The evolution of safety causation models, from 
Heinrich's 1931 Domino theory to Hollnagel’s 2012 
Functional Resonance Analysis Method (FRAM), 
reflects a shift through three generations of human 
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error modelling (Katsakiori et al., 2009), 
incorporating human factors and systemic approaches 
like Reason’s Swiss cheese model. Despite challenges 
in application and interpretation, these models have 
progressively addressed the complexity of safety 
management, culminating in the adoption of complex 
non-linear models in the early 2000s, such as 
Leveson’s STAMP and FRAM, to tackle the dynamic 
aspects of safety. (Hovden et al., 2010) This literature 
review critically assesses these models for their 
principles, strengths, and weaknesses, aiming to 
promote a shared understanding of accidents and 
support the development of preventative strategies. 
(Hovden et al., 2010) By analysing the interaction 
among various factors within these models and 
highlighting their unique features, the review 
advocates for a comprehensive model that addresses 
the complexity and emergence of incidents, 
streamlining the evolution and critical examination of 
safety causation models and their application in 
enhancing system resilience and safety management. 

The Swiss Cheese model was introduced by James 
Reason and conceptualizes the idea of multiple layers 
of defence against accidents in complex systems. Each 
layer of defence has potential flaws, represented as 
holes in slices of Swiss cheese. The alignment of these 
holes can lead to a trajectory of accident opportunity, 
allowing hazards to materialize into losses. The 
model's strength lies in its visual simplicity and its 
emphasis on systemic flaws rather than individual 
error. However, its limitation is the linear and static 
representation of accident causation, overlooking the 
dynamic interactions within systems and the non-
linear nature of complex failures.(Reason, 1990) 
While some authors (Dekker, 2002; Maurino, 2001; 
Shappell & Wiegmann, 2000), considered the model 
to be too generic and underspecified pinning the 
model as a representation which lacks the tools to 
implement the metaphor of cheese’s slices and holes. 
This leaves practitioners making their own 
interpretation and adaptation. While Luxhøj and 
Kauffeld (Kauffeld, 2003), think that this is a risk 
which makes the model impractical, this interpretive 
flexibility suits particularly well the SCM. (Larouzee 
& Le Coze, 2020) In fact, in 2000, a simplified version 
of the SCM was published in the British Medical 
Journal (BMJ)(Reason, 2000) making an impact in 
another high-risk industry.  

Charles Perrow's Normal Accident Theory (NAT) 
suggests that accidents are a natural outcome in 
complex, tightly coupled systems due to the 
unpredictable and unmanageable nature of their 
interactions. It highlights the intrinsic risks within 
high-tech environments, suggesting that the 

complexity of these systems renders accidents 
inevitable, hence ‘normal’. As this theory recognizes 
accidents as such, it risks diminishing the emphasis on 
proactive risk management (Charles, 1999).  FRAM, 
developed by Erik Hollnagel, focuses on how 
variability in normal system performance can lead to 
accidents through unexpected interactions. Unlike 
linear models, FRAM addresses the complexity and 
non-linear interactions within systems, offering a 
more dynamic approach to understanding accident 
causation. This is possible because through the 
concept of resonance, a small change in one part could 
amplify and cascade into larger ones. Later, it was also 
mentioned and explained as the butterfly effect by 
Dekker. (Dekker, 2017) Moreover, the FRAM’s 
strength lies in its ability to model complex processes 
and their variabilities. It provides an analysis method 
by defining a system in terms of functions, which 
represent activities that people perform, whereas each 
function can be defined by six aspects; the time 
allocated, input items that are processed, 
preconditions that trigger the task, the way the 
function is controlled, the resources that are consumed 
to process items and the output as a result of the 
function. However, its application can be challenging 
due to the need for in-depth understanding of system 
variabilities and interactions. It requires many 
resources which would require time to retrieve. In 
addition, the complex connectivity of web could lead 
to an infinite number of possibilities making it 
difficult to predict how variabilities across different 
functions may couple and resonate. (Erik, 2012)  

The Systems-Theoretic Accident Model and 
Processes (STAMP), Proposed by Nancy Leveson, 
shifts from event-based to constraint-based 
approaches in accident analysis. It views accidents as 
a result of inadequate control or enforcement of safety 
constraints within a socio-technical system. STAMP's 
strength lies in its comprehensive approach, 
incorporating technical, human, and organizational 
factors. However, its broad scope can make it complex 
to implement and require significant effort to identify 
and model relevant constraints.(Leveson, 2004)  This 
model faces challenges that limit its widespread 
adoption when compared to other models because it 
requires a deep understanding of system theory which 
is not synonymous with systems engineering and 
hence, requires specific education or training. It is also 
challenging to apply real world application of STAMP 
to complex systems, hence, make it challenging for 
practitioners to apply it to their specific contexts. Its 
emphasis on enforcing constraints on system 
behaviour offers a novel approach to safety, which, 
with increased training and awareness, could see 
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broader adoption across various industries. (Leveson, 
2004, 2012; Underwood & Waterson, 2012)  
However, Roelen, Lin and hale (Roelen et al., 2011) 
suggest that this model is neither embraced by the 
safety community nor broadly recognised as a 
significant influencing accident model in the overall 
field of safety management because Leveson’s model 
does not integrate well with the dominating methods 
of collecting and analysing safety data. Hence, making 
event chain models such as the SCM more favourable. 

Dekker's Drift into Failure theory proposes that 
accidents result from systemic drifts into failure, 
where everyday decisions and actions, although 
seemingly rational at the time, cumulatively lead to a 
system's degradation and eventual failure. This model 
emphasizes the complexity of socio-technical systems 
and the non-linear, emergent properties of system 
failures. Its strength lies in its focus on the systemic 
and emergent nature of failures, challenging the blame 
culture by highlighting the role of system design and 
decision-making processes. (Dekker, 2017) While 
Dekker provides a theory and tries to progress towards 
a complex and emergent kind of rationale, this theory 
does not provide a safety causation model that fully 
explains how an incident, or an accident occurs. 
Therefore, a limitation of this theory could be in the 
identification and measurement of drift, which is 
subtle and evolves over time. 

The reviewed models contribute valuable insights 
into accident causation, highlighting the roles of 
system complexity, human factors, and organizational 
processes. However, there exists a gap in integrating 
these perspectives into a unified model that can 
accommodate the emergent, unpredictable nature of 
complex system failures. Current models either focus 
on linear causation, system components in isolation, 
or fail to fully address the dynamic interactions and 
adaptability of complex socio-technical systems. 
There is a need for a model that not only incorporates 
the strengths of existing models, such as the graphical 
visualisation, systemic nature and flexible 
interpretation of the SCM, the dynamic understanding 
of FRAM, the normalisation of unstable systems of 
NAT, and the drift concept with an understanding of 
non-linear, complex emergent properties from 
Dekker; but also offers practical tools for identifying 
and mitigating emergent risks in real-time to keep up 
with the ever growing technologies. 

For the enhancement of safety investigation 
analysis, this research aims at developing an 
integrated safety causation model (Grant et al., 2018)  
that embraces complexity, emergence, and the non-
linear dynamics of socio-technical systems. Such a 
model would provide a more holistic and adaptable 

framework for understanding and preventing 
accidents in an increasingly complex and 
interconnected world. Alongside this integrated 
model, an analysis will also be developed. This would 
reflect the novel’s notion of non-linearity, complexity 
and emergence in contrast to previously mentioned 
models with their own analysis methods or rationale.  

3 METHODOLOGY 

The DMADOV (Define, Measure, Analyse, Design, 
Optimise, Verify) methodology (Pyzdek, 2017) will 
be applied with the goal of designing and developing 
a predictive-probabilistic, integrated data-based 
analysis approach. This approach will complement the 
non-linear, complex, and emergent safety causation 
model, serving as a practical tool. Specifically, it aims 
to identify potential areas of emergent risks in 
maintenance environments by conducting a thorough 
analysis of already existing unexploited safety data. 

In the define phase, the MRO organisation’s 
current SMS will be examined, focusing on the safety 
investigation process and occurrence report inputting. 
This involves a thorough review of the existing 
process for investigating safety incidents, identifying 
its strengths and limitations. Written occurrence 
reports, generated from incident investigations, will be 
looked into to grasp their significance into aviation 
safety. This will support in formulating problem 
statements considering the inputting fields and data 
available. By defining these reports’ qualitative and 
quantitative nature of data, a deeper understanding of 
the involved processes and the significance of report 
fields will be gained. This understanding would 
potentially indicate the specific relationships that need 
to be measured and subsequently analysed. 

Once the investigative process as well as the 
occurrence reports’ fields and criteria would be 
understood, the data available will be explored into 
setting attributes from the defined problem statement. 
This would be the measure phase. Identifying 
relationships from the investigative process and 
occurrence reports’ criteria and fields will give an 
indication of specific attributes and categories to 
extract. Following the identification of such attributes 
and categories, which must also be inline with the 
defined problem, the type of data must be studied 
further. This will lead into extracting the data, 
cleaning it and refining its quality. The selection of 
attributes and categories of data, together with its 
filtration and refinement process are of crucial 
importance to provide a clear as-is assessment of the 
reporting data. (Huan & Hiroshi, 2007) 
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In the analysis phase, techniques and tools for data 
extraction are chosen based on predefined criteria, 
often requiring data transformation to meet analysis 
needs. Artificial Intelligence (AI), Data Mining (DM), 
and Machine Learning (ML) are key areas in this 
process. (Huan & Hiroshi, 2007) AI is about creating 
systems that perform tasks requiring human 
intelligence, like speech recognition and decision-
making. ML, a subset of AI, focuses on developing 
algorithms that enable computers to learn from data 
and improve over time without being explicitly 
programmed. This is crucial for AI systems to adapt 
and perform complex tasks accurately. DM discovers 
patterns in large data sets using ML, statistics, and 
database techniques, converting data into a usable 
structure. (Han et al., 2011) While DM aims at 
exploratory analysis to uncover new insights, ML 
focuses on using these insights for predictions or 
classifications. Current studies employ DM to uncover 
patterns and knowledge in data, and ML to learn and 
make predictions, illustrating ML's versatility across 
various industries such as healthcare and technology. 
(Revolutionizing Healthcare Industry with Machine 
Learning., n.d.) DM supports ML by providing 
algorithms for systematic data analysis, crucial for 
understanding customer behaviour, optimising 
efficiency, and identifying risks or opportunities (A. 
B.Arockia & S. Appavu, 2013). Together, ML and 
DM enable organisations to automate data analysis, 
enhance prediction accuracy, and make informed 
decisions, essential in data-intensive fields like 
aviation where safety and data volume are critical. 
Data mining plays a pivotal role in predictive analysis 
by employing a range of techniques and tools to 
extract actionable insights from datasets. Key tools 
such as WEKA, RapidMiner, KNIME, and Python 
Libraries support various DM techniques including 
classification, clustering, regression, association rules, 
and anomaly detection. Prominent classification 
methods like decision trees (ID3, C4.5, CART), 
support vector machines (SVM), naive Bayes (NB), 
and K-nearest neighbours (KNN) have been 
extensively utilized. For instance, decision tree 
induction is celebrated for its efficacy in pattern 
classification by Han and Kamber (Han et al., 2011),  
while NB classifiers and SVM have been applied for 
their probabilistic and discriminative capabilities in 
aviation safety analysis respectively. (Narasimha & 
Devi, 2011), (Han et al., 2011) KNN, known for its 
simplicity and effectiveness, along with decision trees, 
has contributed to understanding complex data 
structures in aviation incidents and forecasting models 
(A. B.Arockia & S. Appavu, 2013), (Gürbüz et al., 
2009), (Bineid & Fielding, 2003).  

In this analysis phase, the key tools and DM 
classification techniques will be selected based on the 
previous phases, highlighting the significance of 
choosing the right combination of techniques and 
tools based on specific analysis objectives, essential 
for deriving meaningful insights and enhancing 
aviation safety.  

In the following phase, machine learning methods 
and algorithms will be applied through data mining 
tools and techniques to study relationships and 
recognise existing trends. This will lead towards 
evoking strategies to compare criteria, fields and 
records in the design phase. Utilising a machine 
learning platform together with the deployment of 
functions, algorithms and selected methods, a design 
procedure will be established. The selection of 
different functions to assess performance levels and 
their impacts will necessitate redesigns. These 
redesigns will make part of the optimize phase. 
Through the iteration of the design and optimise 
phases, the previously defined data and relationships 
will undergo verification for reliability purposes. This 
methodology will enable the validation of the 
predictive-probabilistic approach, in the final verify 
phase.  

After the literature review of the safety causation 
models aimed at paving the way for the development 
of a complex emergent model, the DMADOV 
methodology and its phases were discussed for the 
development of a predictive-probabilistic analysis 
approach, which is defined further in Figure 2. 
Ultimately, through this analysis approach, applied on 
specified criteria and attributes of safety occurrence 
reporting data, it would also support the complex 
emergent safety causation model in understanding the 
occurrence of incidents.  

 
Figure 2: DMADOV phases. 
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4 POTENTIAL IMPACT 

The study embarks on an innovative journey to 
develop a complex emergent safety causation model, 
leveraging the power of machine learning algorithms 
and methods to foster a predictive-probabilistic 
approach. Utilising data from MRO operations, this 
research underlines the importance of advancing 
safety thinking in high-risk industries, notably 
aviation. This progressive exploration aims to unravel 
and navigate through the intricacies and emergent 
properties of safety data, promoting a more profound 
understanding of underlying risks.  

Based upon the results of Mathur et al (Mathur et 
al., 2017), it was analysed that maintenance of the 
aircraft would significantly reduce the risk of 
accidents. Therefore, by integrating innovative data 
mining applications and employing pragmatic 
predictive-probabilistic strategies through advanced 
tools, techniques, and methodologies, the study seeks 
to indicate potential risk incidents before they 
manifest in an MRO environment. This proactive 
detection, rooted in the meticulous analysis of safety 
occurrence reporting data, would substantiate positive 
impacts. Beyond the mere avoidance of adverse 
outcomes, this approach signifies a leap towards 
ensuring safer working environments and enhancing 
operational efficiency. The anticipated reduction in 
downtime and interruptions from incidents paves the 
way for heightened productivity, as resources 
dedicated to managing or responding to incidents are 
optimised. Furthermore, this efficiency translates into 
cost savings, encompassing not only operational costs 
but also expenses related to repairs, legal fees, and 
more. (Jardine & Tsang, 2013) The ripple effects of 
diminished incidents extend to encouraging trust 
among employees and customers, fortifying a 
reputation for reliability and safety. Such a reputation 
could serve as a formidable competitive edge, drawing 
more business and elevating customer satisfaction. 
(Doorley & Garcia, 2007) The insights derived from 
this study are expected to shed light on risk areas and 
vulnerabilities, guiding strategic decisions and 
preventive actions. This knowledge empowers 
organisations to learn from incidents that occur, 
nurturing a culture of learning and adaptation. It also 
encourages the adoption of best practices, steering 
continuous improvement across the board. 

5 LIMITATIONS 

In developing a predictive, machine learning-driven 
models, this study faces numerous challenges 

inherent to the domain of safety performance. The 
stochastic nature of safety, characterized by complex 
interactions and unpredictable events, complicates 
precise quantification and modelling. (J. Stoop & 
Dekker, 2012) Transitioning from reactive to 
proactive safety strategies in MRO operations further 
adds to the complexity, highlighting the importance 
of training, awareness, and fostering a just culture. 
(Gerede, 2015), (Phimster et al., 2004) Notably, on 
the latter, Gerede (Gerede, 2015), continues by 
mentioning the challenging barriers of 'just culture'  
that pose on Safety Management Systems, impeding 
effective reporting, learning, and predictive tool 
enhancement. This study employs data mining tools 
and techniques to model safety occurrences’ defined 
queries facing several data limitations within MRO 
operations. The inherent complexity and abstract 
nature of safety models necessitate significant 
simplification for practical application, challenging 
due to data quality issues like incompleteness and 
inconsistency. Moreover, the substantial resources 
required for processing large datasets introduce 
technological and computational constraints. 
(Arockia Christopher & Appavu Alias Balamurugan, 
2014) The probabilistic nature of safety incidents 
adds another layer of uncertainty, affecting model 
reliability and necessitating extensive validation on 
extensive high-quality data. (Gao & Mavris, 2022) 
Integration and standardisation of historical data 
across reporting systems are hindered by technical 
and regulatory barriers. Additionally, achieving a 
balance in predictive models to minimise false 
positives requires sophisticated algorithms capable of 
adapting to new aviation technologies and failure 
patterns. The application of Heinrich's pyramid 
highlights the significance of unreported incidents in 
the accuracy of safety models, underscoring the 
challenge of capturing comprehensive data. (Nazeri 
et al., 2008), (IATA - IATA Releases 2022 Airline 
Safety Performance, n.d.) Finally, incorporating 
human factors, including variability in maintenance 
practices and the potential for human error, 
introduces further complexity, emphasizing the need 
for a nuanced approach to modelling safety in 
aviation maintenance and operations. 

To conclude, while this research pioneers a 
predictive rationale for complex emergent safety 
causation modelling and strives to apply data mining 
tools and techniques, it faces various limitations 
ranging from data quality, availability and 
technological constraints to the unpredictable human 
element. Addressing these challenges requires 
extensive efforts to refine methodologies, enhance 
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data management practices, and foster a culture that 
supports proactive safety management. 

6 FUTURE DIRECTION 

Given the insights from Nazeri et al. (Nazeri et al., 
2008) regarding accident factors and considering the 
projected growth in air transportation, we stand at a 
critical juncture. The increasing complexity of air 
traffic and fleet sizes, alongside the inherent 
aggravation of conditions affecting accident factors, 
suggests that accident rates could escalate if proactive 
measures aren't taken. Current safety investigation 
methodologies, despite their historical efficacy, face 
criticism for obsolescence. This highlights the urgent 
need for a paradigm shift in safety investigations, 
emphasising data quality, proactive outcomes, and a 
future-oriented mindset when conducting an 
investigation (J. Stoop & Dekker, 2012), (A. 
B.Arockia & S. Appavu, 2013). 

A complex emergent safety causation model 
incorporating effectively all three rationales will be 
developed and formulated based upon key features 
and characteristics identified from already existing 
models and theories. These would include relatability 
and flexibility while also catering for non-linearity, 
recognise complex systems and consider emergent 
properties. Therefore, path the way for complex non-
linear emergent safety thinking in incident and 
accident investigations. An analytical predictive 
approach will be formulated through the DMADOV 
methodology whereas the qualitative and quantitative 
data will be processed through the methodology’s 
phases. Based on previously mentioned case studies, 
data mining techniques and tools will be applied to 
study relevant relationships categories and fields. 
Following through with the analysis, it will continue 
to fulfil the three rationales by integrating the 
predictive analysis approach into the existing SMS. 
The transition towards predictive risk management 
denotes a promising direction in enhancing aviation 
safety. Further potential impacts and limitations were 
then discussed.  

In conclusion, the path forward demands a 
collaborative effort to embrace predictive models of 
safety management. This paper represents a 
conceptual first step, introducing a complex-
emergent safety causation framework for MROs. 
While the model is currently theoretical, future work 
will focus on its empirical validation using real-world 
occurrence reporting data. This includes testing and 
refining the framework using machine learning 
methods to evaluate its practical impact on predicting 

and mitigating safety risks. By harnessing data and 
predictive analytics, risks could be anticipated to 
foster a safer future for aviation. Potentially spreading 
into other high-risk industries like nuclear power and 
healthcare. (Nazeri et al., 2008) This transition, while 
challenging, is essential for advancing safety culture, 
offering a proactive approach for managing the 
complexities of modern aviation and beyond. 
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