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This study explores the aviation industry's shift from reactive and proactive safety strategies towards
predictive safety management, focusing on Maintenance, Repair and Overhaul (MRO) operations. It
introduces a novel complex emergent safety model designed to integrate predictive analytics into existing
Safety Management Systems (SM) via occurrence reporting data. Moving beyond traditional linear causation
models, the proposed framework leverages machine learning and data mining techniques to identify hazards
and assess risks, thereby reducing the frequency and severity of incidents and minimising maintenance
disruptions. Using the DMADOYV methodology, the study aims to extract actionable insights from unexploited
safety data, despite challenges such as data quality variations and the stochastic nature of safety. Ultimately,
this research advocates for a unified, Al-driven approach to enhance safety capabilities across the aviation

industry.

1 INTRODUCTION

Highly technological and risk systems in high
reliability industries such as aviation are becoming
increasingly complex, raising the potential for
catastrophic consequences when failures occur.
(Qureshi, 2008) Accidents in aviation, as per ICAO
Doc 9156 (ICAO, 1987), are defined as events leading
to serious injuries, significant aircraft damage, or the
aircraft being missing or inaccessible, during
passenger embarkment and disembarkment. Incidents,
on the other hand, are occurrences that could impact
flight safety, ranging from aircraft operations,
technical issues, to interactions with air navigation
services and environmental factors. The distinction
between accidents and incidents primarily lies in their
severity and impact. (ICAO, 1987), (European
Parliament and Council, 2015) Understanding both
accidents and incidents is crucial, leading to the
development of various safety causation models,
approaches and methodologies. This evolving safety
thinking underlines the industry’s commitment
towards safety reassurance, especially when
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considering how relatively young the aviation industry
is. (J. J. a Stoop & Kahan, 2005).

Safety causation models are theoretical
conceptual frameworks that generate a reasoning of
occurrences. They try to explain how and why
accidents occur. Accident modelling can be traced to
as early as the 1920s. Upon such safety causation
models, accident investigations are used to describe
and explain the occurrences. (HaSPA (Health and
Safety Professionals Alliance), 2012; Reason, 1990)
This reactive method did not assist in identifying the
problem and subsequently could not prevent a similar
incident. In the 1950s, aviation safety investigations
shifted from identifying technical factors, to human
factors and then moved towards organisational factors
to try to understand and solve accidents. Initially, as
the aircraft was considered as a complex technological
marvel, the main factor for failure was equipment.
Then, as technology became more reliable, the focus
shifted towards human factors. This Era brought about
the concept of Crew Resource Management and was
solely focused on the individual. Towards the 1990s,
this progressed into considering the operational
context of a complex environment within an
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organisation. This systemic perspective led into
providing the basis for the development of a Safety
Management System, SMS. (Reason, 1990)

SMS emerged as a central pillar of modern
aviation safety strategy, placing greater emphasis on
regulations, organisations and real-time decision-
making for safety improvements. Defined by ICAO,
SMS  encompasses managing  organisational
structures, responsibilities, and procedures to enhance
safety through occurrence reporting. (Gerede, 2015;
Yeun et al, 2014) Moving beyond traditional
prescriptive approaches, SMS adopts a realistic view
of the world, encouraging a paradigm shift towards
proactive and predictive safety measures. (Gerede,
2015) EU Regulation 376/2014 reflects this evolution
by advocating for the integration of proactive methods
with reactive systems for more effective safety
improvements. (European Commission, 2014) SMS
fosters a safety culture by merging reactive, proactive,
and predictive strategies across organisational levels,
showing early benefits and driving continuous safety
advancements. Reactive methods focus on immediate
incident response and mitigation, while proactive and
predictive strategies aim to prevent future incidents by
identifying and anticipating risks, creating a
comprehensive approach to organisational safety
management. These are illustrated as per Figure 1.
(Safety Management System | Federal Aviation
Administration, n.d.)
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Figure 1: Reactive-Proactive-Predictive methodologies.

Regulations and traditional safety management
practices aim to incorporate corrective, preventive,
and predictive methodologies into SMS, with a focus
on corrective measures and an encouragement of
preventive actions. Following EU Regulation
376/2014 (European Commission, 2014), one of the
key tools for SMS is occurrence reporting or safety
investigations (Elkhweldi & Elmabrouk, 2017), which
involve fault analysis for corrective actions and cause
analysis for preventive measures. Stoop and Dekker
(J. Stoop & Dekker, 2012) question the proactiveness
of safety investigations, highlighting the importance
of feedback from real-world data for insights into

complex systems. This knowledge is crucial for future
designs and strategies, making safety investigations a
proactive element that complements other safety
improvement strategies. However, even though the
predictive phase of SMS is recognised it is yet to be
defined, clarified, encouraged and enforced by
regulations and authorities to organisations.

The predictability of incidents, applied in a
maintenance, repair and overhaul (MRO), which
makes up just one aspect of the aviation industry,
presents a complex and critical challenge. This is due
to the multifaceted nature of aviation systems, the
variability in operational environments, and the
stringent safety standards required. The primary
challenge lies in the development and limitations of
current safety causation models that are reductionist,
linear and resultant. The illusion of containment or
preventing ‘losses’ gives the impression that incidents
and accidents alike can be controlled. Many models
have a Newtonian Cartesian ideology, that the incident
or accident can always be broken down. This leads to
a hunt for a broken component. Currently, with no
universally accepted model (Grant et al., 2018), the
pessimistic conclusion would be that the models are
not scientific enough, practical enough, not specific
enough nor holistic enough to fully understand how
incidents occur. (Hovden et al., 2010) In light of the
(r)evolution of many safety causation models,(HaSPA
(Health and Safety Professionals Alliance), 2012)
unfortunately, their outlook in the current predictive
approaches remains limited. The continuous growth
and advancements in all aspects of the aviation
industry necessitate further developments, which
include the way accidents are viewed and their
methodologies applied (Amankwah-amoah, 2021).

A complex emergent model that integrates all
three rationales — reactive, proactive and predictive is
required. This research aims to lay the foundation for
complex, non-linear safety thinking in both incident
and accident investigations. By integrating a
predictive-probabilistic analysis approach into the
existing SMS this approach will enhance the capacity
to foresee and mitigate safety risks. It aims to
statistically reduce the frequency and severity, while
minimising disruptions to maintenance operations.
(Bartulovi¢ & Steiner, 2023).

2 LITERATURE REVIEW

The evolution of safety causation models, from
Heinrich's 1931 Domino theory to Hollnagel’s 2012
Functional Resonance Analysis Method (FRAM),
reflects a shift through three generations of human
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error modelling (Katsakiori et al, 2009),
incorporating human factors and systemic approaches
like Reason’s Swiss cheese model. Despite challenges
in application and interpretation, these models have
progressively addressed the complexity of safety
management, culminating in the adoption of complex
non-linear models in the early 2000s, such as
Leveson’s STAMP and FRAM, to tackle the dynamic
aspects of safety. (Hovden et al., 2010) This literature
review critically assesses these models for their
principles, strengths, and weaknesses, aiming to
promote a shared understanding of accidents and
support the development of preventative strategies.
(Hovden et al., 2010) By analysing the interaction
among various factors within these models and
highlighting their unique features, the review
advocates for a comprehensive model that addresses
the complexity and emergence of incidents,
streamlining the evolution and critical examination of
safety causation models and their application in
enhancing system resilience and safety management.

The Swiss Cheese model was introduced by James
Reason and conceptualizes the idea of multiple layers
of defence against accidents in complex systems. Each
layer of defence has potential flaws, represented as
holes in slices of Swiss cheese. The alignment of these
holes can lead to a trajectory of accident opportunity,
allowing hazards to materialize into losses. The
model's strength lies in its visual simplicity and its
emphasis on systemic flaws rather than individual
error. However, its limitation is the linear and static
representation of accident causation, overlooking the
dynamic interactions within systems and the non-
linear nature of complex failures.(Reason, 1990)
While some authors (Dekker, 2002; Maurino, 2001;
Shappell & Wiegmann, 2000), considered the model
to be too generic and underspecified pinning the
model as a representation which lacks the tools to
implement the metaphor of cheese’s slices and holes.
This leaves practitioners making their own
interpretation and adaptation. While Luxhgj and
Kauffeld (Kauffeld, 2003), think that this is a risk
which makes the model impractical, this interpretive
flexibility suits particularly well the SCM. (Larouzee
& Le Coze, 2020) In fact, in 2000, a simplified version
of the SCM was published in the British Medical
Journal (BMJ)(Reason, 2000) making an impact in
another high-risk industry.

Charles Perrow's Normal Accident Theory (NAT)
suggests that accidents are a natural outcome in
complex, tightly coupled systems due to the
unpredictable and unmanageable nature of their
interactions. It highlights the intrinsic risks within
high-tech environments, suggesting that the
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complexity of these systems renders accidents
inevitable, hence ‘normal’. As this theory recognizes
accidents as such, it risks diminishing the emphasis on
proactive risk management (Charles, 1999). FRAM,
developed by Erik Hollnagel, focuses on how
variability in normal system performance can lead to
accidents through unexpected interactions. Unlike
linear models, FRAM addresses the complexity and
non-linear interactions within systems, offering a
more dynamic approach to understanding accident
causation. This is possible because through the
concept of resonance, a small change in one part could
amplify and cascade into larger ones. Later, it was also
mentioned and explained as the butterfly effect by
Dekker. (Dekker, 2017) Moreover, the FRAM’s
strength lies in its ability to model complex processes
and their variabilities. It provides an analysis method
by defining a system in terms of functions, which
represent activities that people perform, whereas each
function can be defined by six aspects; the time
allocated, input items that are processed,
preconditions that trigger the task, the way the
function is controlled, the resources that are consumed
to process items and the output as a result of the
function. However, its application can be challenging
due to the need for in-depth understanding of system
variabilities and interactions. It requires many
resources which would require time to retrieve. In
addition, the complex connectivity of web could lead
to an infinite number of possibilities making it
difficult to predict how variabilities across different
functions may couple and resonate. (Erik, 2012)

The Systems-Theoretic Accident Model and
Processes (STAMP), Proposed by Nancy Leveson,
shifts from event-based to constraint-based
approaches in accident analysis. It views accidents as
a result of inadequate control or enforcement of safety
constraints within a socio-technical system. STAMP's
strength lies in its comprehensive approach,
incorporating technical, human, and organizational
factors. However, its broad scope can make it complex
to implement and require significant effort to identify
and model relevant constraints.(Leveson, 2004) This
model faces challenges that limit its widespread
adoption when compared to other models because it
requires a deep understanding of system theory which
is not synonymous with systems engineering and
hence, requires specific education or training. It is also
challenging to apply real world application of STAMP
to complex systems, hence, make it challenging for
practitioners to apply it to their specific contexts. Its
emphasis on enforcing constraints on system
behaviour offers a novel approach to safety, which,
with increased training and awareness, could see
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broader adoption across various industries. (Leveson,
2004, 2012; Underwood & Waterson, 2012)
However, Roelen, Lin and hale (Roelen et al., 2011)
suggest that this model is neither embraced by the
safety community nor broadly recognised as a
significant influencing accident model in the overall
field of safety management because Leveson’s model
does not integrate well with the dominating methods
of collecting and analysing safety data. Hence, making
event chain models such as the SCM more favourable.

Dekker's Drift into Failure theory proposes that
accidents result from systemic drifts into failure,
where everyday decisions and actions, although
seemingly rational at the time, cumulatively lead to a
system's degradation and eventual failure. This model
emphasizes the complexity of socio-technical systems
and the non-linear, emergent properties of system
failures. Its strength lies in its focus on the systemic
and emergent nature of failures, challenging the blame
culture by highlighting the role of system design and
decision-making processes. (Dekker, 2017) While
Dekker provides a theory and tries to progress towards
a complex and emergent kind of rationale, this theory
does not provide a safety causation model that fully
explains how an incident, or an accident occurs.
Therefore, a limitation of this theory could be in the
identification and measurement of drift, which is
subtle and evolves over time.

The reviewed models contribute valuable insights
into accident causation, highlighting the roles of
system complexity, human factors, and organizational
processes. However, there exists a gap in integrating
these perspectives into a unified model that can
accommodate the emergent, unpredictable nature of
complex system failures. Current models either focus
on linear causation, system components in isolation,
or fail to fully address the dynamic interactions and
adaptability of complex socio-technical systems.
There is a need for a model that not only incorporates
the strengths of existing models, such as the graphical
visualisation, systemic nature and flexible
interpretation of the SCM, the dynamic understanding
of FRAM, the normalisation of unstable systems of
NAT, and the drift concept with an understanding of
non-linear, complex emergent properties from
Dekker; but also offers practical tools for identifying
and mitigating emergent risks in real-time to keep up
with the ever growing technologies.

For the enhancement of safety investigation
analysis, this research aims at developing an
integrated safety causation model (Grant et al., 2018)
that embraces complexity, emergence, and the non-
linear dynamics of socio-technical systems. Such a
model would provide a more holistic and adaptable

framework for understanding and preventing
accidents in an increasingly complex and
interconnected world. Alongside this integrated
model, an analysis will also be developed. This would
reflect the novel’s notion of non-linearity, complexity
and emergence in contrast to previously mentioned
models with their own analysis methods or rationale.

3 METHODOLOGY

The DMADOV (Define, Measure, Analyse, Design,
Optimise, Verify) methodology (Pyzdek, 2017) will
be applied with the goal of designing and developing
a predictive-probabilistic, integrated data-based
analysis approach. This approach will complement the
non-linear, complex, and emergent safety causation
model, serving as a practical tool. Specifically, it aims
to identify potential areas of emergent risks in
maintenance environments by conducting a thorough
analysis of already existing unexploited safety data.

In the define phase, the MRO organisation’s
current SMS will be examined, focusing on the safety
investigation process and occurrence report inputting.
This involves a thorough review of the existing
process for investigating safety incidents, identifying
its strengths and limitations. Written occurrence
reports, generated from incident investigations, will be
looked into to grasp their significance into aviation
safety. This will support in formulating problem
statements considering the inputting fields and data
available. By defining these reports’ qualitative and
quantitative nature of data, a deeper understanding of
the involved processes and the significance of report
fields will be gained. This understanding would
potentially indicate the specific relationships that need
to be measured and subsequently analysed.

Once the investigative process as well as the
occurrence reports’ fields and criteria would be
understood, the data available will be explored into
setting attributes from the defined problem statement.
This would be the measure phase. ldentifying
relationships from the investigative process and
occurrence reports’ criteria and fields will give an
indication of specific attributes and categories to
extract. Following the identification of such attributes
and categories, which must also be inline with the
defined problem, the type of data must be studied
further. This will lead into extracting the data,
cleaning it and refining its quality. The selection of
attributes and categories of data, together with its
filtration and refinement process are of crucial
importance to provide a clear as-is assessment of the
reporting data. (Huan & Hiroshi, 2007)
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In the analysis phase, techniques and tools for data
extraction are chosen based on predefined criteria,
often requiring data transformation to meet analysis
needs. Artificial Intelligence (Al), Data Mining (DM),
and Machine Learning (ML) are key areas in this
process. (Huan & Hiroshi, 2007) Al is about creating
systems that perform tasks requiring human
intelligence, like speech recognition and decision-
making. ML, a subset of Al, focuses on developing
algorithms that enable computers to learn from data
and improve over time without being explicitly
programmed. This is crucial for Al systems to adapt
and perform complex tasks accurately. DM discovers
patterns in large data sets using ML, statistics, and
database techniques, converting data into a usable
structure. (Han et al., 2011) While DM aims at
exploratory analysis to uncover new insights, ML
focuses on using these insights for predictions or
classifications. Current studies employ DM to uncover
patterns and knowledge in data, and ML to learn and
make predictions, illustrating ML's versatility across
various industries such as healthcare and technology.
(Revolutionizing Healthcare Industry with Machine
Learning., n.d.) DM supports ML by providing
algorithms for systematic data analysis, crucial for
understanding customer behaviour, optimising
efficiency, and identifying risks or opportunities (A.
B.Arockia & S. Appavu, 2013). Together, ML and
DM enable organisations to automate data analysis,
enhance prediction accuracy, and make informed
decisions, essential in data-intensive fields like
aviation where safety and data volume are critical.
Data mining plays a pivotal role in predictive analysis
by employing a range of techniques and tools to
extract actionable insights from datasets. Key tools
such as WEKA, RapidMiner, KNIME, and Python
Libraries support various DM techniques including
classification, clustering, regression, association rules,
and anomaly detection. Prominent classification
methods like decision trees (ID3, C4.5, CART),
support vector machines (SVM), naive Bayes (NB),
and K-nearest neighbours (KNN) have been
extensively utilized. For instance, decision tree
induction is celebrated for its efficacy in pattern
classification by Han and Kamber (Han et al., 2011),
while NB classifiers and SVM have been applied for
their probabilistic and discriminative capabilities in
aviation safety analysis respectively. (Narasimha &
Devi, 2011), (Han et al., 2011) KNN, known for its
simplicity and effectiveness, along with decision trees,
has contributed to understanding complex data
structures in aviation incidents and forecasting models
(A. B.Arockia & S. Appavu, 2013), (Giirbiiz et al.,
2009), (Bineid & Fielding, 2003).
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In this analysis phase, the key tools and DM
classification techniques will be selected based on the
previous phases, highlighting the significance of
choosing the right combination of techniques and
tools based on specific analysis objectives, essential
for deriving meaningful insights and enhancing
aviation safety.

In the following phase, machine learning methods
and algorithms will be applied through data mining
tools and techniques to study relationships and
recognise existing trends. This will lead towards
evoking strategies to compare criteria, fields and
records in the design phase. Utilising a machine
learning platform together with the deployment of
functions, algorithms and selected methods, a design
procedure will be established. The seclection of
different functions to assess performance levels and
their impacts will necessitate redesigns. These
redesigns will make part of the optimize phase.
Through the iteration of the design and optimise
phases, the previously defined data and relationships
will undergo verification for reliability purposes. This
methodology will enable the validation of the
predictive-probabilistic approach, in the final verify
Pphase.

After the literature review of the safety causation
models aimed at paving the way for the development
of a complex emergent model, the DMADOV
methodology and its phases were discussed for the
development of a predictive-probabilistic analysis
approach, which is defined further in Figure 2.
Ultimately, through this analysis approach, applied on
specified criteria and attributes of safety occurrence
reporting data, it would also support the complex
emergent safety causation model in understanding the
occurrence of incidents.
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4 POTENTIAL IMPACT

The study embarks on an innovative journey to
develop a complex emergent safety causation model,
leveraging the power of machine learning algorithms
and methods to foster a predictive-probabilistic
approach. Utilising data from MRO operations, this
research underlines the importance of advancing
safety thinking in high-risk industries, notably
aviation. This progressive exploration aims to unravel
and navigate through the intricacies and emergent
properties of safety data, promoting a more profound
understanding of underlying risks.

Based upon the results of Mathur et al (Mathur et
al., 2017), it was analysed that maintenance of the
aircraft would significantly reduce the risk of
accidents. Therefore, by integrating innovative data
mining applications and employing pragmatic
predictive-probabilistic strategies through advanced
tools, techniques, and methodologies, the study seeks
to indicate potential risk incidents before they
manifest in an MRO environment. This proactive
detection, rooted in the meticulous analysis of safety
occurrence reporting data, would substantiate positive
impacts. Beyond the mere avoidance of adverse
outcomes, this approach signifies a leap towards
ensuring safer working environments and enhancing
operational efficiency. The anticipated reduction in
downtime and interruptions from incidents paves the
way for heightened productivity, as resources
dedicated to managing or responding to incidents are
optimised. Furthermore, this efficiency translates into
cost savings, encompassing not only operational costs
but also expenses related to repairs, legal fees, and
more. (Jardine & Tsang, 2013) The ripple effects of
diminished incidents extend to encouraging trust
among employees and customers, fortifying a
reputation for reliability and safety. Such a reputation
could serve as a formidable competitive edge, drawing
more business and elevating customer satisfaction.
(Doorley & Garcia, 2007) The insights derived from
this study are expected to shed light on risk areas and
vulnerabilities, guiding strategic decisions and
preventive actions. This knowledge empowers
organisations to learn from incidents that occur,
nurturing a culture of learning and adaptation. It also
encourages the adoption of best practices, steering
continuous improvement across the board.

S5 LIMITATIONS

In developing a predictive, machine learning-driven
models, this study faces numerous challenges

inherent to the domain of safety performance. The
stochastic nature of safety, characterized by complex
interactions and unpredictable events, complicates
precise quantification and modelling. (J. Stoop &
Dekker, 2012) Transitioning from reactive to
proactive safety strategies in MRO operations further
adds to the complexity, highlighting the importance
of training, awareness, and fostering a just culture.
(Gerede, 2015), (Phimster et al., 2004) Notably, on
the latter, Gerede (Gerede, 2015), continues by
mentioning the challenging barriers of 'just culture'
that pose on Safety Management Systems, impeding
effective reporting, learning, and predictive tool
enhancement. This study employs data mining tools
and techniques to model safety occurrences’ defined
queries facing several data limitations within MRO
operations. The inherent complexity and abstract
nature of safety models necessitate significant
simplification for practical application, challenging
due to data quality issues like incompleteness and
inconsistency. Moreover, the substantial resources
required for processing large datasets introduce
technological and computational constraints.
(Arockia Christopher & Appavu Alias Balamurugan,
2014) The probabilistic nature of safety incidents
adds another layer of uncertainty, affecting model
reliability and necessitating extensive validation on
extensive high-quality data. (Gao & Mavris, 2022)
Integration and standardisation of historical data
across reporting systems are hindered by technical
and regulatory barriers. Additionally, achieving a
balance in predictive models to minimise false
positives requires sophisticated algorithms capable of
adapting to new aviation technologies and failure
patterns. The application of Heinrich's pyramid
highlights the significance of unreported incidents in
the accuracy of safety models, underscoring the
challenge of capturing comprehensive data. (Nazeri
et al., 2008), (IATA - IATA Releases 2022 Airline
Safety Performance, n.d.) Finally, incorporating
human factors, including variability in maintenance
practices and the potential for human error,
introduces further complexity, emphasizing the need
for a nuanced approach to modelling safety in
aviation maintenance and operations.

To conclude, while this research pioneers a
predictive rationale for complex emergent safety
causation modelling and strives to apply data mining
tools and techniques, it faces various limitations
ranging from data quality, availability and
technological constraints to the unpredictable human
element. Addressing these challenges requires
extensive efforts to refine methodologies, enhance
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data management practices, and foster a culture that
supports proactive safety management.

6 FUTURE DIRECTION

Given the insights from Nazeri et al. (Nazeri et al.,
2008) regarding accident factors and considering the
projected growth in air transportation, we stand at a
critical juncture. The increasing complexity of air
traffic and fleet sizes, alongside the inherent
aggravation of conditions affecting accident factors,
suggests that accident rates could escalate if proactive
measures aren't taken. Current safety investigation
methodologies, despite their historical efficacy, face
criticism for obsolescence. This highlights the urgent
need for a paradigm shift in safety investigations,
emphasising data quality, proactive outcomes, and a
future-oriented mindset when conducting an
investigation (J. Stoop & Dekker, 2012), (A.
B.Arockia & S. Appavu, 2013).

A complex emergent safety causation model
incorporating effectively all three rationales will be
developed and formulated based upon key features
and characteristics identified from already existing
models and theories. These would include relatability
and flexibility while also catering for non-linearity,
recognise complex systems and consider emergent
properties. Therefore, path the way for complex non-
linear emergent safety thinking in incident and
accident investigations. An analytical predictive
approach will be formulated through the DMADOV
methodology whereas the qualitative and quantitative
data will be processed through the methodology’s
phases. Based on previously mentioned case studies,
data mining techniques and tools will be applied to
study relevant relationships categories and fields.
Following through with the analysis, it will continue
to fulfil the three rationales by integrating the
predictive analysis approach into the existing SMS.
The transition towards predictive risk management
denotes a promising direction in enhancing aviation
safety. Further potential impacts and limitations were
then discussed.

In conclusion, the path forward demands a
collaborative effort to embrace predictive models of
safety management. This paper represents a
conceptual first step, introducing a complex-
emergent safety causation framework for MROs.
While the model is currently theoretical, future work
will focus on its empirical validation using real-world
occurrence reporting data. This includes testing and
refining the framework using machine learning
methods to evaluate its practical impact on predicting
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and mitigating safety risks. By harnessing data and
predictive analytics, risks could be anticipated to
foster a safer future for aviation. Potentially spreading
into other high-risk industries like nuclear power and
healthcare. (Nazeri et al., 2008) This transition, while
challenging, is essential for advancing safety culture,
offering a proactive approach for managing the
complexities of modern aviation and beyond.
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