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To support innovation coaches in scouting activities such as discovering expertise, trends inside a university
and finding potential innovators, we designed INSE, an innovation search engine which automates the data
gathering and analysis processes. The primary goal of INSE is to provide comprehensive system support across
all stages of innovation scouting, reducing the need for manual data collection and aggregation. To provide
innovation coaches with the necessary information on individuals, INSE must first establish the structure of the
organization. This includes identifying the associated staff and researchers in order to assess their academic
activities. While this could in theory be done manually, this task is error-prone and virtually impossible to do
for large organizations. In this paper, we propose a generic organization mining approach that combines a rule-
based algorithm, LLMs and finetuned sequence-to-sequence classifier on university websites, independent of
web technologies, content management systems or website layout. We implement the approach and evaluate
the results against four different universities, namely Duisburg-Essen, Miinster, Dortmund, and Wuppertal.
The evaluation indicate that our approach is generic and enables the identification of university aggregators
pages with F1 score of above 85% and landing pages of entities with F1 scores of 100% for faculties, above

78% for institutes and chairs.

1 INTRODUCTION

Innovation coaches in a university are professionals
who support researchers and staff in transforming
academic ideas into practical innovations by guiding
them through processes like commercialization, col-
laboration, and funding acquisition. Their roles in-
clude scouting for emerging trends and fostering in-
novation and knowledge transfer. Accordingly, the
coaches engage in systematic scouting and screen-
ing activities to discover expertise and trends within
the university in order to find innovators who have
the potential to start their own startups. As part of
a funded project, we developed INSE (INnovation
Search Engine) to support the innovation coaches in
their scouting activities by automating the data gath-
ering and analysis processes (Arzani et al., 2023). Its
primary task is to provide comprehensive system sup-
port across all stages of innovation scouting, reduc-
ing the need for manual data collection and aggrega-
tion. By integrating data from multiple data sources,
INSE aims to offer a central platform where innova-
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tion coaches can access and analyze relevant infor-
mation from academic staff members, such as their
affiliation, research projects, reports, patents, and sci-
entific papers. Although there are multiple ways to
assess academic activities, INSE adopts a structured
approach by first mapping the organization and its
affiliated researchers. This not only helps contextu-
alize academic contributions within a university but
also enables meaningful comparisons across institu-
tions for analyzing research activities.

To provide an overview of staff and researchers,
some universities offer staff directories or databases
that can be crawled or integrated in INSE. However,
each portal and its connectors are different from one
university to another, so INSE has to adapt the data
collection to each university separately. A ubiquitous
source of information on staff and their organizational
affiliation is the university’s public websites. The
websites not only outline the structure of the univer-
sity but also provide additional information on news,
projects, lectures, and research areas of individuals in
their institutes or chairs.

In many cases, the online presence of universi-
ties is spread across various websites and multiple
administrative domains inside departments or insti-
tutes. Websites of high-level entities such as ma-
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jor institutes or faculties are often operated by the
university’s central IT department, whereas other in-
stitutes and chairs further down the hierarchy are
managed by independent staff of institutes or post-
graduates at chairs that hold and maintain a subdo-
main of the university pointed to their website. Tech-
nically, some entities inside the university may even
utilize JavaScript frontend platforms to develop their
own website, while others use various Content Man-
agement Systems (CMS) to maintain their web pres-
ence. From a design perspective, one institute might
list their researchers on their landing page, another
may have a link to the same page in their navigation
menu. Furthermore, the languages of these websites
may be inconsistent (some pages are in German, some
in English, and some may even mix languages), and
there is a variety of terms for the different entities
(such as chair, division, group, and discipline), which
are not used uniformly. These lead to inconsistencies
in the visual layout and the content of the websites of
organizational entities.

While modern search engines can locate rele-
vant web pages based on keywords, they fail to pro-
vide insights into the underlying organizational struc-
ture, important to the innovation coaches. As one
finds the desired organizational department using a
Google search, information such as the affiliation to
the upper-level institutes or the relationship to the
faculty might be missing. Therefore, an effective
approach is necessary in acquiring a comprehensive
understanding of organizational structure to provide
INSE with the gathered data for aggregation and anal-
ysis in support of scouting and screening research ac-
tivities of individuals as well as their organizations.
Solving this challenge is also relevant for innovation
coaches who are required to compare one university
or its entities to another for emerging trends. For in-
stance, determining how a computer science depart-
ment of a specific university ranks against another
one, requires systematic gathering of data regarding
their publications as well as their funded projects.
This is a practical application not only for universities
but also for other large organizations that maintain de-
centralized online repositories.

To extract the structure of the university, Large
Language Models (LLMs) can be employed as single-
shot or few-shot classifiers for the classification of
websites (Sava, 2024). However, this approach
presents two main challenges for university domains.
First, LLMs on large scale data may not be time-
or cost-efficient—especially when using API-based
commercial models or open-source alternatives. Sec-
ond, the likelihood of false positives is high due to
the difficulty of identifying actual university entities

among a large amount of irrelevant data.

To address this challenge, this paper presents a
hybrid approach, combining LLMs and a rule-based
algorithm capable of extracting organizational struc-
tures from university websites. By treating university
websites as directed acyclic graphs, our approach tra-
verses the graph and identify chairs, institutes, and
faculties. Initially, the algorithm follows certain en-
tity navigation mechanisms to identify the organiza-
tional structure and the overview pages (aggregators),
which contain a list of entities. In doing so, the al-
gorithm visits the websites of the target university
and locates the entities based on concepts defined by
the user. Subsequently, we utilize LLMs to identify
two sets of entities based on the content of websites.
First, we use a zero-shot LLM inference to identify
faculties. Finally, we train a sequence-to-sequence
(seq2seq) language model that is effectively able to
classify institutes and chairs.

We compare the results of the algorithm for the
organizational structure of four universities for which
we gathered the ground truth, namely Duisburg-
Essen, Miinster, Dortmund, and Wuppertal. The con-
tributions of the paper are as follows:

» Conceptualizing and developing of a generic or-
ganization mining algorithm for the identification
of aggregator pages

Evaluation of the algorithm for the four universi-
ties with F1 scores of over 85%.

» Comparison of landing page identification for in-
stitutes and chairs using state-of-the-art GPT4o0-
mini vs. open-source Llama 3.3, DistilBert, and
Flan T5.

Evaluation of the Llama 3.3 for the four univer-
sities, with F1 scores of 100% for faculties and
fine-tuned seq2seq Flan TS5 with an F1 score of
78% for institutes and chairs, outperforming the
previous approaches.

The remainder of the paper is organized as fol-
lows: Section 2 discusses the related work; Section
3 describes the approach, including our entity naviga-
tion mechanisms, as well as our use of LLMs. Section
4 presents the implementation and outlines the result-
ing processing pipeline, and Section 5 discusses the
evaluation results for the four universities. Finally, in
Section 6 we conclude the paper with a summary and
an outlook.

2 RELATED WORK

Several research efforts focus on topic-based orga-
nizational structures and semantic units within and
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across websites. Authors of (Kumar et al., 2006)
address the problem of hierarchical topic segmenta-
tion by segmenting a website’s URL tree into top-
ically uniform topic regions and aggregating page-
level topic labels to identify sub-sites dedicated to
specific topics. In a related direction, (Li et al., 2000)
introduces the notion of “logical domains” within a
website, which are semantically cohesive units that
span across the physical directory structure. They
propose a rule-based technique utilizing link struc-
ture, URL paths, page metadata, and external citations
to identify entry pages and boundaries of these logi-
cal domains. Authors of (Sun and Lim, 2003; Sun
and Lim, 2006) further extend this idea by propos-
ing a "Web unit,” defined as a set of semantically re-
lated web pages forming a concept instance. Their
iterative web unit mining method involves an itera-
tive process of identifying these web units, consider-
ing website structure and connectivity, and classify-
ing them into predefined categories. Another similar
work is website topic hierarchy (Yang and Liu, 2009),
which models a website’s link structure as a weighted
directed graph and adapts graph algorithms to gener-
ate topic hierarchies. The authors’ approach focuses
on distinguishing between aggregation links (topic to
subtopic) and shortcut links using various features
and learning algorithms to estimate edge weights.

Some authors depend on work artifacts such as
email or work logs to generate the organizational hi-
erarchy (Ni et al., 2011; Nurek and Michalski, 2020;
Abdelakfi et al., 2021). For instance, (Abdelakfi et al.,
2021) introduces an NLP-based agent-oriented frame-
work that mines organizational structures from email
logs by analyzing email content and classifying in-
teractions into workflow organizational topics. While
the authors use unsupervised learning and a neural
network, the work of (Nurek and Michalski, 2020)
explores the combined machine learning with social
network analysis to reveal organizational structures.

Furthermore, recent advancements in deep learn-
ing facilitate text-based classification tasks, including
the categorization of web content (Bartik, 2010; Aich
et al., 2019; Minaee et al., 2021). For example, au-
thors of (Aich et al., 2019) propose a convolutional
neural network model for web text classification, em-
phasizing its simplicity and high accuracy compared
to other deep learning approaches like RNNs and
LSTMs. Their study focuses on tuning hyperparame-
ters and the sequence of word vectors to achieve opti-
mal performance on web-based texts across different
topics. Also, in a related but distinct approach, (Sava,
2024) investigates the use of self-hosted open-source
LLMs like Llama, Mistral, and Gemma for text-based
website classification.
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Our work is well aligned with (Rehm, 2006) in the
organizational mining, specifically within academic
institutions, where the author analyzes the topology
and characteristics of different types of university web
pages in the experiments. However, this work identi-
fies distinct hypertext genres and models by utilizing
a semantical ontology and hypertext in conjunction
to classify university web pages. In our case, we do
not explicitly employ ontologies; instead, we leverage
pretrained LLMs, which inherently embed ontologi-
cal and semantic structures acquired during training.
Furthermore, unlike (Rehm, 2006), we do not man-
ually identify or analyze the characteristics of uni-
versity landing pages, as this task is instead inferred
through the LLM’s prior knowledge and representa-
tional capacity. Other related studies rely on sitemaps,
topic hierarchies, or URL structures to classify or seg-
ment websites. In contrast, our approach departs from
these structural methods. In our experience with Ger-
man university websites, sitemaps are often unavail-
able or do not accurately reflect the organizational hi-
erarchy. Furthermore, lower-level units such as chairs
or institutes may operate under separate domains and
apply different content management systems, making
structural URL-based approaches unreliable.

In our work, we focus solely on analyzing the
text content of individual websites. To extract orga-
nizational entities, we combine LLMs with a rule-
based mining algorithm. Our use of LLMs encom-
passes both zero-shot prompting and fine-tuned mod-
els, while our algorithm follows unique navigation
mechanisms specific to academic websites, an aspect
not addressed in prior work.

3 APPROACH

In the following section, we first present the rationale
and an overview of the approach. Next, we provide
details on the identification of the aggregator pages
that encompass a list of entities. Subsequently, we
explain our method of identifying the landing pages
of university entities.

3.1 Rationale and Overview

In this work, our objective is to extract the organi-
zational structure of a target university based on its
website. This structure reflects the hierarchical rela-
tionships between various internal entities and units
within the institution. To this end, we focus on iden-
tifying and extracting key organizational entities that
commonly define a university’s structure specifically,
faculties, institutes, and chairs.
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Figure 1: Examples of websites.

Most universities are organized hierarchically,
where faculties serve as the primary organizational
units. Within each faculty, there are various insti-
tutes or departments, which are further subdivided
into chairs or research groups. This hierarchical struc-
ture is often represented on the university’s website,
where entities are grouped and linked in a way that
reflects their real-world relationships.

Our approach is premised on the assumption that
the organizational structure of a university can be in-
ferred from its website. Specifically, we assume that
the way entities are linked and grouped on the website
reflects their actual hierarchical relationships. This
assumption is based on the observation that universi-
ties commonly design their websites to facilitate easy
navigation, with overview pages that aggregate and
group entities of the same type. For example, a uni-
versity might have a dedicated page listing all its fac-
ulties, with each faculty page further linking to its re-
spective institutes and chairs.

Figure 1 depicts an example from the University
of Duisburg-Essen, showcasing its faculties la and
the overview website of the chairs of the Biology fac-
ulty 1b. Furthermore, Figures 1c and 1d show the
landing pages of the faculty of Biology, as well as
the landing page for the chair of Didactics in this fac-
ulty. To simplify the discussion and avoid confusion,
in the following, we refer to entity overview pages
as aggregators and the websites of entities (faculties,
institutes, and chairs) as landing pages.

LLMs are capable of classifying websites based
on their content. To explore the potential of LLMs
in automating large-scale website classification, we
conduct a simple experiment to assess their viability
in identifying aggregators within a university’s web
pages. We first generate a dataset with 3000 pages
from Miinster University that contains all 237 aggre-
gators. Then, we pass the content of each page to a
self-hosted Llama 3.3 70B instance to perform a zero-
shot classification. On a single PC with two Nvidia
A6000s, the classification takes about 8 hours and re-
sults in an F1 score of 29%. Given that this experi-
ment only accounts for approx. 1% of the web pages
of Miinster University, the computation time is too
high to be applicable in practice, and the classifica-
tion accuracy is clearly far from being satisfactory.

To improve the classification performance and to
reduce the computation time, we propose a hybrid ap-
proach to classification that combines generic entity
navigation mechanisms (to identify a relevant sub-
set of pages) with content-based classification that
employs LLMs and fine-tuned sequence-to-sequence
classifiers. Our approach starts by visiting the uni-
versity’s homepage, which serves as the entry point.
From there, we follow outgoing links to explore spe-
cific pages within the website, similar to how a person
would search for a specific entity. The exploration
process involves identifying links that lead to pages
representing aggregators for faculties, institutes, and
chairs. By analyzing and targeting the structure and
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the content of these pages, we can then reconstruct
the organizational structure of the university.

3.2 Aggregator Identification

Next, we describe the approach for identifying aggre-
gator pages in university web pages. We begin by ex-
plaining the concepts and the entity navigation mech-
anisms and then present the pseudocode of the algo-
rithm that encompasses the latter.

3.2.1 Concept

Due to the decentralized nature of university websites,
some entities may use synonyms or multiple terms
that may refer to the same entity type. For exam-
ple, while a university might use the term “divisions”
for their faculties, another university may just use the
term faculties.

The confusion between lower-level entity types
(institutes, chairs) suffers from even more chaos in
our experience. Most universities in Germany have
interchangeable terms or abbreviations for entities
such as chairs, for instance calling them workgroup,
WG, group, professor, scientific field, or research
area. Another factor that leads to entity confusion
is the translated entity synonyms in multiple lan-
guages. For instance, German universities use the
word “Lehrstuh]l” or “AG” (short for Arbeitsgruppe)
as chair, or an abbreviation of it. As for institutes,
referring to a form of lecture, the term “Seminar” is
also used at German universities to designate individ-
ual organizational institutes within the faculty. For ex-
ample, there is the “Historical Seminar,” which refers
to the institute that encompasses the history-related
academic programs and its staff at a university.

Therefore, a set of categorized concepts needs to
be laid down to ensure the consistency of entities re-
gardless of a university’s country of origin, language,
and the underlying layout structure. To accomplish
this, we define a generic list of grouped concepts as
an input to our approach for three entity types, namely
faculties, institutes, and chairs. A concept is the point
of truth that matches an entity’s name in singular, plu-
ral, or the abbreviation form in any defined language.
An example of a concept definition is given below:
Concept: (’language’= model.Language.EN,

"singular’ = 'Department’,
"plural’ = ’Departments’,
"type’ = model.GROUP.CHAIR)

The plural and singular forms of a concept (e.g.,
faculties la) are important for answering whether a
web page is an overview page. The singular forms of
the concepts are depicted in Figure 2 as the purple-
black circles.
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Figure 2: Entity navigation mechanisms in a website.
3.2.2 Aggregators and Navigation Mechanisms

In order to identify aggregator pages, we perform
word matching with the header content of a page.
The header contents include HTML tags such as ’fi-
tle’, hl’, "h2’, "h3’, "h4’, h5’, "h6’, ’th’, 'strong’.
An aggregator describes an overview page of similar
entities for a concept that meets two criteria. First,
the header content of the current visited page or the
header content of the outgoing hyperlinks of the cur-
rent page should contain the plural form of a defined
concept (e.g., faculties, chairs, groups). For example,
the page contains the following,

<a><hl>Fakultdten der Universitdt</hl></a>

Where the hl header tag includes the plural concept
of faculty in German. After finding the plural con-
cepts in the header content of the current page, the
page’s hyperlinks and their inner text are extracted
and stored, and the page itself is chosen as an ag-
gregator candidate. For the second criterion, using
the stored hyperlinks and hyperlink texts, the chosen
candidate at least references one direct outgoing link
that contains the singular form of the defined concept
with their hyperlink text in their header content. If
both criteria are met, the web page is registered as an
aggregator page that most likely contains an overview
of the similar concepts.

If the current content or content of the outgoing
links of the current page includes a plural concept, the
page is addressed as the base aggregator. This first
case is true for universities that provide an overview
of entities on their landing page; for example, an insti-
tute that lists the associated departments on the same
page as the institute’s start URL. The second case
is more common, as most universities have the ten-
dency to differentiate between the start URL and the
overview of their underlying entities by providing a
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Algorithm 1: Mining algorithm for aggregator identification.

Initialize remaining_pages, output_hierarchy;

all_concepts < remaining_pages.concepts;
output_hierarchy < [] ;

while remaining_pages is not empty do
page < remaining_pages.pop();

url < page.url,

remaining_concepts <— page.concepts;

D=I-- RN - Y i

-
<

aggregators < [];
foreach candidate_url in candidates do

e
LR S

15 foreach aggregator in aggregators do

candidates < FindAggregatorCandidateURLs(url, remaining _concepts) ;

aggregators.add(FindBaseAggregators(candidate _url)) ;
aggregators.add(FindIndirectAggregators(candidate_url)) ;
| aggregators.add(FindMetaAggregators(candidate_url)) ;

remaining_pages < [{ ‘url’: START_URL, ‘concepts’: CONCEPTS }];

/* find candidates */

/* Check base aggregator */
/* Check indirect aggregator */
/* Check meta aggregator */

16 remaining_concepts < GetRemainingConcepts(aggregator.concepts);

17 foreach child in aggregator.children do

18 L remaining_pages.add([{ ‘url’: child.url, ‘concepts’: remaining_concepts }]);

19 | output_hierarchy.add(aggregator) ;

/* Output of the hierarchy */

link to the aggregator in the navigation menu or in the
content. The black circles with the revolving green
squares, in Figure 2, represent the aggregator pages.
Examples of two cases of base aggregator pages are
depicted in (1) and (3) and in Figure 2.

Furthermore, a special case that we handle is
where each of the links of the entities on an aggre-
gator do not directly point to the concept’s landing
page. Some universities offer the main URL after the
aggregator of their faculties. In this case, the home-
page link delivers the actual concept page that was
reviewed in the aggregator page. The latter is con-
sidered as the indirect aggregator and is depicted in
case number (4) in Figure2. Another special case is
meta aggregators, as aggregators that are reachable
through other aggregators. This is depicted in case
(2) as the orange-shaped diamond in Figure 2. This
is sometimes the case, as the targeted aggregators are
accessible in the second level. In such instances, the
plural concepts point to at least an outgoing page that
includes another plural concept with their hyperlink
text in their header content. An example of this is
a page linking to research areas where each research
area, in turn, links to a list of chairs.

3.2.3 Algorithm

Based on the concepts and the entity navigation mech-
anisms, the simplified pseudocode of the algorithm
is described in 1. The algorithm starts by accept-
ing the remaining_pages, which contain the starting
URL (home URL of the target university) and a list
of generic concepts for main-level entities (faculties,

institutes, and chairs). In the next step, the algorithm
extracts the aggregator candidates. The algorithm first
checks for base aggregators, then indirect aggrega-
tors, and finally, meta aggregators for every candidate.
The algorithm performs a depth-first search by
finding aggregator pages for higher-level concepts
(faculties) before diving into the underlying concept
levels (institutes and then chairs). Effectively, this
builds the organigram, or the structure of the orga-
nization; therefore, in each level, the remaining con-
cepts, as well as the URLSs, should be noted in the re-
maining_pages. The algorithm stops as soon as all the
potential child concepts of each aggregator are vis-
ited. In the final step, the algorithm returns the or-
ganizational structure in the output list, which entails
the labeled aggregator pages of the university. As a
result, each identified aggregator is marked with a la-
bel: faculty, institute, or chair, and is stored with their
corresponding outgoing pages that point to potential
landing pages as well as other, unrelated pages.

3.3 Landing Page Identification

After identifying aggregators using the algorithm, in
this subsection, we describe the LLM approach for
the identification of entity landing pages based on
their text content. Typically, faculty landing pages
are easier to identify on university websites because
they are higher-level administrative entities with dis-
tinct, well-structured web presences, often featuring
standardized naming conventions. As discussed in
the overview, this is not the case for the institutes

193



KDIR 2025 - 17th International Conference on Knowledge Discovery and Information Retrieval

or chairs, as they tend to have more varied and less
formalized web structures. Hence, in the following,
we differentiate between high-level entities (faculties)
and low-level entities (institutes and chairs).

3.3.1 Faculty Landing Pages

Using the outgoing links of the identified faculty ag-
gregator(s), the goal here is to traverse the content of
the links and identify the faculty landing pages among
non-faculty ones. Leveraging the background knowl-
edge of LLMs, the model recognizes patterns in text
and assesses elements such as faculty names, titles,
research areas, and departmental affiliations. In this
case, we utilize Llama 3.3 70B open-source as a zero-
shot classifier, which consists of a prompt and the tar-
get content. Thus, the content of each outgoing link of
the faculty aggregator is passed onto a zero-shot LLM
prompt. The LLM responds with yes or no, which
is mapped into a binary output. The format of the
prompt is specified below:

Prompt: ’Yes or no, does the following web-page
represent the welcome page of a faculty of the
{target_university}? \n\n Page:\n{page.text}’
The LLM results are the true labeled links that are
classified as the faculty landing pages of the target
university.

3.3.2 Institute and Chair Landing Pages

To this end, we systematically visit the outgoing
links of the detected low-level aggregators to iden-
tify the landing pages of the institutes and chairs. To
achieve this, we utilize a fine-tuned LLM, namely
Flan T5 Large, to classify and distinguish insti-
tutes/chairs from others. FLAN-T5 (Fine-tuned Lan-
guage Net T5) is an enhanced version of Google’s
T5 model, fine-tuned on a diverse set of instruction-
following tasks to improve zero-shot and few-shot
learning capabilities (Longpre et al., 2023). It fol-
lows a sequence-to-sequence (seq2seq) architecture
that takes an input sequence (e.g., a prompt) and gen-
erates an output sequence (e.g., a response), making
it effective for classification tasks. We gather ground-
truth data from four universities, based on which we
produce a training dataset. The dataset involves text
content of the websites with their corresponding la-
bels, such as “institute/chair” or ”other”. Before train-
ing, the preprocessing step of tokenization of content
is needed, where the input IDs are the numerical token
representations of the input text which are converted
using the model’s vocabulary. Also, the tokenizer
generates attention masks, which tell the model which
tokens should be attended to (1) and which should be
ignored (0). Finally, after adding the padding tokens
to standardize the input length, the training is vali-
dated with the F1-score evaluation metric. The output
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of this step generates a list of institutes and chairs of
the target university.

4 IMPLEMENTATION

The implementation is carried out in Python and con-
tains three major components: the spider agent, the
algorithm, and the LLM-based classification. The
pseudocode of the algorithm is implemented as out-
lined in 1 and accepts the starting URL along with the
defined concepts in an array of JSON objects as input.

The spider agent component consists of the web
crawler and the preprocessing logic. To do this, we
use the Selenium framework, to perform web crawl-
ing and handle dynamic websites. The framework
acts as a bridge between Selenium Web Driver and
the Chrome browser by enabling us to perform tasks
like opening web pages, clicking buttons, and scrap-
ing data. Selenium also provides us with an interface
to inject JavaScript (JS) code into a rendered page.
As the content of a website is downloaded, the inter-
face enables us to execute custom JS code that iterates
through the hyperlinks of each page. Furthermore,
in order to enhance the algorithm over quick itera-
tions, we perform caching and content retrieval using
SQLite and SQLAlchemy. Also, the data modelling is
performed using Pydantic.

An overview of the implementation is depicted
in Figure 3. Initially, the algorithm visits the cor-
responding aggregator pages and their concepts in a
depth-first manner. For each visited page that fulfills
the algorithm’s defined concept requirements, the spi-
der agent passes the URL to the web crawler. The
web crawler renders the visited URL in a headless
Chrome browser and downloads the content by ex-
tracting the hyperlinks and their texts. Subsequently,
the browser also stores the extracted header content
tags for the URL and each outgoing link that fulfills
a concept, as discussed in 3.2.2. The spider analyzes
the header content to detect the language of the page,
since a URL might exist in multiple languages. Next,
the preprocessing logic normalizes the extracted links
and their texts. As a result, the extracted outgoing
links undergo link normalization, where the relative
URLSs are transformed into the absolute URL paths.
Moreover, the text of every hyperlink is normalized
by removing hyphenation within the link texts. The
spider also handles URL redirection. This is typically
implemented using HTTP status codes like 301 (per-
manent redirect) or 302 (temporary redirect) and is
used to guide users and search engines to the correct
resource when a URL has changed or been relocated.

The extracted information of each visited page
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Figure 3: Overview of the implementation.

is then passed through the defined data model onto
the SQLite database for storage and retrieval. The
database is also responsible for the allowed URL do-
main. The given start URL in the algorithm deter-
mines the allowed domain; therefore, only the domain
and its subdomains are considered in the structure.
This is to avoid following outgoing hyperlinks to ran-
dom domain addresses that do not contribute to the
organizational structure. The results of the algorithm
(the aggregators) are saved in a JSON file, which rep-
resents the structure of the target university.

Table 1: Ground truth of the universities.

University Concept Type  Count
Aggregator 205
Duisburg-Essen (UDE) Faculty 12
Institute/Chair 352
Aggregator 237
Miinster (MUEN) Faculty 15
Institute/Chair 409
Aggregator 158
Dortmund (TUD) Faculty 17
Institute/Chair 209
Aggregator 150
Wauppertal (WUPP) Faculty 9
Institute/Chair 117

In the last step, the resulting low-level and high-
level aggregators and their outgoing links are passed
onto the LLM component. The hardware for host-
ing the LLM as well as LLM fine-tuning includes
two instances of Nvidia A6000 48GB GPUs run-
ning on Linux. For the identification of faculties,
we deploy Llama 3.3 70B in a Docker container us-
ing Huggingface’s text-inference API 3.1 (Wolf et al.,
2019), which conforms to OpenAI’s API specifica-

tion. As discussed in the concept, the positive re-
sponses of the zero-shot prompts include the faculty
landing pages. Furthermore, to identify the landing
pages of institutes/chairs, we utilize the Flan-T5 large
model, a sequence-to-sequence (encoder-decoder) ar-
chitecture, which is fine-tuned using the same set of
hardware and a training dataset. Consequently, the
hyperparameters of the Flan-T5 large are optimized,
and training is performed for four epochs on 75% of
the data. The results are then evaluated on the remain-
ing 25%. The model’s output consists of the classified
landing pages of institutes/chairs.

The output of the LLM component results in the
entity landing pages of the target university. This con-
cludes the steps taken in the implementation.

S5 EVALUATION

Given the implementation described above, we eval-
uate our approach in this section. In the following,
we first discuss data collection. Next, we present the
evaluation results of the algorithm. Finally, we dis-
cuss the results of the LLM approach.

5.1 Data Collection

To evaluate our approach and assess its generaliz-
ability, we select four different universities for test-
ing. Duisburg-Essen, Miinster, Technical University
Dortmund, and Wuppertal. For each, we conduct a
structured manual review of their official websites to
identify and extract organizational entities. This pro-
cess involved systematically navigating through each
university’s publicly available web pages and start by
visiting any given aggregator page, selecting a faculty,
and finding its underlying institutes and chairs.
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Table 2: Algorithm performance metrics for the four uni-
versities.

Evaluation Metric

University  Algorithm Type

P R Fl1

Base 0.73 0.83 0.77
Indirect 074 0.84 079
UDE
Meta 0.84 092 0.88
All 084 093 088
Base 090 0.83 0.86
Indi . . .
MUEN ndirect 0.90 0.87 0.89
Meta 087 0.86 0.86
All 088 090 0.89
Base 0.81 0.76 0.79
TUD Indirect 0.81 0.76  0.79
Meta 075 0.85 0.80
All 075 0.85 0.80
Base 078 0.86 0.82
Indi . . .82
WUPP ndirect 0.77 0.89 0.8
Meta 077 092 084
All 076 094 084

Following up from the overview page, we visit
each entity’s website and extract the page name based
on visible header tags, along with the URL. These
page names and URLs are then recorded for further
processing.

Table 1 shows the numbers of each type of en-
tity in each university. The abbreviations of each
university are shown in parentheses. All univer-
sities have several faculties in common, such as
Medicine, Physics, Chemistry, Biology, and Eco-
nomics. However, they differ in certain areas: for
example, Miinster has dedicated faculties for Geo-
sciences and Catholic or Evangelical Studies, whereas
these fields are categorized as institutes within the Hu-
man Sciences faculty at Duisburg-Essen.

5.2 Results

So far we have shown the implementation of our ap-
proach, as well as the gathered ground truth of the
four universities. Here, we initially examine the al-
gorithm’s capability in identifying aggregators of the
organizational entities in the four introduced univer-
sities. Then, we evaluate the results of the LLM in
detecting landing pages of entities.

5.2.1 Aggregator Identification

First, we define the input parameters to the mining al-
gorithm. Specifically, we provide the start URLs of
the four universities, namely https://www.uni-due.de/
for Duisburg-Essen, https://www.uni-muenster.de/,
for Miinster, https://www.tu-dortmund.de/ for Dort-
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mund, and https://www.uni-wuppertal.de/ for Wup-
pertal. We also define the generic core concepts for
each concept category. For all universities, concepts
for faculties, institutes, and chairs such as “scientific
field, institute, research center, department, group”
and their German equivalents are added to their con-
cepts, as described in 3.2.1.

After passing the input parameters, we execute
the algorithm. As explained in 1, after finding the
aggregator candidates, i.e., potential overview pages,
the algorithm performs the discussed entity naviga-
tion mechanisms (base, indirect, and meta aggrega-
tors) before writing the aggregator results in a JSON
file. We instrument the algorithm so that we can fo-
cus on each particular step of the algorithm in order
to individually measure their contribution to the over-
all performance. In this analysis, we consider each
of the algorithm’s navigation mechanisms separately
and calculate the overall performance metrics, namely
precision (P), recall (R) and the harmonic mean (F1).
Table 2 shows the results of the algorithm for each
university based on the given step, in the same order
as they appear in the algorithm.

The base navigation step acts as the baseline for
aggregator identification since it reflects the simplest
case, where the concept entities are linked directly by
an overview page. The performance metrics of each
step should be compared to the base navigation step.

The base navigation step scores the lowest in UDE
77% and the highest in Miinster 86%. Also, Wupper-
tal and Dortmund score close to or over 80%. This
is due to the fact that some UDE aggregator pages
are not directly accessible by clicking on the aggrega-
tors and are positioned behind other aggregator pages.
This can be verified by switching to the meta naviga-
tion step, where the links in the aggregator page are
reached through other found aggregators. This indi-
cates arise in the F1 score to 88% in UDE and a slight
rise in Dortmund and Wuppertal overall score and re-
call in Miinster. The lower F1 score in the baseline
can be expected, since the missing main aggregators
lead to propagating the error down the hierarchy. In
other words, if a faculty aggregator is not found, the
underlying entities will not be explored. The algo-
rithm’s indirect step only works in UDE and Miinster
with F1 scores of 79% and 89% compared to the base-
line. This is due to the fact that the main URL of some
of their institute or faculty aggregators is not directly
accessible by clicking on the aggregator pages, and
each entity is positioned behind the home page link,
which then leads to the main URL.

Finally, we activate all the algorithm steps in order
to evaluate the performance metrics of the final out-
put. The algorithm achieves over 80% for all cases,
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with the highest for Miinster and the lowest for Dort-
mund. A reason for the lower scores of Dortmund
is the lack of consistent aggregator pages. In some
instances, the chairs or the institutes of a faculty are
listed in landing pages, with the names of persons or
abstract research areas serving as the actual underly-
ing concept entities. Since our algorithm performs
word matching for the given concepts, lack of singu-
lar concept names explains the missing entities.

From a runtime perspective, the algorithm demon-
strates clear efficiency: while the initial run takes
around 1 to 2 hours per university, subsequent execu-
tions are reduced to just 15 minutes through the use of
database caching. This makes the approach consider-
ably faster than the previously discussed LLM-based
method while also yielding a significantly higher F1
score, improving from 29% with the LLM to 85%
with the rule-based algorithm.

In conclusion, the final F1 scores indicate that
aggregator pages representing organizational entities
can be effectively identified. Based on the results on
four universities, our algorithm is capable of detect-
ing aggregator pages of the organizational structure
of a university with an average F1 score of 85%.

5.2.2 Landing Page Identification

In this section, we evaluate the results of the identifi-
cation of faculties and institutes/chairs. Based on the
aggregator type (faculty, institute/chair) and ground
truth, we produce a dataset for evaluation. For the
faculties, the outgoing links that correspond to the
actual faculties of each aggregator are labeled true,
while other links that do not exist in the ground truth
are labeled false. This is considered for the outgoing
links of institute/chair aggregators as well.

For the faculties, we proceed as discussed in
implementation. Our experiments using zero-shot
prompts show that prompt 3.3.1 is capable of iden-
tifying faculty landing pages with F1 score of 100%
for all four universities. This shows that the pre-
trained Llama 3.3 can easily differentiate between
faculty pages and other unrelated pages, such as con-
tact, project, or teaching pages.

For the institutes/chairs, we investigate the perfor-
mance of several LLMs under two experimental set-
tings: (1) we train the models separately on the data
from each university, and (2) we train the models on
the combined dataset that includes data from all four
universities. In both cases, we measure performance
using precision (P), recall (R), and F1-score (micro
F1), since the data is imbalanced (1087 trues, 9904
falses). For both cases, the data is split 25-75% and
shuffled before training.

In the first case, Table 3 shows the results for mod-

els evaluated independently for each university (UDE,
MUEN, TUD, WUPP). This setup allows us to see
how well each model performs when tailored specif-
ically to a single university’s data, helping us under-
stand university-specific behavior and characteristics.

We also compare LLMs such as Llama 3.3 (Tou-
vron et al., 2023) as zero-shot and few-shot to state-
of-the-art GPT-40-mini (Isogai et al., 2024). For the
prompts, we use the same format of 3.3.1 but with in-
stitute or chair instead of faculty. Also, in few-shot
prompts, we add 3 content examples for chairs, insti-
tutes, or non-entities. We also fine-tune Distilbert and
two variations of Flan-T5, as discussed in the imple-
mentation and concept. While DistilBERT is not con-
sidered a large language model due to its smaller size
and architecture, we include it in our comparison as a
baseline for classification tasks (Adoma et al., 2020).

Table 3: Performance metrics for institutes/chairs of each
university.

Evaluation Metric
University =~ Model

P R Fl1

Llama 3.3 (ZS) 0.61 0.68 0.60
Llama 3.3 (FS) 058 0.65 049
UDE GPT-40-mini (FS)  0.63  0.58  0.60
DistilBERT 0.74  0.67 0.70
Flan-T5 Base 083 0.68 0.72
Flan-T5 Large 081 076 0.79
Llama 3.3 (ZS) 061 071 0.61
Llama 3.3 (FS) 056  0.63 047
GPT-40-mini (FS) 058 0.56  0.57
MUEN r .
DistilBERT 071 0.66 0.68
Flan-T5 Base 0.86 0.75 0.79
Flan-T5 Large 0.85 0.82  0.83
Llama 3.3 (ZS) 057 0.69 0.59
Llama 3.3 (FS) 052 056 052
U GPT-40-mini (FS)  0.63  0.55  0.57
DistilBERT 073 057 0.60
Flan-T5 Base 0.74 0.61 0.65
Flan-T5 Large 076  0.69  0.72
Llama 3.3 (ZS) 057 073 0.58
Llama 3.3 (FS) 054 0.64 048
GPT-40-mini (FS) 058 0.54  0.55
WUPP L
DistilBERT 075 058 062
Flan-T5 Base 0.79 0.58 0.62
Flan-T5 Large 084 0.63  0.69

Across all universities, Flan-T5 Large emerges as
the top performer, achieving the highest F1-scores for
UDE 79%, MUEN 83%, TUD 72%, and WUPP 69%.
This indicates that larger encoder-decoder models can
effectively learn from and adapt to domain-specific
patterns given the adequate training data. In contrast,
zero-shot models like Llama 3.3 (ZS), which have not
been fine-tuned on the specific data, perform more
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modestly. It is also noticeable that while few-shot
Llama (FS) performs lower than GPT-4omini, the ZS
Llama outperforms GPT by a few percent. This is
surprising given the complexity and the context size
of the GPT model in comparison to Llama 3.3.

Models like DistilBERT and Flan-T5 Base also
show strong and consistent results across four uni-
versities, with Fl-scores ranging between 60% and
79%. Interestingly, despite being a newer architec-
ture, GPT-40-mini (FS) performs worse than Flan-
TS5, suggesting that encoder-decoder models might be
more naturally suited for classification tasks of this
nature. We also note some differences between uni-
versities. For example, MUEN appears to be easier
to model, with generally higher F1 scores across all
models. In contrast, WUPP and TUD yield slightly
lower scores, possibly due to differences in the num-
ber of institutes/chairs in the dataset.

In the second case, we explore the models’ abil-
ity to generalize across universities; to this end, we
train the models on the combined dataset of all four
universities. Table 4 presents these results.

Once again, Flan-T5 Large leads in performance,
achieving an Fl-score of 78%, followed closely by
Flan-T5 Base at 75%. These results are consis-
tent with the findings per university, reaffirming the
strength and adaptability of the Flan-T5 architecture
across diverse institutional data. DistilBERT also per-
forms well in this setting, achieving an Fl-score of
65% — notable given its smaller size and simpler
encoder-only design. Among the decoder-only mod-
els, Llama 3.3 (ZS) achieves the best performance in
its group with an F1 of 61%, outperforming its few-
shot variant, which reaches 52 %. This suggests that
in some cases, zero-shot decoding may perform bet-
ter than fine-tuning due to the confusion caused by the
given examples in the few-shot prompt.

Table 4: Performance metrics for institutes/chairs of four
universities together.

Evaluation Metric

Architecture Model
P R Fl1
Llama 3.3 (ZS) 0.60 0.71 0.61
Decoder-Only Llama 3.3 (FS) 0.56 0.66 0.52

GPT-40-mini (FS)  0.61  0.57 058

Encoder-Only DistilBERT 0.73  0.61 0.65
Flan-T5 Base 076 073 075
Encoder-Decoder
Flan-T5 Large 0.80 0.76  0.78

When comparing the two experimental setups,
we find that models trained on individual university
data generally perform better when evaluated within
their specific domain. For example, Flan-T5 Large
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achieves up to 83% F1 on MUEN in the individual
university setting, compared to 78% when trained on
the combined dataset. This suggests that domain-
specific fine-tuning can offer performance benefits by
capturing localized patterns more precisely. This is
explainable, since some universities tend to use their
own specific terms for the lower-level entities.

Furthermore, the results indicate that the models
trained on the combined dataset perform more con-
sistently across all four universities, making them a
presumably better choice when building a general-
purpose model, especially in scenarios where domain
ground-truth labels are not (entirely) available. The
relatively small drop in performance for the com-
bined Flan-T5 model further highlights its generaliza-
tion capabilities. One possible reason why Seq2Seq
models like Flan-T5 models outperform decoder-only
models like Llama or GPT is the architectural align-
ment. These models are explicitly designed for tasks
that involve mapping inputs to outputs, making them
more effective for classification. In contrast, decoder-
only models are optimized for open-ended language
generation, which can introduce bias and reduce pre-
cision in structured prediction tasks.

Nevertheless, the final F1 scores indicate that en-
tities from all four universities are extracted, with an
average score of 100% for high-level entities (facul-
ties) and 78% for low-level entities (institutes/chairs).
This suggests a consistent structure of landing pages
across universities for both entity categories.

6 CONCLUSIONS

To support the innovation coaches in scouting ac-
tivities such as discovering expertise inside the uni-
versity and finding potential innovators, we designed
INSE, an innovation search engine that automates
data gathering and analysis processes. The primary
goal of INSE is to provide comprehensive system sup-
port across all stages of innovation scouting, reduc-
ing the need for manual data collection and aggrega-
tion. However, to provide the coaches with the neces-
sary information on university trends and individuals,
INSE must first establish the structure of the organi-
zation, as well as their affiliated researchers, in order
to assess their academic activities.

In this paper, we proposed a generic organization
mining approach that combines a rule-based algo-
rithm, LLMs, and a fine-tuned sequence-to-sequence
classifier. We initially described entity navigation
mechanisms and implemented the solution in the al-
gorithm, which outperforms a zero-shot LLM clas-
sifier in time and F1 score. Subsequently, we spec-
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ified the LLM and the sequence-to-sequence classi-
fier approach for the identification of landing pages
of high/low-level entities. Finally, we evaluated
our results against four different universities, namely
Duisburg-Essen, Miinster, Dortmund, and Wupper-
tal. The results indicate that the implemented ap-
proach works across universities, capable of identi-
fying university structure and its entities with average
F1 scores of 85% for the aggregator pages, 100% for
faculties, and 78% for institutes/chairs.

As part of INSE, we are working to build a graph-
ical user interface around our approach with the ob-
jective of supporting the innovation coaches of our
university in scouting and screening tasks. For future
work, we are planning to investigate a visual-based
approach for the aggregator and landing page identi-
fication via convolutional neural networks.
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