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Abstract:

Lineup optimization in basketball is crucial for maximizing team performance. Traditional methods often

overlook the effects of player fatigue and the absence of historical data for certain lineups. This study intro-
duces an advanced model inspired by marketing mix models (MMM), which incorporates player fatigue to
optimize lineups and maximize the plus-minus metric. By examining two distinct lineups: In one high-tempo,
fast-paced, and the other slow-paced, and durable, we highlight the varying impacts on productivity and fa-
tigue. The fast-breaking lineup may show higher immediate productivity but suffers from quicker fatigue,
while the durable lineup maintains consistent performance over a longer period.

1 INTRODUCTION

Lineup optimization in basketball is a critical com-
ponent in maximizing team performance. Traditional
approaches often assume linear and uniform / aggre-
gated productivity in different lineups, failing to ac-
count for the dynamic effects of fatigue that accumu-
late during the course of a single game. As players
spend prolonged minutes on the court, fatigue sets in,
reducing both individual performance and the over-
all effectiveness of the lineup (Lyons et al., 2006;
Li et al., 2025; Fox et al.,, 2021). Even the best-
performing lineups, while initially dominant, can see
diminishing returns as their ability to sustain high lev-
els of play deteriorates over time. Productivity varies
and should be considered a function of time on the
court.

For instance, during the 2016 NBA Finals,
the Golden State Warriors demonstrated the “death
lineup”, a high-tempo and versatile group, which be-
gan to diminish as fatigue from extended court time
took its toll. Although it is one of the league’s most
effective lineups, their ability to execute plays and
maintain defensive intensity decreased noticeably in
the later stages of the game. Similarly, in the 2014
NBA Finals, the Miami Heat leaned heavily on their
star players, LeBron James and Dwyane Wade, who
saw their effectiveness drop significantly in the sec-
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ond half of games as extended minutes without rest
left them unable to counter the fresh rotations of the
San Antonio Spurs. These examples illustrate the crit-
ical need for models that dynamically account for fa-
tigue within the game and its impact on lineup perfor-
mance.

To address these limitations, this study introduces
a novel model inspired by Marketing Mix Models
(MMM), a statistical framework traditionally used to
measure the impact of marketing channels on out-
comes such as sales and ROL. In this adaptation, line-
ups are treated as analogous to marketing channels,
with their contributions to team performance dynam-
ically analyzed over time. The proposed model incor-
porates player fatigue as a decay function, enabling a
more realistic and actionable understanding of lineup
performance as it fluctuates during a game.

By examining two distinct example lineup types:
one high-tempo and fast-breaking, the other slow-
paced and durable, we explore the trade-offs between
immediate productivity and sustained performance.
The fast-breaking lineup may achieve higher initial
returns but suffers from quicker fatigue and sharp di-
minishing returns, while the durable lineup maintains
steadier performance over longer stretches, though at
a lower peak productivity. Instead of favoring one
type over the other, our approach emphasizes dy-
namically balancing both lineup styles throughout the
game to optimize overall team performance.

This study leverages advanced data analytics and
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machine learning techniques to enhance traditional
regression models, integrating a fatigue transforma-
tion kernel to account for diminishing returns within
a game. By clustering players based on performance
characteristics, analyzed on Israeli Basketball League
data, we demonstrate the model’s robustness and its
superiority over baseline methods. The findings re-
veal significant scoring differentials among lineup
clusters and fatigue function setups, underscoring the
importance of strategic player utilization and provid-
ing actionable insights for coaches and analysts.

2 METHODS

2.1 Data Collection

The data set includes detailed metrics from the Israeli
Basketball League, covering player statistics, play-
by-play data, and game results. This comprehensive
data set allows robust analysis and model develop-
ment.

The data pertain to information from the 2023-24
season with the intention that due to the variance in
teams rosters, we can address the core issue of dealing
with small sampled data.

2.2 Terminology

In this section, we will explain common terminology
used in the analysis of basketball through data sci-
ence.

¢ Plus-Minus: Plus-Minus, often abbreviated as +/-
or PM, is a statistic that measures the point dif-
ferential when a player/set of players are on the
court. It is calculated by subtracting the points
allowed from the points scored by the player’s
team while they are in the game. This metric
helps in understanding the overall impact of a set
of players on the team’s performance, account-
ing for both offensive and defensive contributions.
(NBA, 2024)

* Lineups: In basketball, a lineup refers to the com-
bination of five players on the court for a team at
any given time. Analyzing different lineups helps
coaches and analysts determine which groupings
of players work best together, providing insights
into the most effective combinations for various
situations during a game. Data on lineups can
reveal synergies between players and the overall
balance of the team.

» Possessions: A possession in basketball is a pe-
riod during which a team controls the ball and at-

tempts to score. It starts when a team gains control
of the ball and ends when they either score, turn
the ball over, or the other team gains possession.
Possession-based metrics, such as points per pos-
session (PPP) and turnover rate, are crucial for un-
derstanding a team’s efficiency and effectiveness
on both offense and defense.

2.3 Initial Linear Regression Model

We start with a linear regression model as a baseline
model similarly used within the literature (Macdon-
ald, 2012), Y ~ X;, where Y is the plus-minus metric,
and X; represents the number possessions per lineup
i. This model serves as the baseline for further en-
hancements. The regression model was chosen for
its interpretability, based on the assumption that the
coefficients can represent the solution, which, when
normalized, can describe the optimal timeshare pro-
portion for each lineup. While this approach draws
conceptual inspiration from Marketing Mix Models
(MMM), which have been widely used in marketing
to allocate resources across channels, it diverges by
focusing on dynamic lineup performance in basket-
ball. Unlike past work that primarily examines static
efficiency metrics or linear contributions, this method
incorporates player fatigue as a key variable, pro-
viding a distinct perspective on lineup optimization.
(Rosenbaum, 2004)

Each lineup combination is represented as a col-
umn, and each game as a row, such that if there are M
games and N different combinations of lineups played
that year , we will represent our problem as MxN. It
is important to note that not all possible lineups play
in each game. For that case we set the number of pos-
sessions to O per that game per that lineup.

The target in this case is the difference in scores
between the current team and the opposing team.
Match scores are considered an ideal measure point
(Sullivan et al., 2014). For example, if the final score
was 95:94 to the team being evaluated, the target will
be 1. If the score was a loss of the same score, it
would be -1.

The initial thought of modeling was to optimize
per team, but due to the variance within the teams’
roster over the year and dimension problem due to
small data, we will look at a more global look at the
problem. We will bundle all teams together into one
dataset, and instead of representing lineups by ac-
tual players, we will represent them by combination
of “player styles”. (which will be elaborated below).
Once we optimize the process we can decode the so-
lution into a relevant set of lineups per a single team.
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2.4 Enhancing the Model with Fatigue
Decay

While the initial linear regression model provides a
basic understanding of how different lineups affect
the plus-minus metric to a certain level, it does not
account for the impact of player fatigue. This limita-
tion arises because the coefficients in the linear model
are assumed to be stable over time and are not time-
variant, meaning they do not decay as a function of
volume. This stability leads to a regression-to-the-
mean effect, where the influence of each lineup’s min-
utes on the plus-minus metric remains constant re-
gardless of the duration of play.

To address these limitations, we introduce a decay
function, K;(X;) , that dynamically adjusts the con-
tribution of each lineup’s minutes to the plus-minus
metric, accounting for the effects of fatigue over time.
This approach allows the model to reflect the dimin-
ishing returns on performance as players become fa-
tigued, providing a more accurate representation of
the impact of lineups over extended periods of play.

2.5 Decay Function Definition

The decay function K;(X;) is designed to model the
diminishing returns of player performance as fatigue
sets in. We define K;(X;) as an exponential decay
function (Sampaio and Janeira, 2003) described be-
low:

1
1+%
where X; is the possessions played by lineup i, and T
is a parameter that controls the rate of decay for lineup
i. A higher value of 7; indicates a faster rate of fatigue,
whereas a lower value suggests more endurance.

K(Xi, i) = (D

2.6 Graphical Representation

To visualize the effect of the decay function, consider
the figure below, which plots K;(X;, t;) for various val-
ues of T; . The graph demonstrates how the contribu-
tion of lineup minutes decreases as playing time in-
creases, reflecting the impact of fatigue. An initial
assumption here is that lineups peak very early and
diminish their return as time progresses. If assumed
otherwise, a different decay function must be embed-
ded here.

This transformation is applied to the dataset,
where each lineup’s minutes are adjusted based on
their respective decay rates. The transformed dataset
is then used to re-fit the regression model.
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Figure 1: Graph of the decay function K;(X;) for different
values of ;.

2.7 Optimizing the Decay Function
Parameters

Determining the optimal values of t; for each lineup is
crucial for accurately modeling the effects of fatigue.
We employ hyperparameter optimization to find these
values, focusing on minimizing the regression error
and tightening the kernel functions parameters to fully
represent the proper decay.

2.7.1 Hyperparameter Optimization

As shown in Algorithm 1, the optimal 7; is selected
based on regression error minimization.

Input: Range of candidate T; values for each
lineup
Output: Optimal T; minimizing regression
error
foreach lineup do
foreach candidate t; do
Transform the lineup minutes using
Tis
Fit a regression model to the
transformed data;
Compute the regression error per T;;
end
Select the T; with lowest regression error;

end
Algorithm 1: Algorithm: Hyperparameter Opti-
mization for 7;.

We utilize Tree-structured Parzen Estimations
(TPE) for efficient convergence during hyperparam-
eter optimization. TPE is particularly suited for high-
dimensional and complex search spaces, making it an
ideal choice for our problem.
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Figure 2: Flowchart for Lineup Optimization Process with
Hyperparemter Tuning Sub-flow, optimizing the tau values
to incorporate within the decay function.

2.7.2 Implementation

The implementation involves iterating over possible
values of T; and evaluating the performance of the
transformed model. The optimal t; values are those
that result in the lowest regression error, ensuring that
the model accurately reflects the effects of fatigue.

2.8 Player Clustering

To handle high dimensionality and limited data, we
cluster players based on performance characteristics.
These clusters form distinct lineup types, enabling
generalization and robustness in our models. The
method of clustering is open to interpretation in a way
that represents the clusters ideally. For the sake of
this evaluation, the clustering process was performed
based on players’ performances from the previous
year isolated by player. The method in this process of
clustering was K-means , though other methods may
apply as well.

This paper does not focus on the method of clus-
tering, as significant work has already been done in
this area. Xu and Martens (Xu and Martens, 2019)
used k-means to group players into roles like “pri-
mary scorers,” while Terner and Franks (Terner and
Franks, 2016) applied hierarchical clustering to iden-
tify traditional and hybrid positions. Luo and Wu
(Luo and Wu, 2018) further extended this by using
mixed-data clustering for a nuanced view of player ef-
ficiency. Building on these established methods, this

paper focuses on the application of these clusters in
lineup optimization.

Clustering players by “types” and generalizing the
lineups as combinations of five labels helps to mit-
igate the problem of limited data and high dimen-
sionality. By grouping players with similar perfor-
mance characteristics, we can create more general-
ized lineup types that can be analyzed across multiple
games and teams. This approach allows us to aggre-
gate data from various sources, increasing the robust-
ness and reliability of our models. Additionally, clus-
tering makes the model more adaptable to dynamic
team compositions, ensuring that it remains relevant
even as player rosters change.

3 RESULTS

3.1 Analysis of Optimized t; Values

The enhanced model, utilizing the optimized 7; values
obtained through the hyperparameter tuning process,
consistently outperforms the baseline model where
no decay function is applied. The optimization of T
across different data sets has shown to significantly
improve predictive accuracy, particularly by captur-
ing the nuances of player performance over time. This
demonstrates that incorporating tailored decay rates
provides a more realistic and effective representation
of fatigue effects within the model.

3.2 Distribution of T Values Across
Lineups

The analysis across various lineup clusters reveals
that the optimized T values are distributed unevenly,
with certain lineups exhibiting notably larger T values
than others. This non-uniform distribution suggests
that different lineups require varying degrees of de-
cay to accurately model performance.

Below , figure 3 presents the density plot of T val-
ues, highlighting the variation in decay rates across
different lineups. The plot shows that some lineups
benefit from more aggressive decay (higher 7), lead-
ing to quicker declines in performance, while others
maintain more consistent performance over extended
periods with lower T values.

3.3 Validation & Improvement Over
Baseline

The improvements gained by applying the optimized
decay functions and T values are further evaluated by
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Figure 3: Density plot of T values across different lineups,
showing the distribution and variation in optimized decay
rates.

predicting the plus-minus values for each game, based
on the amount of possessions each lineup played,
both with and without the decay function. In this
context, the baseline model represents a regression
without any fatigue function serving as a traditional
linear regression, while the decay functions (kernel-
based) account for player fatigue, dynamically adjust-
ing the contribution of each lineup’s minutes to the
plus-minus metric over time.

In the table below, which presents a comparison of
RMSE values across different decay functions relative
to the baseline model. The table highlights the mean
and median RMSE values, along with their percent-
age improvements. Notably, the majority of the decay
functions outperform the baseline across nearly all tri-
als, with the mean and median values of the exponen-
tial, inverse, and Gaussian decay functions showing
significant reductions in error. This strongly indicates
that in most cases, applying the optimized decay func-
tions is preferable, as they consistently lead to better
model performance compared to the baseline.

The Mean RMSE represents the average RMSE
over 20 different folds of the data in a cross validation
comparison.

Table 1: Mean RMSE and % improvement over the baseline
across cross-validation folds using decay functions.

Decay Function Mean RMSE % Improvement

Exponential 4.45 2.79%
Inverse 4.49 2.05%
Gaussian 4.55 0.74%
Baseline 4.58 -
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3.4 Optimal Lineups and Fatigue
Management

The results underscore the necessity of managing
player fatigue to optimize overall team performance.
Lineups designed for short bursts of high productivity
can be highly effective in specific situations but re-
quire careful rotation to prevent rapid declines in per-
formance. Conversely, durable lineups provide steady
performance, making them valuable for maintaining
consistency throughout the game. A team cannot sus-
tain optimal high paced lineups throughout the en-
tire game without “running out of minutes”. There-
fore one would need to balance between high valued
7T lineups and low valued ones.

4 CONCLUSIONS

This research introduces a comprehensive framework
for optimizing basketball lineups by incorporating the
effects of player fatigue. The integration of decay
functions and sophisticated statistical models offers
coaches data-driven strategies to enhance team perfor-
mance. By balancing productivity and fatigue, teams
can dynamically adjust to in-game conditions and
maintain peak performance throughout the game. The
insights gained have broad implications for the sports
industry, providing a nuanced approach to lineup
management that can give teams a competitive edge.

The analysis reveals significant scoring differ-
entials among lineup clusters, demonstrating the
model’s robustness and superiority over baseline ap-
proaches. Optimal lineups exhibit diminishing returns
with prolonged play due to fatigue, underscoring the
need for balanced player utilization.

The insights gained offer coaches data-driven
strategies to enhance team performance. By lever-
aging sophisticated statistical models and clustering
techniques, teams can maintain peak performance and
gain a competitive edge which is well known across
the industry (Stern, 1991). The integration of MMM
principles and fatigue modeling provides a nuanced
approach to lineup management, ensuring optimal
performance throughout games.(Reilly and Williams,
2003)

S MODEL ASSUMPTIONS AND
LIMITATIONS

While our model demonstrates significant improve-
ments over baseline approaches, several key assump-



From Marketing to the Court: Applying MMM and Fatigue Analysis for Optimal Basketball Lineups

tions and limitations warrant discussion, as they both
constrain the current findings and provide avenues for
future enhancement.

5.1 Decay Function Assumptions

A fundamental assumption of our model is that lineup
performance peaks early and decays monotonically
over time (Fox et al., 2021). This assumption reflects
the intuitive understanding that player fatigue accu-
mulates during extended play, leading to diminishing
returns. Future iterations of the model should explore
alternative decay functions, to better capture these nu-
anced performances.

5.2 Variance and Risk Considerations

Our current model focuses on mean performance out-
comes without explicitly accounting for variance in
lineup effectiveness. Two lineups may exhibit identi-
cal mean values but differ significantly in their stabil-
ity. This variance component becomes crucial when
considering game situations where certainty of out-
come is crucial, such as close games in the final min-
utes. High-variance lineups might be preferred when
trailing significantly (requiring high-risk, high-reward
strategies), while low-variance lineups might be opti-
mal when protecting a lead. Incorporating uncertainty
quantification into the decay models represents a crit-
ical area of enhancement.

5.3 Clustering Optimization Floor

The player clustering approach, while effective, was
not optimally tuned for this specific application. We
utilize K-means clustering based on previous season
performance metrics, but this represents a baseline
approach rather than an optimized solution. The ob-
served ~4% improvement should therefore be viewed
as a performance floor rather than ceiling. More so-
phisticated clustering methods could yield substan-
tially better player groupings and, consequently, more
accurate lineup optimization. This suggests the true
potential of the methodology may be significantly
higher than our current results indicate.

5.4 Strategic Allocation and Game
Planning

Our model provides optimal lineup compositions and
fatigue-adjusted coefficients, but deliberately avoids
prescriptive allocation strategies. The timing and
contextual deployment of specific lineups remains

within the purview of coaching staff, who must con-
sider factors beyond our model’s scope: opponent-
specific matchups, foul situations, momentum shifts,
and strategic game flow considerations. This design
choice preserves coaching autonomy while providing
data-driven insights to inform tactical decisions.

5.5 Generalized Data

While validated on Israeli Basketball League data,
the fundamental principles of fatigue accumulation
should remain consistent.

6 DISCUSSION

6.1 Practical Implications Across Time
Horizons

The model’s insights extend across multiple strategic
time horizons, each with distinct implications for bas-
ketball operations:

* Lineup Identification: Detecting different lineup
behaviors and identifying which lineups pertain
which characteristics is essential, and a prelimi-
nary step to the full otimization process.

* Short-Term Game Planning: Single game plan-
ning to optimize vs. a given team. Taking into
consideration the current lineup options to maxi-
mize the local horizon.

¢ Long-Term Roster Construction: The model’s
identification of lineup types (high-burst ver-
sus durable) provides strategic insights for roster
building. Teams can evaluate whether their cur-
rent personnel composition aligns with their tac-
tical philosophy and identify specific player types
needed to complete optimal lineup combinations.
This might inform draft strategies, trade deci-
sions, and free agency priorities by highlighting
whether a team requires more durable role play-
ers or specialized high-impact performers.

6.2 Case Studies

The insights from this model can have a real-world
impact, especially when it comes to making smarter
lineup decisions during games. A couple of notable
examples really bring this to life — the 2016 Golden
State Warriors and the 2014 San Antonio Spurs —
both of which show how our model could influence
how teams think about lineup choices.
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6.2.1 Golden State Warriors (2016 NBA Finals)

In the 2016 NBA Finals, the Warriors stuck with
their “ideal” high-tempo lineup, which on paper gave
them a +15 plus-minus. But the reality the lineup
couldn’t sustain that level of productivity over time.
Fatigue started to take its toll. The model would po-
tentially suggest that swapping Barnes out for Bogut,
while it would’ve dropped the average plus-minus to
+8, could’ve given them a more balanced and sus-
tainable “marathon” lineup. This trade-off between
short-term peak and long-term productivity is exactly
what our model is designed to capture. So while the
sprint lineup showed higher immediate returns, the
marathon lineup might have been the better call for
the rest of the game.

6.2.2 San Antonio Spurs (2014 NBA Finals)

Now, contrast that with the Spurs in 2014. Even
though Manu Ginobili’s plus-minus (+9) with the
lineup was higher than Danny Green’s (+6), Ginobili
wasn’t a starter. This wasn’t a mistake — it was ac-
tually the right call. Ginobili’s output was great in
short bursts, but as fatigue kicked in, his performance
would’ve dropped. Keeping Green in for more consis-
tent productivity over the full game made more sense.
The model agrees: short-term plus-minus doesn’t al-
ways tell the full story. Sometimes the more durable
lineup, even if less flashy initially, is the one that’s
going to hold up better.

These real-world examples show how the model
could help coaches think beyond just “who’s hot right
now” and focus more on managing fatigue, making
sure the right players are on the court for the right
stretches of the game.

6.3 Future Work

Future work could involve improving the trained
model and decay function. In this paper we can see
the emphasis of the methodology as a breakthrough
for future work. In addition, incorporating oppos-
ing team data to enhance the robustness of the mod-
els. Additionally, exploring more advanced clustering
methods could yield even more precise player group-
ings. Another potential avenue is to apply the mod-
els on a global scale, leveraging data from the entire
league or across multiple leagues, and then tailoring
the insights to optimize individual team strategies.
The improved models developed in this study pro-
vide valuable insights into lineup optimization and
game planning. By converging on more accurate
coefficients, these models facilitate better decision-
making. For instance, while a high-tempo lineup
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may show strong initial performance, its effective-
ness can quickly diminish, whereas a lineup designed
for endurance tends to maintain steady performance
throughout the game.
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APPENDIX

The improvements gained by using the optimized
T values are further illustrated in Table 2, which
presents a comparison of RMSE values across dif-
ferent decay functions relative to the baseline model.
The table highlights the mean and median RMSE val-
ues, along with their percentage improvements. No-
tably, the majority of the decay functions outperform
the baseline across nearly all trials, with the mean and
median values of the exponential, inverse, and Gaus-
sian decay functions showing significant reductions
in error. This strongly indicates that in most cases,
applying the optimized decay functions is preferable,
as they consistently lead to better model performance
compared to the baseline.

Table 2: Comparison of RMSE Values for Different Decay
Functions with Mean, Median, and Improvement.

Exp. Inv. Power | Gauss. | Base
4.42 4.49 4.89 4.45 453
4.50 4.56 475 4.55 4.59
4.51 4.55 4.77 4.66 | 4.68
4.49 4.53 4.81 4.61 4.62
4.13 4.18 4.52 4.33 4.32
4.58 4.62 4.90 462 | 470
4.55 4.60 4.85 4.63 4.66
4.31 4.30 4.41 440 | 444
4.49 4.52 477 4.50 | 4.61
4.53 4.56 4.82 469 | 471

@OO\]O\U\&WN#O?
=5
&
=9

10 3.75 3.78 4.08 3.82 3.83
11 4.50 4.54 4.60 4.68 4.72
12 453 4.56 4.78 4.59 4.63
13 4.57 4.61 4.89 4.69 4.69
14 4.57 4.61 4.90 4.75 4.73
15 4.28 4.33 4.65 4.52 4.46
16 451 4.59 4.86 4.61 4.66
17 4.28 431 4.61 4.40 4.43
18 445 4.49 471 4.61 4.62
19 4.39 4.45 4.69 4.48 4.50
Mean 4.45 4.49 473 4.55 4.58
Median 4.49 4.52 4.717 4.59 4.62

% Improvement
Mean
% Improvement
Median

2.79% | 2.05% | -3.21% | 0.74% -

2.85% | 2.14% | -3.25% | 0.63% -
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