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Abstract: Floods are one of the most dangerous, impactful natural disasters, and flood forecasting is a critical component
of effective pre-flooding preparedness. In this paper a data-driven approach to flood forecasting is presented,
which provides photorealistic predictions that are less computationally expensive to generate than traditional
physically-based models. A ‘PairedAttention’ generative adversarial network (GAN) was developed, that
combines attention and content mask subnetworks, and was trained on paired sets of pre- and post-flooding
aerial satellite images aligned with topographical data. The PairedAttention GAN achieved 88% accuracy and
an F1 score of 0.8 at flood predictions on three USA flood events, and an ablation study determined that the
digital elevation model was the most significant factor to improving the GAN’s performance. Although the
model is a successful proof-of-concept for the effectiveness of a data-driven GAN to generate photorealistic,
accurate aerial flood prediction imagery, it nevertheless struggled with generalisation, indicating an important
avenue for future research.

1 INTRODUCTION

Floods are an extremely deadly and costly natural
hazard, accounting for 47% of all weather-related dis-
asters between 1995 and 2015, leading to immense
economic damages and losses of life (CRED, 2015).
Climate change is also increasing the prevalence and
intensity of storm and flooding events (UNDP, 2023).
Developing effective flood risk management strate-
gies is thus more important than ever, and flood fore-
casting is a critical component to supporting pre-
flooding preparedness (Jain et al., 2018).

The traditional approach to making detailed flood
inundation forecasts begins with a numerical weather
prediction (Ming et al., 2020). The precipitation fore-
cast is then input into hydrological models to create
hydrographs, which depict water level information
over time (Arduino et al., 2005). Using an external
coupling system, hydraulic or hydrodynamic models
use the inflow hydrographs as boundary conditions to
simulate the flow of waters, by solving partial differ-
ential equations of continuity and momentum (Allaby,
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2014). Although these ‘process-based’ models can
make highly detailed and accurate flood inundation
predictions, they have a very high computational re-
quirement, as the prediction must be recomputed for
each new area (Henonin et al., 2013). The calibration
process of a hydrological model is also very time con-
suming, reaching hours or even days in length (Mihon
et al., 2013). Furthermore, process-based models re-
quire huge amounts of data that explicitly represent
the underlying physical characteristics of the flood
(Devia et al., 2015), and in-depth knowledge and ex-
pertise is required to work with the hydrological pa-
rameters (Mosavi et al., 2018).

Alternatively, data-driven approaches to flood
forecasting use deep learning, neural network based
models that learn from historical flood data, to ap-
proximate the outputs of the computationally ex-
pensive hydraulic/hydrodynamic models (Guo et al.,
2021). At inference time, neural networks can make
much faster predictions than process-based models in
complex environments, as they can easily handle the
impact of factors like buildings or trees on diverting
fluid flow, which conversely add a lot of complexity
to the calculations of the hydraulic models (Liu et al.,
2019). Neural network based models can also be di-
rectly applied to unseen areas, whereas process-based
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models must always be retrained on the new topogra-
phy.

Furthermore, generative deep learning models are
also capable of creating photorealistic predictions and
visualisations of floodwaters, whereas the traditional
process-based models can output only numerical pre-
dictions. Hama et al. (2021) argue that colour-coded
flood hazard maps are not engaging or intuitive, and
that alone, they are insufficient to enhance situational
awareness and eliminate cognitive bias (Lütjens et al.,
2024). In contrast, realistic aerial imagery of pre-
dicted flooding outcomes can help orient rescue per-
sonnel to landscape features (Sivanpillai et al., 2021)
and improve situational readiness for efficient post-
flooding interventions (Goswami et al., 2022). Com-
pelling flood imagery also effectively raises aware-
ness of the potential impact of climate change on
individuals’ personal environments (Schmidt et al.,
2021).

The contributions of our work include the de-
velopment of a data-driven flood prediction model,
which uses a generative adversarial network (GAN)
architecture to generate aerial flood imagery that is
both photorealistic and accurate, by modelling the
flood forecasting process. Quantitative state-of-the-
art results are limited, as related works have predomi-
nantly focused on photorealism and not predictive ac-
curacy (Luccioni et al., 2021) and require running ad-
ditional process-based numerical simulations to pro-
vide the accuracy to the data-driven model (Lütjens
et al., 2024). However, our GAN was trained on only
open observational data, using only tools distributed
under open licences, and without the use of any ex-
pensive simulations, thus demonstrating the viability
of a more accessible approach to developing flood
prediction models.

The availability of datasets on which to train gen-
erative flood prediction models is currently very lim-
ited, with no benchmark dataset, hence we also re-
lease the dataset developed for this paper. It includes
over 1000 pixel-aligned sets of pre-flooding satellite
images, a high resolution digital elevation model, flow
accumulation, distance to rivers, cartographical map,
and ground truth post-flooding satellite images.

The research questions explored in this paper are:

• How accurately can GANs generate aerial flood
prediction imagery?

• Which GAN architecture generates the most ac-
curate flood predictions?

• Which topographic factors most improve the ac-
curacy of the flood predictions?

• How accurately can the GANs generalise to new
flood events and features?

2 RELATED WORK

The first generative models that were used to create
images relied on a convolutional neural network ar-
chitecture (LeCun et al., 1998). Flood susceptibility
mapping using convolutional and autoencoder deep
learning architectures has been successfully demon-
strated by Wang et al. (2020) and Ahmadlou et al.
(2021) respectively. In these studies, a range of vari-
ables were input into the models, including altitude,
slope, land use and lithology, and the probability of
flooding occurring at each pixel was subsequently
output.

The generative adversarial network (GAN) ex-
ploits the strength of neural networks as universal
function approximators (Hornik et al., 1989) to learn a
mapping from random noise to a synthetic image that
is indistinguishable from real images (Goodfellow
et al., 2014). The basic GAN consists of two networks
- a generator and a discriminator - that are trained si-
multaneously and work adversarially. The discrimi-
nator is a classifier, which trains to better discriminate
between real images and the synthetic images created
by the generator, thus incentivising the generator to
train to generate more convincingly realistic synthetic
images, which are capable of ‘fooling’ the discrimina-
tor. The loss function of a GAN comprises the prob-
ability that the discriminator correctly predicts that
real images are real (logD(x)), and that synthetic im-
ages are synthetic (log(1−D(G(z)))). It is therefore
described as a ‘minmax’ function, because the dis-
criminator wants to maximise this function, whereas
the generator wants to minimise it (Goodfellow et al.,
2014).

In 2017, Isola et al. introduced the Pix2Pix archi-
tecture for image-to-image translation, which gener-
ates images that are conditioned on an additional in-
put image. Pix2Pix therefore needs access to paired
image sets in order to train using a supervised learn-
ing approach. Hofmann and Schüttrumpf (2021) and
do Lago et al. (2023) utilised a conditional GAN ar-
chitecture to generate binary flood predictions, by
training their models on data generated by hydrody-
namic simulations.

The CycleGAN architecture was developed to use
an unsupervised learning strategy without the need for
paired images, by utilising the concept of cycle con-
sistency. The CycleGAN model (Zhu et al., 2017)
consists of two generators and two discriminators.
The first generator transforms a real image from do-
main X to domain Y, and the second generator takes
the generated domain Y image, and transforms it back
to domain X again. The cycle consistency loss then
evaluates whether the reconstructed synthetic domain
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X image correctly matches the original real domain X
image. CycleGAN’s loss function is formed from the
cycle consistency losses from both the forwards and
backwards cycles, as well as the adversarial losses
contributed by the discriminators, which assess the
realism of the synthetic images in both domains (Zhu
et al., 2017).

Rui et al. (2021) and Luccioni et al. (2021)
used GAN architectures, including the CycleGAN
(Schmidt et al., 2019), to create engaging, realistic
‘street-view’ images of floods. Lütjens et al. (2024)
and Goswami et al. (2022) focused on generating
accurate and photorealistic aerial flood imagery, but
their models relied on pre-segmented labelled masks
to define the correct floodwater locations, and did not
use the GAN model to make the predictions.

Hama et al. (2021), Schmidt et al. (2021) and
Goswami et al. (2022) all concluded that training a
model on labelled flood masks greatly improves the
generated images of floods. However, obtaining la-
belled data is extremely time consuming and expen-
sive. ‘Attention’ mechanisms represent an alterna-
tive approach to achieve a similar result, without the
need for the labelled mask data. AttentionGAN (Tang
et al., 2021) trains subnetworks to produce attention
masks and content (image transformation) masks; the
attention masks are then applied to the content masks,
which are then added to the original image pixel-wise,
hence only the area of the image indicated by the at-
tention mask is transformed. AttentionGAN also uses
the same unsupervised learning approach and cycle
consistency loss function as CycleGAN.

3 METHODOLOGY

3.1 Dataset

The study area consists of three flood events in the
USA, caused by Hurricane Harvey in the city of
Houston in 2017, Hurricane Florence in North Car-
olina near the Northeast Cape Fear river in 2018,
and heavy rainfall in the Midwestern United States
along the Arkansas river in 2019. This set of events
comprises a variety of geographical regions, from the
countryside to urban settlements, as well as a range of
different precipitation intensities.

The selection of features for the dataset was de-
termined by the most impactful factors on the likeli-
hood of fluvial (river) and pluvial (rainfall) flooding
occurring in a particular area. The formal definition
of a flood is “a body of water which rises to over-
flow land which is not normally submerged” (Ward,
1978), hence the quantity of runoff is a function of

rainfall intensity and the infiltration capacity of the
ground, which in itself is modified by the characteris-
tics of the surface (Bolt et al., 2013). Also important
are the attributes of the overall catchment area, which
determines the dynamics of the water flow. Key fea-
tures therefore include the shape, slope, aspect, alti-
tude, climate, geology, soil type, infiltration, vegeta-
tion cover, and channel factors of a region (Smith and
Ward, 1998).

To assist the model in making flood predictions,
five factors were selected as model inputs. These
include a pre-flooding optical satellite image, a dig-
ital elevation model (DEM), representation of flow
accumulation, distance to nearby rivers, and a car-
tographical map. The data sources and attributions
are provided in section 6. Having access to high-
resolution, optical satellite imagery of the region be-
fore the flood event had occurred, was essential for
the model to be able to generate photorealistic post-
flooding aerial images. A DEM is critical for accurate
flood forecasting, as it encapsulates key information
on topographical features such as elevation, slope, as-
pect, roughness and curvature (Mujumdar and Kumar,
2012). Land use, land cover and imperviousness data
were not directly input into the model, because the
openly available datasets were of poor resolution, and
were typically created by automated models classify-
ing satellite imagery (Kontgis, 2021), thus it was de-
termined to be feasible for the GAN to extract this
information itself from the pre-flooding images. The
cartographical map input also provides some indica-
tion of land use, as well as the locations of roads
and buildings. It was also important to input into
the model data that described the wider context of the
study area; the distance to nearby rivers is a basic but
crude method to achieve this, whereas the flow accu-
mulation provides a detailed deterministic prediction
of which cells drain into other downslope cells, hence
determining the catchment areas (Mark, 1983).

Optical Satellite Images: The ‘xBD’ dataset con-
tains paired satellite images captured before and after
flood events, in the exact same locations. The im-
ages are taken from the Maxar Open Data program,
and were made by the GeoEye-1, WorldView-2 and
WorldView-3 satellites. Each image has 1024×1024
pixels in a three-band RGB format, with a resolution
of approximately 0.5 metres/pixel. The pre-flooding
satellite image is input into the model, whereas the
paired post-flooding image functions as the ground
truth target, used to evaluate the predictions made by
the model.

Digital Elevation Model: The USGS 3D Ele-
vation Program DEM, which has a 1/3 arc-second
(10 metre) resolution, describes the topography of the
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Figure 1: A single image stack comprised of a pre-flooding satellite image, DEM, flow accumulation, distance to rivers,
and map, is input into the GAN model. The GAN outputs a synthetic, predicted post-flooding satellite image, which can be
evaluated by comparing it to the real ground truth post-flooding image.

study areas. The elevations in this DEM represent the
topographic bare-earth surface, hence excluding ob-
jects like trees and buildings, which are instead repre-
sented in the pre-flooding satellite images.

Flow Accumulation: We calculated the flow ac-
cumulation from DEM rasters that each covered ap-
proximately 2000km2, containing a study area and its
surrounding areas. It was firstly necessary to fill the
sinks, to prevent artificial depressions from trapping
water and preventing continuous flow (Wang and Liu,
2006). Next, the flow direction and subsequent flow
accumulation was calculated using the multiple flow
direction algorithm (Wolock and McCabe Jr, 1995),
in the SAGA GIS tool (Conrad et al., 2015). Rather
than applying a threshold to the output, logarithm
base 10 was taken of the flow accumulation values,
in order to retain the most detail for the model.

Distance to Rivers: The QGIS software was used
to visualise buffer distances (at 0.5km intervals) to all
major rivers and waterways, as classified by the Open
Street Map.

Map: OpenStreetMap data was downloaded from
Planet OSM and processed using the Osmium tool.
The Maperitive software was then used to apply a
custom ruleset to the maps’ appearance, removing all
of the text, and enhancing the clarity of the land use
types.

Input Stack: All of the inputs were georefer-
enced, and projected to the same WGS 84 coordinate
system that the satellite images originally used. The
satellite images did not compose a continuous image
of the study area, but rather captured separate, rel-
evant locations. As such, the four input features of
the DEM, flow accumulation, distance to rivers and
map (henceforth referred to collectively as the “topo-
graphical factors”) were cropped to create individual
image stacks. Figure 1 depicts how a single sample
image stack is input into the model, which then out-
puts a synthetic post-flooding satellite image, that can
hence be compared to the ground truth post-flooding
image. Each image set contains a single pre-flooding

satellite image and its associated topographical fac-
tors concatenated as tensor channels, with each pixel
representing the same 0.5m×0.5m geographical area
in all of the channels. All of the input stacks had their
alignment manually reviewed and adjusted to correct
for any errors or skewness.

The data were transformed by resizing each
1024×1024 pixel image to 512×512 pixels using
bicubic resampling, and then cropped into 4 sepa-
rate images of 256×256 pixels each, because the
model architectures worked most optimally with ex-
actly 256×256 pixel images. Although many tech-
niques have been developed to better handle higher
resolution imagery (Karras et al., 2017), (Wang et al.,
2018), the inclusion of these would have added yet
another layer of complexity to an already highly com-
plex task. The only augmentation applied to the data
was a horizontal flip; the images were not rotated or
flipped vertically, as such a transformation would be
unrealistic for this domain.

The final dataset contained a total of 5736 image
stacks, of which 2680 corresponded to Hurricane Har-
vey, 1880 image stacks of Hurricane Florence, and
1176 image stacks of the Midwest floods. The data
were split into 80% in the training dataset, 10% in the
validation set, and 10% in the test set. The splits were
stratified by the flood events, so that each flood was
represented proportionally in each set. All of the fol-
lowing results, metrics and sample generated images
are taken from the test dataset, which was held-out
during the model training process.

3.2 Models

Although the current state-of-the-art in generative
networks tends towards the vision transformer (Doso-
vitskiy et al., 2020) and diffusion model (Ho et al.,
2020) architectures, GANs are in comparison less
computationally intensive and require less data to
train. They are also much faster at inference time,
requiring only one forward pass, as opposed to the
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multiple de-noising steps of a diffusion model.
GAN architectures were therefore used to gener-

ate the aerial flood prediction imagery in this work,
as they best fulfilled the requirement of a data-driven
model that could be faster than process-based models,
and could train efficiently on the comparably small
size of the flood dataset. The performance of three
existing model architectures was compared; Pix2Pix,
representing the supervised approach, CycleGAN,
representing the unsupervised approach, and Atten-
tionGAN, representing the guided approach. The at-
tention mechanism in the AttentionGAN architecture
is very suited for flood prediction, because the atten-
tion masks can identify the location for the flooding,
and the content masks can generate floodwater visu-
alisations. However, AttentionGAN’s unsupervised
learning strategy does not make effective use of the
paired pre- and post-flooding images available in the
dataset. A new model called ‘PairedAttention’ was
hence created, which utilises the architecture of At-
tentionGAN, but the supervised training approach and
loss function of Pix2Pix.

The training procedures and model architectures
were replicated from their original papers, with the
exception that all of the generators and discrimina-
tors in the CycleGAN and AttentionGAN architec-
tures were modified to input the additional topograph-
ical factors. A comprehensive hyperparameter tuning
analysis determined the following optimal hyperpa-
rameters for the models: The model weights were
initialised from a Gaussian distribution with mean 0
and standard deviation 0.02. The optimizer used the
Adam algorithm (Kingma, 2014) with a learning rate
of 0.0002 and beta decay rates of 0.5 and 0.999. The
learning rate scheduler maintained the initial learning
rate for the first half of epochs, then reduced the learn-
ing rate linearly for the second half of epochs. Each
model trained for 200 epochs, as performance was
found to plateau beyond this point. The batch size
was set to 1.

3.3 Evaluation Metrics

Because GANs generate photorealistic imagery, eval-
uating their outputs is much more difficult than eval-
uating the performance of traditional classifier neu-
ral networks (Betzalel et al., 2022). Determining the
most appropriate metrics is therefore key to any eval-
uation of GANs, and is highly dependent on the char-
acteristics of the data and the goal of the research.
For the task of generating aerial flood prediction im-
agery, there are three core objectives: achieving a
high level of photorealism, predictive performance,
and efficiency.

All three of these goals are critical to making a
good flood prediction. The images must be photo-
realistic in order to create a convincing representa-
tion that is useful for enhancing situational awareness.
The photorealism metrics that were used to evaluate
the GANs are: PSNR, SSIM, MS-SSIM, and LPIPS
(Arabboev et al., 2024). These metrics compare how
close a generated image is to a reference image from
their signal-to-noise ratio, by the similarity of their
structure, luminance and contrast, on multiple resolu-
tion scales, and by their feature maps, respectively.

As well as generating photorealistic imagery, it is
also important that the GANs accurately position the
floodwaters within the generated images. The perfor-
mance metrics (MSE, accuracy, F1, precision and re-
call scores) hence evaluate the predictive power of the
models, by comparing binary flood masks extracted
from both a generated image and its corresponding
ground truth post-flooding image. The flood masks
were produced by a trained flood segmentation model,
which could identify the flooded pixels in the images
with an accuracy (evaluated on a held-out test set of
flood masks) of 94.9% and MSE of 0.051. Although
the additional degree of error induced by the segmen-
tation model should be taken into consideration when
assessing the absolute performance of the GANs, this
error is small, and relative comparisons can still be
dependably made.

Finally, one of the main advantages of using a
data-driven approach over traditional flood forecast-
ing methods, is that it should be faster and use fewer
computational and human resources. The two mea-
surements used to evaluate the efficiency of the mod-
els were the training time (the total time needed to
train the model) and the inference time (the time
needed for the model to make a flood prediction and
generate an image).

Nevertheless, there are limitations inherent to all
of the evaluation metrics. For example, if a flood
prediction is off by simply one pixel, it would be pe-
nalised by the performance metrics, even though to a
human eye there may be no visible difference. Chlis
(2019) argues that the most reliable way to evaluate
the performance of a GAN is therefore to manually
inspect the quality of the generated images. As such,
sample images are also included throughout the pre-
sentation of the results.
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4 RESULTS

4.1 Model Architectures Performance

Table 1 presents the performance of the four model
architectures PairedAttention, Pix2Pix, Attention-
GAN, and CycleGAN. The two models that use a
supervised training approach (PairedAttention and
Pix2Pix) achieved better results than the two cycle-
based models (AttentionGAN and CycleGAN) on all
of the photorealism and performance metrics, with
PairedAttention performing the best overall. Fig-
ure 2 displays sample images generated by each of
the model architectures, and demonstrates that the
PairedAttention model is able to consistently generate
post-flooding imagery that is not only photorealistic,
but makes accurate flood predictions.

There is no strong pattern depicted in figure 3(b),
suggesting that the GAN is capable of making accu-
rate predictions at varying flood amounts, from 0%
to almost 100% of the image being flooded. Figure
3(c) plots the distribution of the MSE for only in-
stances where 1% or less of the ground truth image
contains flooded pixels. The histogram is extremely
right skew, indicating that the model is able to cor-
rectly identify when the area depicted in an image
should have little to no flooding. The models were
also able to successfully learn the key features of river
floods, including how rivers break their banks and
flood adjacent low-lying areas (as in figure 2(c)).

The cycle-consistency terms in the loss functions
of the cycle-based models assisted these models in
recreating the fine details in the images, such as the
clean lines of buildings. However, AttentionGAN and
CycleGAN have substantially lower recall scores than
PairedAttention and Pix2Pix, corresponding to fail-
ures to generate flooding in areas of the images that
should have been flooded. This error occurs because
cycle-based methods assume a one-to-one mapping
instead of a many-to-one mapping (Schmidt et al.,
2019). When the first generator transforms many dif-
ferent features - such as roads, grass, or mud - all
into floodwaters, then the second generator is unable
to determine which feature the floodwaters should
be transformed back into, when attempting to recon-
struct the original image (Luccioni et al., 2021). In
order to improve the cycle consistency loss, the cycle-
based methods therefore tend to avoid modifying and
hiding as much of the original pre-flooding image as
possible, as can be seen in figure 2(b), where Atten-
tionGAN and CycleGAN do not place floodwaters
over the lake, so that the lake can be more easily re-
constructed later.

Due to the two generators and two discriminators

required by the AttentionGAN and CycleGAN mod-
els, they also use the most computational resources to
train, whereas the PairedAttention and Pix2Pix mod-
els were trained in approximately a third of the time
(table 1). After the models have been trained just
once on the historical data however, they can be ap-
plied to any new unseen areas, all taking only approx-
imately 0.004 seconds to generate an image predic-
tion. In comparison, as reported in research compar-
ing data-driven models to traditional methods, Hof-
mann and Schüttrumpf’s (2021) process-based hydro-
dynamic model took 7 hours to perform a detailed
simulation, whereas Kabir et al. (2020) and do Lago
et al. (2023) required 1.3 hours and 1.5 hours to sim-
ulate a single event with a 2D hydrodynamic and hy-
draulic model respectively. The advantage of the data-
driven approach is evident, as once trained, the GANs
can be applied to a variety of previously unseen im-
ages with extremely fast inference times, whereas the
process-based models must always rerun their simu-
lations.

4.2 Impact of Topographical Factors

An ablation study was carried out in order to ascer-
tain the impact of the different topographical factors
on the performance of the GANs. Specifically, the
pre-flooding satellite image was always input into the
model, (as it is a requisite to be able to generate a pho-
torealistic image), and in each experiment just one of
the topographical factors was additionally input into
the model. Table 2 presents the results from mod-
els using the PairedAttention architecture, the first of
which utilised all of the input factors as a baseline.
The remaining models input a combination of only
the pre-flooding satellite image and the DEM, or only
the satellite image and the flow accumulation repre-
sentation, etc. The final model, labelled ‘None’, was
input with the pre-flooding satellite image alone.

With regards to the photorealism metrics, all of
the models performed similarly. This is not unex-
pected, as the realism of the generated post-flooding
image depends predominantly on a transformation of
the pre-flooding image, which was input to all of
the models. In all of the performance metrics, ‘All’
‘DEM’ and ‘Flow accumulation’ outperformed ‘Dis-
tance to rivers’ ‘Map’ and ‘None’. This result indi-
cates that the elevation values (as the flow accumula-
tion was also derived from the DEM) are the most im-
portant to making accurate flood predictions. This is
also evident in figures 4(a) and (b), where the models
without access to elevation information often either
under-flood or over-flood areas in the images. ‘Dis-
tance to rivers’ and ‘Map’ did not perform better than
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Table 1: The results from evaluating the performance of the four model architectures on predicting the flood events.

Model Architectures
Photorealism Metrics Performance Metrics Efficiency Metrics

PSNR↑ SSIM↑ MS-SSIM↑ LPIPS↓ MSE↓ Accuracy↑ F1↑ Precision↑ Recall↑ Inference↓ (s) Training↓ (h)

PairedAttention 22.681 0.573 0.683 0.228 0.123 0.877 0.804 0.824 0.786 0.004 15.3
Pix2Pix 22.442 0.557 0.644 0.250 0.134 0.866 0.781 0.824 0.742 0.004 11.3
AttentionGAN 21.394 0.524 0.581 0.261 0.157 0.843 0.738 0.796 0.689 0.004 43.6
CycleGAN 20.841 0.510 0.578 0.269 0.156 0.844 0.735 0.808 0.673 0.004 38.1

Figure 2: Sample generated images of flood events from each of the four model architectures.

Figure 3: The performance of the PairedAttention GAN at different percentages of flooding amounts in the post-flood images.
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Table 2: The results from the ablation study, comparing the models using different topographical factors as inputs.

Input Topography
Photorealism Metrics Performance Metrics

PSNR↑ SSIM↑ MS-SSIM↑ LPIPS↓ MSE↓ Accuracy↑ F1↑ Precision↑ Recall↑
All 22.681 0.573 0.683 0.228 0.123 0.877 0.804 0.824 0.786
DEM 23.134 0.585 0.701 0.220 0.116 0.884 0.812 0.844 0.782
Flow accumulation 23.126 0.590 0.701 0.222 0.126 0.874 0.798 0.822 0.776
Distance to rivers 22.913 0.584 0.693 0.229 0.141 0.859 0.770 0.809 0.735
Map 22.834 0.597 0.691 0.269 0.140 0.860 0.772 0.811 0.736
None 22.900 0.583 0.690 0.231 0.140 0.860 0.772 0.812 0.736

Figure 4: Sample generated images of flood events from models trained on different topographical factors. For example,
‘DEM’ means the model was input only with the pre-flooding satellite image and the ‘DEM’ factor.

‘None’ - it is likely that the descriptions of land use
provided by the map can already be learned by the
model from the pre-flooding satellite image, and the
‘distance to rivers’ is too simplistic of a measure in
comparison to the more detailed flow accumulation.

Although access to elevation values consistently
improved the performance of the models, the absolute
differences between the metric scores is still fairly
small, and the model can achieve an accuracy of 86%
even when no topographical factors are input. There
are two explanations which could potentially account
for this result. Firstly, the model may be capable of in-
ferring more information than expected from the pre-
flooding satellite image alone, including approximate
elevation values. Secondly, an investigation of the full
test dataset revealed a large number of post-flooding
satellite images where simply the entire ground area
of the image is flooded, (as in figures 4(c) and (d)),
and thus a detailed analysis of the topography is un-
necessary for the model to make an accurate flood

prediction. Nevertheless, in more complex images for
which the topography is relevant to the positioning of
the floodwaters, having access to the elevation values
makes a significant difference to the performance of
the model, such as in figures 4(a) and (b). However,
because the contents of the dataset instead tends to be
biased towards images like 4(c) and (d), the metrics
therefore do not properly reflect the importance of the
DEM.

4.3 Evaluating Model Generalisability

Although the test dataset contains images of geo-
graphical areas never before seen by the model during
training, these images are still from the same flood
events that the model previously trained on. Thus
to examine the true generalisability of the GANs, a
PairedAttention model was trained on images from
Hurricane Harvey and Hurricane Florence, and eval-
uated on images of the Midwest floods. The general-
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Table 3: The generalisability study results: The model was trained on data from Hurricane Harvey and Hurricane Florence,
and then evaluated on unseen data from the Midwest floods.

Photorealism Metrics Performance Metrics
PSNR↑ SSIM↑ MS-SSIM↑ LPIPS↓ MSE↓ Accuracy↑ F1↑ Precision↑ Recall↑
19.843 0.497 0.536 0.373 0.220 0.780 0.655 0.887 0.519

Figure 5: Sample generated images of the Midwest flood event, produced by a model trained only on the Hurricane Harvey
and Hurricane Florence flood events.

Figure 6: The changes to the generated images after different modifications have been made to a pre-flooding satellite image
of the Hurricane Florence flood event, such as editing in more trees (a) or increasing the elevation values of the road (g).

Figure 7: The changes to the generated images after different modifications have been made to a pre-flooding satellite image
of the Hurricane Harvey flood event.
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isability study results are presented in table 3.
The photorealism metrics are fairly poor, because

the model had not learned how to appropriately trans-
form the features and objects unique to the Midwest
floods, thus creating artifacts and blurry sections in
the generated images, as can be seen in figures 5(a),
(b) and (c). The model was also unable to predict the
correct colour of the floodwaters (dark brown) instead
replicating the yellow and blue appearances of the wa-
ters from Hurricane Harvey and Hurricane Florence.

The performance metrics also reveal the weak pre-
dictive power of the model, with an F1 score of 0.66
and a low recall score of 0.52, indicating that the
model significantly underpredicts flooding (as in fig-
ure 5(d)) even though the Midwest floods experienced
less total rainfall (45-55cm) than the Hurricane Har-
vey flood event that the model had trained on (75-
100cm). The representations of the core features of
each flood event, such as the associated amount of
precipitation and corresponding runoff, are therefore
entangled with each of the flood events. The model
has overfit to each flood event rather than only having
learned general principles regarding the contributions
of different features to the likelihood of flooding.

Nevertheless, there is evidence that the model has
learned some generalisable principles. The appear-
ance of the post-flooding satellite images in figure 5
possess a modicum of coherence, with recognisable
recreations of trees, buildings and roads. The model
has also learned some of the characteristics of fluvial
flooding - likely from the Hurricane Florence data -
as it is able to accurately flood the banks of the river
in figures 5(e) and (f).

The capability of the model to generalise to new
features in the images was also investigated, in con-
junction with an analysis of the explainability of the
model’s behaviour. Because a GAN is a black-box
model, it can be interpreted only via post-hoc meth-
ods; by changing the input to the model, and eval-
uating the subsequent change to its outputs (Ribeiro
et al., 2016). Figure 6 demonstrates how manual al-
terations to a pre-flooding satellite image of Hurri-
cane Florence change the post-flooding image gener-
ated by the GAN. The generated images show how
the model has not only learned to classify different
objects, but that it understands how floodwaters phys-
ically interact with each of them, flowing around trees
and buildings (figures 6(a), (b) and (c)) but over crop-
land (figure 6(d)). The model also demonstrates con-
sistency, as the flooding elsewhere in the image is un-
changed when an independent element of the image
is altered. In figure 6(g), the elevation of the road was
increased by modifying the values of the DEM, and
the GAN subsequently no longer floods the road, in-

dicating that it has learned the relationship between
elevation and flooding. The model thus utilises fea-
tures from both the pre-flooding satellite image and
the topographical factors to make flood predictions.

Figure 7 depicts similar manual alterations to a
pre-flooding satellite image of Hurricane Harvey. In
figures 7(a) and (b) the model is able to correctly
identify and avoid covering the trees with floodwa-
ters. Increasing the elevation values of the DEM (fig-
ure 7(c)) results in the model appropriately reducing
the amount of flooding within the modified area, sug-
gesting that the GAN has learned a general function
connecting elevation and floods, that is applicable to
different contexts. However, when the model encoun-
ters an unfamiliar combination of objects and settings,
such as a car park or residential housing in a rural
region, it does not know how to handle them cor-
rectly, instead transforming the objects into trees (fig-
ures 7(d) and (e)). When a large surface of concrete or
dirt is added, (figures 7(f) and (g)), the model floods
the entire image with the blue floodwaters typically
associated with the Hurricane Florence flood event.
This outcome suggests that the GAN does not con-
tain knowledge of impervious concrete surfaces that
is disentangled from the flood events; rather the model
may use cues in the form of particular colours and tex-
tures within the image in order to determine the flood
event that the image likely depicts, and accordingly
makes assumptions regarding the probable locations
and amounts of flooding.

5 DISCUSSION

With regards to the research questions, the results can
be summarised:

How accurately can GANs generate aerial flood
prediction imagery, and which GAN architecture
generates the most accurate flood predictions? The
PairedAttention GAN architecture had the best effi-
ciency, photorealism and performance metrics, with
an accuracy of 88%, F1 score of 0.80, precision of
0.82, and recall of 0.79. Overall, the supervised train-
ing approach on paired images was more effective and
trained more quickly than the cycle-based approach.

Which topographic factors most improve the
accuracy of the flood predictions? The ablation
study revealed that the elevation values were the most
significant factor for improving flood predictions. Al-
though the metrics suggested that the impact of the
DEM on model performance was limited, these re-
sults were attenuated by the GAN’s capability to in-
fer information from the pre-flooding satellite image
alone, as well as the dataset’s bias towards images for
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which the knowledge of detailed elevation values was
unnecessary to make an accurate flood prediction.

How accurately can the GANs generalise to
new flood events and features? Manual alterations
to pre-flooding satellite images demonstrated that the
GAN model has learned how floodwaters physically
interact with different types of objects in an image,
as well as the connection between flooding and el-
evation values, providing some explanation for the
model’s decisions when generating a post-flooding
image. However, the model sometimes acted un-
expectedly when handling out-of-distribution inputs.
Although there were indications that the GAN had
learned some general principles regarding flooding,
overall, the model performed poorly when applied to
a previously unseen flood event. These results suggest
that the core features of each flood event are highly
entangled within the model, rather than the model
having learned a generalisable function.

Unlike hydraulic or hydrodynamic models, a
GAN is not only learning to make flood predictions,
but also to generate photorealistic imagery. The
GAN’s training process thus incorporates both adver-
sarial and L1 loss terms in the loss function, which
respectively regulate the overall photorealism of the
generated image, and the similarity of the entire im-
age to the ground truth image. Consequently, opti-
mising the accuracy of the flood predictions is only a
small part of the GAN’s objective, and is a part that is
only ever learned indirectly.

This training approach also resulted in a highly en-
tangled representation of concepts within the model.
In a disentangled data representation, individual fac-
tors (such as the amount of precipitation) are iso-
lated and captured by separate, distinct elements of
the model’s representations, and hence can be var-
ied independently (Bengio et al., 2013). However
the flood prediction GANs had strongly overfit to the
flood events that they were trained on, with the flood
factors inextricable from the events themselves.

Future work should therefore focus on improv-
ing the generalisability of flood prediction models.
A generalisable data-driven model also amplifies its
advantages over numerical process-based models, as
it can quickly generate predictions for a wider vari-
ety of areas and scenarios. The model thus needs
to learn disentangled data representations, which can
be achieved by adapting the model architecture, loss
functions and the training dataset (Wang et al., 2022).
Isolating the independent influence of factors such as
precipitation would allow the model to dynamically
condition the generated flood predictions on input
weather forecasts. Due to the significantly faster in-
ference times of data-driven models in comparison to

traditional physically-based models, a fully disentan-
gled model could even be extended to flood risk man-
agement applications, by revealing how flood predic-
tions change when the pre-flooding input image is
modified, such as through the addition of flood relief
channels or barriers (Pender and Faulkner, 2010). A
GAN model could also be utilised in conjunction with
traditional flood inundation maps that reduce subjec-
tivity, with consideration of the described limitations
of the flood prediction GAN, in order to avoid false
alarms during operational usage.

The performance of the GANs was evaluated by
using a separate segmentation model to derive a bi-
nary flood mask from the photorealistic images. The
accuracy of the flood predictions could hence be im-
proved by additionally training models on inundation
or water depth labels, which can be estimated from
the combination of flooded area boundaries and digi-
tal elevation models (Poterek et al., 2025).

6 CONCLUSION

Floods are an extremely deadly natural hazard, and
flood forecasting is a critical component to pre-
flooding preparedness. A data-driven approach to
flood forecasting provides faster, less computationally
expensive predictions than traditional process-based
models. GANs are capable of generating photoreal-
istic images of flood predictions, that can hence im-
prove situational readiness for post-flooding interven-
tions.

This work developed a successful proof-of-
concept GAN based on the PairedAttention architec-
ture, that was capable of both generating photoreal-
istic aerial flood prediction imagery and making ac-
curate flood predictions for the flood events that it
was trained on, achieving 88% accuracy and an F1
score of 0.80. The model architecture utilised a su-
pervised training approach on paired images (aligned
sets of pre- and post-flooding satellite images with
topographical factors) in combination with attention
mask and content mask subnetworks. An ablation
study determined that the elevation values provided
by the DEM was the most important factor to improv-
ing predictive performance.

However, the model struggled to generalise when
applied to previously unseen flood events and out-of-
distribution features. Nevertheless, it demonstrated
knowledge of general principles connecting flooding
and topography, and future work to develop new mod-
elling approaches that learn disentangled data repre-
sentations, could improve the effectiveness of data-
driven models for flood prediction even further.
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