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Abstract: Synthetic data are widely employed across diverse fields, including computer vision, robotics, and cybersecu-
rity. However, generative models are prone to unintentionally revealing sensitive information from their train-
ing datasets, primarily due to overfitting phenomena. In this context, membership inference attacks (MIAs)
have emerged as a significant privacy threat. These attacks employ binary classifiers to verify whether a
specific data sample was part of the model’s training set, thereby discriminating between member and non-
member samples. Despite their growing relevance, the interpretation of MIA outcomes can be misleading
without a detailed understanding of the data domains involved during both model development and evalua-
tion. To bridge this gap, we performed an analysis focused on a particular category (i.e., vehicles) to assess
the effectiveness of MIA under scenarios with limited overlap in data distribution. First, we introduce a data
selection strategy, based on the Fréchet Coefficient, to filter and curate the evaluation datasets, followed by
the execution of membership inference attacks under varying degrees of distributional overlap. Our findings
indicate that MIAs are highly effective when the training and evaluation data distributions are well aligned,
but their accuracy drops significantly under distribution shifts or when domain knowledge is limited. These
results highlight the limitations of current MIA methodologies in reliably assessing privacy risks in generative
modeling contexts.

1 INTRODUCTION

Over the past decade, Artificial Intelligence (AI) has
advanced rapidly, driven by algorithms that extract
patterns from large datasets to enable generaliza-
tion. Progress in data processing and the emergence
of novel Machine Learning (ML) paradigms have
further accelerated its development and commercial
adoption. Currently, concerns have arisen about the
security, ethics and legality of data collection and pro-
cessing. Since personal data often contains sensitive
information, increasing attention has been paid to its
use in training ML models and the potential risk of
information leakage. This concern is part of a larger
area of study focused on protecting machine learning
services and understanding how attackers might mis-
use or disrupt a model’s intended purpose. Threats
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that can affect an ML model development pipeline in-
clude, among others, adversarial attacks (Rosenberg
et al., 2021) and data leakage (Niu et al., 2024).

Membership Inference Attacks (MIAs) (Shokri
et al., 2017; Bai et al., 2024) aim to determine whether
a specific sample was part of a model’s training set.
These attacks are studied for various reasons, includ-
ing malicious data exfiltration, security auditing, and
enhancing model robustness (Liu et al., 2022). As
a result, MIAs have attracted significant research in-
terest in recent years (Truong et al., 2025). MIAs
exploit the tendency of overparameterized models
to memorize training data, leading to better perfor-
mance on seen (member) samples than on unseen
(non-member) ones. They are generally categorized
into white-box attacks, where the adversary has ac-
cess to the model’s parameters and training details,
and black-box attacks, where only input-output inter-
actions with the model are possible. MIAs can be con-
ducted using two main approaches. The first involves
training shadow models to mimic the target model,
followed by training a binary classifier to discrimi-
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nate between member and non-member data based
on model behavior. The second approach uses met-
rics derived from the target model’s outputs, classify-
ing inputs by comparing these values against prede-
fined thresholds. An important class of MIAs targets
image-based generative models, a family of machine
learning models that generate samples from a distri-
bution of images, typically conditioned on some in-
put information. A notable example within this cat-
egory is text-to-image models, which generate im-
ages based on textual descriptions (Rombach et al.,
2022). Several MIA schemes exploit the differences
between the generated sample (which carry informa-
tion from the training dataset) and similar data that
have not been used for training the model (Shokri
et al., 2017; Zhang et al., 2024). The availabil-
ity of well-defined member and non-member datasets
critically influences the feasibility and evaluation of
MIAs, as the attacker’s binary classifier must reliably
discriminate between the two classes while maintain-
ing robustness to data variability.

Existing studies (Zhang et al., 2024) often over-
look a systematic evaluation of the semantic and
quality alignment between member and non-member
datasets, collecting data without assessing class-level
similarity or content quality, which may compromise
the validity of MIA performance evaluations. To ad-
dress this limitation, we introduce novel strategies for
dataset construction that leverage image content and
paired textual descriptions. Specifically, we introduce
a Top-k selection approach to systematically control
the degree of overlap between datasets. We then an-
alyze the relationship between dataset similarity and
MIA effectiveness by adopting established techniques
from the literature to measure similarity at both the
image and dataset levels using the Fréchet Coefficient
(FC). Finally, we replicate a standard MIA framework
on generative models to assess how the quality and
selection of data influence attack success. Our results
indicate that MIAs are most effective when datasets
show high distributional similarity, whereas their reli-
ability decreases significantly under distribution shifts
or limited knowledge scenarios.

The remainder of this paper is organized as fol-
lows. Section 2 presents the context of privacy and
security in ML-based systems. Section 3 presents
the general scheme of MIAs in generative models,
discusses related issues, and describes the problem
of evaluating the degree of similarity between im-
ages along with the proposed procedure for this task.
Section 4 outlines our case study and the selected
member/non-member datasets. Section 5 describes
the experimental activity and discusses the obtained
results. Finally, Section 6 summarizes our outcomes.

2 RELATED WORK

Membership inference attacks (MIAs) can be applied
across diverse model types, such as classification,
generative, regression, and embedding models. In the
following, we survey the relevant literature exploring
these different contexts.
Classification Models. Classification models are typ-
ically categorized into binary and multi-class classi-
fiers. (Shokri et al., 2021) investigated binary clas-
sifiers that assess membership inference attacks us-
ing feature-based model explanations across datasets,
showing that backpropagation through explanations
can leak significant information about training data.
Additionally, they empirically explore the balance be-
tween privacy and explanation quality by analyzing
perturbation-based model explanations. Multi-class
classifiers are explored in (Shokri et al., 2021), (Long
et al., 2018), (Long et al., 2020), and (Salem et al.,
2019). They explored various datasets and attack
strategies on the training data of shadow models, us-
ing a shadow model trained on data from the same
distribution as the target model to mimic its behavior.
Similar MIA success rates are achieved even when the
attacker’s data comes from a different distribution.
Generative Models. (Liu et al., 2019) introduced co-
membership attacks targeting deep generative models
such as Variational Autoencoders (VAEs) and Gener-
ative Adversarial Networks (GANs). The attack as-
sumes knowledge of whether a given bundle of sam-
ples was part of the training set. The authors find that
co-membership attacks are more powerful than sin-
gle attacks, and VAEs are more prone to attacks than
GANs. (Duan et al., 2023) proposed a gray-box at-
tack, where the attacker can access to the loss func-
tion of a given sample at a given time-step of the dif-
fusion process. The attack can be mitigated by ap-
plying data augmentation techniques during the target
model’s training. (Carlini et al., 2023) studied black-
box MIAs on generative models by issuing extensive
queries to detect memorized data. (Zhou et al., 2022)
proposed to extract properties of the training set, such
as the statistical distribution of sample groups, by
querying the target model and analyzing the distri-
bution of the generated outputs. Although the ap-
proach is designed for GANs, it can be adapted to
other generative models. In (Hu and Pang, 2021), var-
ious levels of knowledge about the target model have
been explored for MIA on GANs. The proposed at-
tack, which requires partial knowledge of the training
dataset and the discriminator, is categorized as a gray-
box attack. (Chen et al., 2020) studied MIAs against
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Figure 1: Attack scheme used as case study. The captions of non-member images (COCO) are used to generate the positive
examples (SD-1.4) for training the attack model by querying the target model. The trained attack model is then tested using
LAION images as positive examples.

GANs in several scenarios, in which the various el-
ements of the model are exposed at different lev-
els. For each of the proposed attack methods, empiri-
cal tests to evaluate their effectiveness are suggested.
(Azadmanesh et al., 2021) focused on GANs assum-
ing that a given number of member images are known
and proposes a method to discriminate them among a
larger group that includes non-member images. The
attack is built on the training of an autoencoder the de-
coding part of which is played by the generator of the
target model, while the encoder is trained to output the
latent code of the given images. The discrimination of
the member samples is then realized by analyzing the
loss of the autoencoder. (Zhang et al., 2024) proposed
a black-box MIA applicable to any generative model.
This approach involves sampling the generated distri-
bution and using a set of non-member samples that
share the same distribution as the member samples
of the target model. The underlying assumption is
that the generated samples implicitly encode informa-
tion about the training set. A classifier can then be
trained to discriminate between the generated samples
and the auxiliary images, ultimately enabling the dis-
crimination between member and non-member sam-
ples. M4I (Hu et al., 2022b) proposed an MIA-based
shadow model on image-to-text models. The discrim-
ination is on the basis of the matching between the
input-features and the corresponding output-features.
Neural Network Embeddings. Graph embeddings
(Duddu et al., 2021) are also studied to determine

whether a graph node, representing an individual
user’s data, is part of the model’s training set. Image
encoders represent another important class of mod-
els. (Liu et al., 2021), for example, proposed a mem-
bership inference method against image encoders pre-
trained by contrastive learning. Their black-box ap-
proach aims to identify whether an input is part of the
training set of the encoder. Using a custom encoder,
EncoderMI, which exploits overfitting to its training
data, the method detects when two augmented ver-
sions of an input (from within or outside the training
set) yield more or less similar feature vectors. This
approach can be used (i) by a data owner to audit
unauthorized use of public data in pre-training an im-
age encoder, or (ii) by an attacker to compromise the
privacy of sensitive/private training data.

Several MIAs have been studied for different
architectures, e.g., deep learning regression (Gupta
et al., 2021) and Natural Language Processing (NLP)
models (Song and Raghunathan, 2020).

3 METHODOLOGY

MIA attacks on image-based generative models are
often based on the possibility of discriminating be-
tween generated and original images. Figure 1 illus-
trates our attack model, which builds upon the frame-
work proposed in (Zhang et al., 2024). This black-box
attack scheme involves collecting an auxiliary dataset
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by generating images using the model under attack.
The attack model is then a classifier trained to dis-
criminate between images from the auxiliary dataset
and images from a similar dataset that was not used
during the model’s training (e.g., a dataset collected
after the model’s release). The underlying rationale is
that the generated images capture details of the mem-
bership dataset, enabling the classifier to effectively
discriminate between member and non-member im-
ages. This attack can be considered an almost black-
box approach, as it mainly relies on the knowledge of
the datasets. Specifically, it does not assume access
to the member dataset, but only to the non-member
dataset. Additionally, unlike shadow model-based
schemes, it does not require significant computational
resources, though it does necessitate black-box access
to the target model.

In this work, we focus on a text-to-image target
model. The attack begins by training a classifier us-
ing a carefully selected non-member dataset (negative
examples). Positive examples for the attack model are
generated by querying the target model with captions
corresponding to the non-member images, resulting
in a set of generated images whose content closely re-
sembles that of the non-member images. Despite their
similarity, these generated images still retain traces of
the model’s original training data. For this reason, the
classifier trained to discriminate between negative and
positive examples should, to some extent, also be able
to differentiate between member and non-member im-
ages, as the generated images indirectly reflect infor-
mation from the training set.

For our experiments, we consider Stable Diffu-
sion v1.4 (Rombach et al., 2022) as the target model,
an open-source latent diffusion model trained on the
LAION-aesthetics v2 5+ dataset (LAION, Large-
scale Artificial Intelligence Open Network, 2022).
This model is widely used due to its ability to run and
be fine-tuned on consumer-grade PCs equipped with
GPUs.

Empirical approaches such as this require careful
consideration during validation experiments, as the
classifier may learn to focus on features that effec-
tively distinguish the two datasets but do not directly
relate to their membership in the target model’s train-
ing set. For example, if the two datasets belong to
distinct domains (e.g., animals vs. vehicles), the at-
tack model may simply learn to discriminate between
these domains, rather than between training set mem-
bership. Furthermore, when the datasets share simi-
lar content, the success of the attack can be evaluated
based on the degree of overlap at the content level be-
tween the datasets that are used to construct the attack
model. To this end, we propose a Top-k approach to

categorize the collected images into distinct sets, for
which we assess both the degree of overlap and the
attack’s performance.

3.1 Evaluation Metrics

In the following, we detail our procedure to evaluate
the similarity between images and datasets, respec-
tively, and the attack performance.
Images Similarity Evaluation. The similarity be-
tween two images can be assessed at various levels.
At the pixel level, the comparison is based on the
values of selected pixels or pixel subsets in both im-
ages. In contrast, at the feature level, the comparison
is made using the features extracted from the images.
While pixel-level methods are effective for evaluating
the (quasi-)identity of two images, feature-level meth-
ods are generally more computationally efficient and
better suited for handling large datasets.

In this study, we consider the cosine similarity
method, which operates at the feature level and is
commonly used in computer vision tasks. Using fea-
tures enables comparison of images based on their
content, regardless of the actual pixel layout.

Given two images Ia and Ib, their features φ(a) and
φ(b), respectively, are extracted and their distance,
d(Ia, Ib) is computed as:

d(Ia, Ib) =
φ(a) ·φ(b)

||φ(a)|| ||φ(b)||
(1)

Datasets Similarity Evaluation. In addition to im-
age similarity, the comparison can also be extended
to datasets of images. In this regard, the Fréchet in-
ception distance (FID) (Dowson and Landau, 1982) is
a metric used to measure the similarity of two multi-
variate normal distributions and can be used to asses
the quality of images created by a generative model
(Heusel et al., 2017). While the comparison between
image distributions can be in general very complex,
FID can be used to measure the similarity between
the feature distributions of two datasets of images by
comparing their multivariate Gaussian distributions.
A lower FID score indicates that the two sets are sim-
ilar. However, one of the drawbacks of this method is
the lack of an absolute reference system. In fact, FID
score can be used only to measure the relative simi-
larity of two sets. Two FIDs are comparable only if
they are computed on a common dataset.

Recently, a new metric based on FID, the Fréchet
Coefficient (FC) (Kucharski and Fabijańska, 2025),
has been proposed. FC score improves the FID be-
cause its value can be only in the range [0, 1]. This
makes the interpretation of the resulting score easier,
since higher values accounts for a higher similarity,
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being score 1 the complete overlapping of the two dis-
tributions.
Attack Performance Evaluation. The evaluation of
the effectiveness of an MIA can be realized using
several metrics. Among them, the average-case ac-
curacy (or other aggregate metrics, such as AUC) is
often used (Hu et al., 2022a). However, in (Carlini
et al., 2022), its suitability is questioned and another
metric, the True Positive Rate at a low False Positive
Rate (TPR @ low FPR) is considered. The rationale
is rooted in the nature and objectives of an MIA, as
even if the majority of training set members cannot
be identified, the attack can still be deemed success-
ful if a small minority is identified with high confi-
dence. If the success of a method can be measured in
terms of TPR, its reliability can be measured in terms
of FPR. Hence, the TPR when FPR is low can be as-
sumed as the right metric to evaluate the success of
an MIA technique. For the above reasons, we use the
True Positive Rate at low False Positive Rate (TPR at
low FPR) (Carlini et al., 2022) metric for measuring
the performance of the attack.

4 CASE STUDY

Datasets Selection. To select images with content
similar to a target, candidate images for our datasets
are evaluated using an image classifier. The classifier
assigns a probability measure, p(ci), to each class ci
in the set C = {ci}, where C represents the set of all
the considered classes by the classifier. Since the tar-
get content may correspond to several classes within
C, a suitable subset of target classes, Ct ⊂ C, is de-
fined. Images are considered relevant if at least one of
their five most probable classes belongs to Ct ; other-
wise, they are discarded. The selected images are fur-
ther categorized based on the reliability of their con-
tent classification into six subsets: from Top-0 to Top-
5. An image is assigned to the Top-k set if at least k of
the five most probable classes belong to Ct . For exam-
ple, Top-0 images are those where at least one target
class appears in the top five, but a non-target class is
the most probable. In contrast, a Top-3 image has at
least the first three most probable classes belonging to
Ct while the other two can belong to non-target class.
All of the selected images are intended to be used in
the attack experiment, but finer-grained content-based
classification helps in assessing the suitability of the
image similarity measure. The image classifier em-
ployed in this work is ResNet34 (He et al., 2016) pre-
trained on ImageNet-1k, which provides probability
estimates across 1000 classes.

Non-Member Dataset. The non-member dataset for
the experiments is obtained from the MS-COCO (Lin
et al., 2014) dataset. This dataset provides images
with several additional information that make it suit-
able to develop and test several image-based applica-
tions (e.g., segmentation, recognition, captioning). In
particular, COCO images are provided with a textual
description and object segmentation of the scene. It is
composed of more than 200k labeled images with 80
object categories. Images having objects belonging
to terrestrial vehicles (bus, car, motorcycle, train, and
truck) are selected as candidates and further filtered
using the procedure described in Section 4. Hereafter,
the selected images set will be referred as COCO.
Member Dataset Since the target model of the case
study is Stable-Diffusion 1.4, the LAION-aesthetic
v2 5+ dataset (LAION, Large-scale Artificial Intelli-
gence Open Network, 2022) will be used as the can-
didate member set. It is not feasible to fully down-
load the LAION dataset using standard processing re-
sources, since it comprises nearly 1 billion web im-
ages. In fact, the dataset is provided as URLs paired
with textual descriptions. However, for the purposes
of this paper, ground truth member images are only
required for testing the attack model. Therefore, the
following sampling and selection procedure is imple-
mented to collect the member dataset. Images are
downloaded from their URLs (if still available), and
only those with textual descriptions sufficiently sim-
ilar to the descriptions of the selected non-member
images are retained. The similarity between textual
descriptions is quantified using cosine similarity (1)
applied to the CLIP (Radford et al., 2021) embed-
dings (512-dimensional features). We collect two ver-
sions of this dataset, corresponding to cosine similar-
ity thresholds of 0.50 and 0.85.

To generate synthetic images, we use Stable Dif-
fusion (SD) v1.4 as our target generative framework.
This model generates images from textual descrip-
tions, provided in our case by the COCO annota-
tions. Specifically, we employ a version of SD pre-
trained on the LAION-2B-en dataset and fine-tuned
on the LAION-aesthetics v2 5+ dataset. For the in-
ference process, the number of steps is set to 150,
while the guidance scale factor to 7.5, with no neg-
ative prompt used. The generated images have a res-
olution of 512 × 512 pixels. To ensure a sufficient
quantity of images within a reasonable time frame, we
attempt to generate three synthetic images per COCO
annotation. Then, the ResNet34-based filtering mech-
anism is applied to each image; images that meet the
required “terrestrial vehicular”-content criterion are
assigned to one of the Top-k categories, while those
not meeting the criterion are rejected. Furthermore,
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COCO SD-1.4 LAION-0.50 LAION-0.85
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Figure 2: Examples of the selected images. The columns correspond to four datasets (COCO, SD-1.4, LAION-0.50, LAION-
0.85), while the rows represent images categorized according to their reliability level in content classification (Top-0 to Top-5,
as detailed in Section 4).

Table 1: Terrestrial vehicles categories from ImageNet-1k used in our data selection procedure as target classes, Ct .

Class ID Description Class ID Description Class ID Description

407 ambulance 654 minibus 817 sports car
436 station wagon 656 minivan 829 tram
468 taxicab 675 moving van 864 tow truck, tow car, wrecker
511 convertible 705 passenger car 866 tractor
555 fire engine, fire truck 717 pickup, pickup truck 867 trailer truck, tractor trailer
569 garbage truck 734 police van 874 trolleybus
586 half-track 751 race car
627 limousine 779 school bus

for each annotation, the filtering process is limited to
a maximum of 25 attempts. If none of these attempts
yields an acceptable image, the annotation is skipped.

We refer to the previous datasets as LAION-0.50,
LAION-0.85, and SD-1.4. Figure 2 shows some ran-
dom samples of these datasets. They are organized
column-wise by the belonging dataset and row-wise
by the Top-k subset. Although all the images show a
content that is clearly related to the target class (ter-
restrial vehicles), a slight improvement in the coher-
ence of the scene appears moving from Top-0 to Top-
5 subsets.

5 EXPERIMENTS

In the following, we present our findings on dataset
similarity and the effectiveness of the attacks.
Datasets Similarity. According to the procedure out-
lined in Section 4, we select the non-membership im-
ages from COCO. Table 1 lists the ImageNet cate-
gories corresponding to the macro-category of terres-
trial vehicles, which has been selected for the purpose
of this study. Then, we partitioned the images into six
subsets (Top-0 to Top-5), ranking them in increasing
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Table 2: Size of the subsets of the selected datasets.

COCO SD-1.4 L-0.50 L-0.85

Top-0 6323 11090 11143 2377
Top-1 5743 9983 10559 2247
Top-2 4022 5733 7146 1504
Top-3 3005 3985 3973 947
Top-4 2253 2953 1653 513
Top-5 1608 2203 800 296

order of coherence with the target content (“terrestrial
vehicles”), denoted as Ct . Table 2 reports the sizes of
the datasets and their six subsets, where LAION is
shortened as L for compactness.

The reliability of the attack model should be tested
on a dataset that is similar to the training images of
the target model. For this reason, we select image
datasets that depict scenes belonging to the macro-
category of terrestrial vehicles. Although the im-
ages may be qualitatively considered similar, assess-
ing quantitatively their similarity is important both
methodologically and experimentally. The similarity
between sets can be evaluated by comparing the dis-
tribution of their features. In particular, the FC (see
Section 3.1) compares mean and covariance matri-
ces of two distributions and outputs a score in [0, 1],
where 0 is completely dissimilar and 1 means that the
distributions completely overlap. The features of the
datasets have been computed using the InceptionV3
embedding (2048 features). Since the cardinality of
the Top-5 subsets is smaller for most of the considered
datasets, the computation of the covariance matrix of
2048 features can be unreliable. To make the estimate
of the similarity more robust, the PCA has been ap-
plied on the features and only the first 20 principal
components have been used in the computation of the
FC score.

To assess the reliability of this method, we com-
puted the FC score between random splits of the
same dataset. The results computed on ten splits
are reported in Figures 3(a)–(d), for COCO, SD-1.4,
LAION-0.50, and LAION-0.85, respectively. For all
the datasets, the values are very close to 1, meaning
that the sets are coherent and their images span a nar-
row neighborhood in the features space. The FC is
computed on the Top-k (k ∈ {0, ...,5}) subsets, with-
out substantial digression from the unity. This as-
sesses the validity of the selection procedure. Only
for the LAION-0.85 dataset, the similarity index ap-
pears to be affected by the finer classification. For this
dataset, a noticeable decrease in the FC for Top-4 and
Top-5 is observed, likely due to the small number of
elements in these subsets. However, the FC remains

close to 1. In fact, for reliably selected images, the
position and number of target classes within the five
most probable positions do not substantially affect the
measured FC score.

For all the comparisons (panels (a)–(i)) the FC
score is quite constant, which can be interpreted that
the subsets share the same distance and dispersion in
the feature space, with the exception of the SD-1.4 vs.
LAION-0.50 case, where the FC score ranges from
0.72 and 0.85. A similar trend can also be noticed
in COCO vs. LAION-0.50 (panel (h)), although with
a smaller span ([0.75, 0.82]). However, the scores re-
flect a large overlap in the features space and the trend
may be due to the smaller threshold used in the selec-
tion of the images, which could have allowed scenes
in which the vehicles are not the main element, espe-
cially for the lowest values of k.

In panel (e), the set COCO and SD-1.4 (that is the
non-member images and the images generated from
their captions) are compared. The FC is smaller than
1, but larger than 0.95, confirming that their contents
are related. The panels (f)–(i) report the compari-
son between COCO or SD-1.4 and the member sets,
LAION-0.50 and LAION-0.85. Although the FC val-
ues are large (never below 0.7), they are noticeably
smaller than the FC values of COCO vs. SD (in panel
(e)), which can be a sign of a slight difference be-
tween the member and not member images.

Besides, we also tested the similarity of COCO
vs. the union of the others (SD-1.4, LAION-0.5, and
LAION-0.85), which resulted in an FC score slightly
larger than 0.9, coherently with the similarity indices
for the pairs of sets (panels (e), (h), and (i) of Fig-
ure 3).

Attack Performance. We follow the MIA scheme
proposed in (Zhang et al., 2024) which serves as a
case study to evaluate the influence of dataset similar-
ity on the attack model’s performance. To this end,
a classifier based on the ResNet50 model (He et al.,
2016) is fine-tuned to discriminate between member
and non-member images. For each training epoch, the
model is tested on the test dataset, and the best perfor-
mance is selected. Although this procedure may be
methodologically questionable for obtaining an un-
biased evaluation of the final classifier, it is chosen
to provide an optimal case for assessing the attack
scheme’s performance.

Several settings test different datasets for training
and testing. In all cases, we use COCO as the non-
member dataset, and split all sets into 80-20% pro-
portions for training and testing. To increase confi-
dence in the image content, we use the Top-1 sub-
sets. The attacks have been evaluated in terms of
accuracy, AUC, and TPR@0.2%FPR (Section 3.1)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Similarity of the datasets used in the attack. The similarity is computed as the feature correlation (FC) on the first
20 PCA components of the image embeddings (features) for all subsets with increasing content scores. In all comparisons
(panels (a)–(i)), the FC score remains relatively constant, indicating that the subsets are quite similar to each other in the
feature space. Panels (a)–(d) show the similarity of random partitions of the same datasets, averaged over 10 random splits.
Since the FC values are close to 1, the sets are coherent, and their images are highly similar. Panel (e) compares the COCO and
SD sets (the non-member images and the images generated from their captions). The FC is slightly smaller than 1 but greater
than 0.95, confirming that their contents are related. Panels (f)–(i) compare COCO or SD with the member sets, LAION-0.50
and LAION-0.85. Although the FC values remain large (never below 0.7), they are noticeably smaller than the FC values
between COCO and SD (in panel (e)), suggesting a slight difference between the member and non-member images.
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Table 3: Attack performances

Training images Testing images Evaluation metrics

Non-Member Member Non-Member Member Accuracy AUC TPR@0.2%FPR

COCO SD-1.4 COCO LAION-0.50 52.7% 0.619 0.02

COCO SD-1.4 COCO LAION-0.85 75.6% 0.650 0.06

COCO SD-1.4 COCO SD-1.4 99.3% 1.00 0.97

COCO LAION-0.50
LAION-0.85

COCO LAION-0.50
LAION-0.85 92.7% 0.972 0.20

(a) (b)

(c) (d)

Figure 4: ROC of the attack models.

and the performances are reported in Table 3 and the
ROC of the models are reported in Figure 4. In de-
tail, we test the setup for the real attack scheme us-
ing SD-1.4 as positive examples and COCO as neg-
ative examples in the training, and test the models
on LAION-0.50 or LAION-0.85 as positive examples,
with COCO as negative examples. For both models,
the performance is below expectations: in particular,
the model tested on LAION-0.50 performs close to
random choice. The performance of the model tested
on LAION-0.85 is much better, achieving an average
accuracy of 75.6%. However, the TPR@0.2% FPR
is low for both models: 0.02 and 0.06. This sug-
gests that the classifier is not effectively identifying
the majority of member images, as only 2% and 6%
are detected. Hence, MIAs do not provide a reliable
prediction of membership.

We carried out two additional experiments to eval-
uate the goodness of the model and the effectiveness
of the separability of the two datasets. In the first, the

classifier is trained and tested on SD-1.4 and COCO.
It achieves a good level of reliability, scoring 99.3%
of accuracy and 0.97 of TPR@0.2%FPR. The ROC
in Figure 4(c) shows a very sharp trend. The model
shows that it is possible to reliably discriminate be-
tween the generated and genuine images, although
their content is very similar.

In the second experiment, the classifier is trained
and tested on the union of the LAION datasets
as positive examples and COCO as negative exam-
ples. Although the accuracy reaches 92.7%, the
TPR@0.2%FPR remains quite low, scoring 0.20.
Also the ROC (Figure 4(d)) does not reach the sharp-
ness of the previous model. This experiment corre-
sponds to an MIA in a gray-box set-up, since there is
the knowledge of a small subset of the training model.
However, the TPR@0.2%FPR achieved does not al-
low to consider this attack as successful, since its low
reliability. This partial failure of the MIA scheme
is likely due to the large size of the target model’s
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training dataset. The small size of the selected subset
may inadequately represent the richness of the entire
dataset.

6 CONCLUSIONS

Membership Inference Attacks (MIAs) are a critical
tool for evaluating the privacy protection properties of
generative models. This paper investigates the influ-
ence of dataset similarity, i.e., the degree to which the
attack dataset resembles the target model’s training
set, on the effectiveness of MIAs. A methodology for
selecting images from the same content domain for
both member and non-member datasets is proposed.
Our results suggest that greater dissimilarity between
the datasets may hinder the model’s ability to attribute
membership accurately.

Future work could involve selecting images from
different macro-categories, enabling a broader sam-
pling of the feature space. Additionally, further inves-
tigations may explore the use of diverse image classi-
fiers for different tasks. Furthermore, all classifiers in
the current study are pre-trained on the same dataset
(ImageNet-1k), which could introduce bias into the
evaluation process.
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Tramèr, F., Balle, B., Ippolito, D., and Wallace, E.
(2023). Extracting training data from diffusion mod-
els. In Proceedings of the 32nd USENIX Conference
on Security Symposium, SEC ’23, USA. USENIX As-
sociation.

Chen, D., Yu, N., Zhang, Y., and Fritz, M. (2020). Gan-
leaks: A taxonomy of membership inference attacks
against generative models. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’20, pages 343–362, New
York, NY, USA. Association for Computing Machin-
ery.

Dowson, D. and Landau, B. (1982). The fréchet distance
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