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Abstract: Longitudinal datasets like the Parkinson’s Progression Markers Initiative (PPMI) face critical challenges
from missing data and privacy constraints. This paper introduces PPMI-Benchmark, the first comprehen-
sive framework evaluating 12 imputation methods and 6 synthetic data generation techniques across clini-
cal, demographic, and biomarker variables in Parkinson’s disease research. We implement advanced meth-
ods including HyperImpute (ensemble optimization), VaDER (variational deep embedding), and conditional
tabular GANs (CTGAN), evaluating them through novel metrics integrating sliced Wasserstein distance
(dSW = 0.039± 0.012), temporal consistency analysis, and clinical validity constraints. Our results demon-
strate HyperImpute’s superiority in imputation accuracy (MAE=5.16 vs. 5.19–5.57 for baselines), while CT-
GAN achieves optimal distribution fidelity (SWD=0.039 vs. 0.062–0.146). Crucially, we reveal persistent
demographic biases in cognitive scores, with age-related imputation errors increasing by 23% for patients
over 70, and propose mitigation strategies. The framework provides actionable guidelines for selecting data
completion strategies based on missingness patterns (MCAR/MAR/MNAR), computational constraints, and
clinical objectives, advancing reproducibility and fairness in neurodegenerative disease research. Validated on
1,483 PPMI participants, our work addresses emerging needs in healthcare AI governance and synthetic data
interoperability for multi-center collaborations.

1 INTRODUCTION

The Parkinson’s Progression Markers Initiative
(PPMI) dataset has revolutionized neurodegenerative
disease research through its comprehensive longitudi-
nal tracking of clinical, imaging, and biomarker data.
However, over 42% of variables exhibit missingness
rates exceeding 25% by Visit 4 (V04), with critical
motor assessments (UPDRS-III) missing in 38% of
late-stage patients (Marek et al., 2011). This perva-
sive missing data presents significant challenges for
clinical research, as incomplete records compromise
the reliability and validity of downstream analyses,
potentially leading to biased conclusions and reduced
statistical power.

Traditional approaches to handling missing data
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in longitudinal Parkinson’s disease studies face three
fundamental challenges:

1. Temporal Complexity: The neurodegenerative
progression creates non-linear trajectories that
simple imputation methods fail to capture (Pos-
tuma et al., 2015). Our analysis shows 38%
greater variance in later visit imputations (V06–
V09) compared to baseline.

2. Clinical Plausibility: Motor (Unified Parkin-
son’s Disease Rating Scale Part III, UPDRS-III)
and cognitive (Montreal Cognitive Assessment,
MoCA) scores require strict physiological bounds
(0–108 and 0–30 respectively) that 22% of base-
line methods violated in validation.

3. Data Heterogeneity: Multimodal integration of
demographic (age, education), clinical (MDS-
UPDRS), and biomarker (CSF α-synuclein) vari-
ables demands specialized handling of missing-
ness patterns.
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Recent methodological advances in both imputa-
tion and synthetic data generation offer promising so-
lutions. Ensemble approaches like HyperImpute (Jar-
rett et al., 2022) dynamically adapt to feature-specific
missingness patterns, while deep learning methods
such as Variational Deep Embedding with Recurrence
(VaDER) leverage temporal dependencies in longitu-
dinal data. Simultaneously, synthetic data generation
techniques like Conditional Tabular GANs (CTGAN)
(Xu et al., 2019) create privacy-preserving synthetic
datasets that maintain statistical properties of the orig-
inal data without exposing sensitive patient informa-
tion.

This work builds upon our prior research sub-
mitted to the Delta Conference (Hani et al., 2025),
which focused on context-aware imputation strategies
for longitudinal Parkinson’s data. The current paper
makes three distinct clinical research contributions:

1. Synthetic Data Expansion: First comprehen-
sive evaluation of 6 synthetic generation tech-
niques (including CTGAN and RTVae) specif-
ically adapted for neurodegenerative disease
biomarkers, addressing critical privacy challenges
in multi-center studies.

2. Novel Evaluation Metrics: Integration of sliced
Wasserstein distance (dSW ) with temporal consis-
tency analysis and clinical validity constraints, en-
abling multidimensional assessment of data com-
pletion methods beyond traditional error metrics.

3. Bias Quantification Framework: Systematic
measurement of demographic disparities in impu-
tation accuracy across age groups (23% increased
MAE for patients >70) and education levels, in-
forming equitable PD research practices.

Our methodology extends previous clinical data
imputation benchmarks (Luo, 2022) by introducing
progression-aware evaluation and biomarker-specific
validation protocols.

The remainder of this paper is organized as
follows: Section 2 reviews the state-of-the-art in both
imputation techniques and synthetic data generation,
with a focus on methods applicable to longitudinal
clinical data. Section 3 details our methodology for
data preparation, implementation of imputation and
synthetic data frameworks, and evaluation metrics.
Section 4 presents experimental results comparing
method performance across different demographic
groups and missingness patterns. Section 5 discusses
implications for clinical research and highlights key
trade-offs between computational efficiency, imputa-
tion accuracy, and fairness considerations. Finally,
Section 6 concludes with recommendations for re-

searchers working with incomplete longitudinal
PD data.

2 STATE OF THE ART

2.1 Missing Data in Longitudinal
Studies

Missing data represents a ubiquitous challenge in lon-
gitudinal clinical studies, particularly in Parkinson’s
disease research where patient attrition, incomplete
assessments, and varying visit schedules create com-
plex patterns of missingness. The mechanisms un-
derlying missing data significantly impact the appro-
priate handling strategies and can be categorized into
three types according to Rubin’s framework (Little
and Rubin, 2019). Missing Completely At Random
(MCAR) occurs when the probability of missingness
is unrelated to any observed or unobserved variables.
Missing At Random (MAR) arises when missingness
depends only on observed variables, while Missing
Not At Random (MNAR) occurs when missingness
depends on unobserved factors, including the missing
values themselves (Graham, 2009).

In PD longitudinal studies, missingness often fol-
lows MNAR patterns, as patients with more severe
symptoms may be less likely to complete certain as-
sessments or attend follow-up visits. For instance,
Van Buuren (van Buuren, 2018) demonstrated that
cognitive decline in PD correlates with higher prob-
abilities of missing data in subsequent cognitive as-
sessments, creating systematic biases that simple im-
putation methods cannot adequately address. This se-
lective missingness poses significant challenges for
researchers, as many statistical methods assume MAR
conditions for valid inference.

The consequences of inappropriate handling of
missing data extend beyond statistical validity to clin-
ical interpretation and decision-making. Studies by
Luo et al. (Luo, 2022) demonstrated that deletion-
based approaches can underestimate disease progres-
sion rates in PD by selectively removing patients with
more rapid decline, while simple imputation methods
often distort relationships between variables that are
critical for understanding disease mechanisms. These
distortions are particularly problematic in precision
medicine initiatives that rely on accurate multivariate
relationships to identify patient subgroups and per-
sonalize treatment approaches.
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2.2 Imputation Methods for
Longitudinal Data

The landscape of imputation methods spans from tra-
ditional statistical approaches to advanced machine
learning techniques, each with distinct strengths and
limitations for longitudinal clinical data. Traditional
cross-sectional methods treat each time point inde-
pendently, ignoring the temporal structure inherent in
longitudinal data.

Mean and median imputation represent the sim-
plest approaches, replacing missing values with cen-
tral tendency measures of observed data. Despite
their computational efficiency, these methods intro-
duce significant statistical issues in longitudinal stud-
ies by artificially reducing variance and distorting cor-
relation structures between variables (Donders et al.,
2006). This distortion is particularly problematic
in PD research, where relationships between motor
symptoms, cognitive decline, and biomarkers provide
critical insights into disease mechanisms and progres-
sion. Additionally, these methods cannot account for
individual-specific trajectories, instead imposing av-
erage values that may be clinically implausible for
specific patients based on their disease stage or de-
mographic characteristics.

K-Nearest Neighbors (KNN) imputation repre-
sents an advancement over simple mean/median
approaches by identifying similar cases based on
distance metrics in feature space. While KNN
can capture local patterns and relationships be-
tween variables, its performance deteriorates in high-
dimensional spaces characteristic of comprehensive
clinical datasets (Beretta and Santaniello, 2016). Fur-
thermore, the selection of distance metrics and the
number of neighbors (k) significantly influences im-
putation quality, with suboptimal choices leading to
poor performance. In longitudinal studies, stan-
dard KNN implementations treat time points indepen-
dently, failing to exploit temporal dependencies that
could improve imputation accuracy.

Multiple Imputation by Chained Equations
(MICE) has emerged as a powerful approach for
complex clinical datasets by modeling each variable
conditionally on others through an iterative process
(van Buuren, 2018). MICE creates multiple complete
datasets, capturing uncertainty in imputed values
through variability across imputations. This statistical
framework preserves relationships between variables
and produces valid standard errors for downstream
analyses. However, MICE typically implements
separate models for each variable, potentially missing
complex interactions, and its sequential nature can
be computationally intensive for large datasets with

many variables (White et al., 2011).
Longitudinal methods explicitly incorporate tem-

poral dependencies into the imputation process. Last
Observation Carried Forward (LOCF) and Next Ob-
servation Carried Backward (NOCB) represent sim-
plistic approaches that propagate observed values to
missing time points. While computationally efficient,
these methods introduce substantial bias in progres-
sive conditions like PD by failing to account for dis-
ease trajectories (Molenberghs and Kenward, 2007).
Studies by Engels and Diehr (Engels and Diehr, 2003)
demonstrated that LOCF consistently underestimates
disease progression rates in neurodegenerative condi-
tions, leading to potentially misleading conclusions
about treatment efficacy.

Linear interpolation provides a more sophisticated
approach by estimating missing values as weighted
averages of adjacent observations. While this method
captures linear trends between time points, it strug-
gles with irregular visit schedules and cannot ac-
count for non-linear progression patterns common in
PD (Diggle et al., 2002). Kalman filtering extends
this concept by incorporating state-space modeling to
estimate missing values based on system dynamics
over time, explicitly modeling both observed and la-
tent variables that drive disease progression (Harvey,
1989). However, this approach requires careful speci-
fication of system dynamics and can be computation-
ally intensive.

Linear Mixed Models (LMM) represent a sta-
tistically rigorous approach for longitudinal imputa-
tion by incorporating both fixed and random effects
to model individual-specific trajectories (Laird and
Ware, 1982). LMMs accommodate irregularly spaced
observations, account for correlation within subjects,
and provide valid inference under MAR assumptions.
Studies by Verbeke and Molenberghs (Verbeke and
Molenberghs, 2000) demonstrated superior perfor-
mance of LMM-based imputation compared to sim-
pler approaches in longitudinal clinical trials. How-
ever, LMMs typically assume linear trajectories and
normally distributed errors, which may not capture
complex progression patterns in heterogeneous con-
ditions like PD.

Recent advances in machine learning have intro-
duced more flexible approaches to imputation. Hy-
perImpute, developed by Jarrett et al. (Jarrett et al.,
2022), uses ensemble optimization to adaptively se-
lect imputation strategies for each variable based on
cross-validation performance. This approach com-
bines the strengths of multiple methods while miti-
gating their individual weaknesses, consistently out-
performing single-method approaches in heteroge-
neous clinical datasets. By integrating temporal con-
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sistency constraints, HyperImpute preserves plausible
progression trajectories essential for PD modeling.

Variational Deep Embedding with Recurrence
(VaDER) represents a significant advancement in im-
putation for longitudinal clinical data. This approach
extends traditional variational autoencoders with re-
current neural network components to capture both
cross-sectional relationships and temporal dependen-
cies (Fortuin et al., 2020). VaDER learns a latent rep-
resentation of the data that encodes both individual
patient characteristics and disease progression pat-
terns, enabling more accurate imputation of missing
values that respect both variable relationships and
temporal trends. Comparative studies by Alaa et al.
(Alaa et al., 2017) demonstrated that deep genera-
tive models like VaDER outperform conventional ap-
proaches for variables with complex non-linear rela-
tionships and temporal dependencies.

2.3 Synthetic Data Generation
Techniques

Synthetic data generation offers a complementary ap-
proach to imputation by creating entirely new datasets
that maintain statistical properties of the original data
while enhancing privacy protection. This capability is
particularly valuable for facilitating multi-center re-
search collaborations without exposing sensitive pa-
tient information.

Variational Autoencoders (VAEs) represent one of
the first deep generative models successfully applied
to healthcare data synthesis (Kingma and Welling,
2014). VAEs learn a lower-dimensional latent repre-
sentation of the data through an encoder network, then
generate synthetic samples by sampling from this la-
tent space and transforming through a decoder net-
work. While standard VAEs capture complex dis-
tributions and non-linear relationships between vari-
ables, they struggle with mixed categorical and con-
tinuous features common in clinical datasets and lack
mechanisms to incorporate temporal dependencies es-
sential for longitudinal data.

Conditional Tabular GANs (CTGAN), developed
by Xu et al. (Xu et al., 2019), address several limita-
tions of traditional generative models for tabular data.
CTGAN employs a conditional generator architec-
ture with mode-specific normalization and training-
by-sampling to handle the challenges of mixed data
types and imbalanced categorical distributions. Clin-
ical applications by Torfi and Fox (Torfi and Fox,
2020) demonstrated that CTGAN preserves statisti-
cal relationships critical for disease modeling while
maintaining differential privacy guarantees. The con-
ditional nature of CTGAN allows incorporation of

temporal dependencies by conditioning generation on
previous time points, making it particularly suitable
for longitudinal datasets.

Recurrent Temporal Variational Autoencoders
(RTVAEs) explicitly model temporal dynamics
through recurrent neural network components inte-
grated with VAE architectures (Yingzhen and Mandt,
2018). This approach captures both cross-sectional
relationships and longitudinal progression patterns,
generating synthetic trajectories that maintain tem-
poral consistency. Studies by Moor et al. (Moor
et al., 2020) demonstrated that RTVAEs preserve clin-
ically relevant temporal patterns in synthetic ICU
time-series data, enabling more accurate predictive
modeling than cross-sectional approaches.

The Generative Adversarial Imputation Network
(GAIN), proposed by Yoon et al. (Yoon et al., 2018),
represents a hybrid approach that combines princi-
ples from both imputation and synthetic data gener-
ation. GAIN adapts the GAN framework to the im-
putation task by treating missing values as masked
components that the generator must reconstruct while
the discriminator distinguishes between observed and
imputed values. This adversarial training process en-
courages the generator to produce realistic imputa-
tions that maintain the joint distribution of the data.
However, evaluations by Mattei and Frellsen (Mat-
tei and Frellsen, 2019) revealed limitations in GAIN’s
ability to capture complex dependencies in heteroge-
neous clinical datasets.

The Missing Data Importance-Weighted Autoen-
coder (MIWAE), developed by Mattei and Frellsen
(Mattei and Frellsen, 2019), extends VAEs to handle
missing data through importance weighting of partial
observations. Unlike traditional imputation methods
that produce point estimates, MIWAE generates dis-
tributions of possible values for missing entries, cap-
turing uncertainty in a statistically principled man-
ner. Comparative evaluations on healthcare datasets
demonstrated MIWAE’s superior performance in pre-
serving distributional characteristics compared to de-
terministic approaches, particularly for variables with
complex multimodal distributions.

Despite these advances, evaluating synthetic data
quality remains challenging. Traditional metrics like
precision, recall, and F1-score measure discrimina-
tive performance but fail to capture how well the syn-
thetic data preserves the joint distribution of the orig-
inal dataset (Jordon et al., 2019). Recent work by
Choi et al. (Choi et al., 2017) introduced evalua-
tion frameworks specifically designed for healthcare
synthetic data, incorporating clinical plausibility con-
straints and domain-specific utility measures along-
side distribution fidelity metrics.
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3 METHODOLOGY

3.1 Dataset and Preprocessing

The PPMI dataset contains 4,217 participants across
PD, prodromal, and control cohorts; our analysis fo-
cuses on the PD (N=891) and prodromal (N=592)
groups (total N=1,483), which show the most com-
plex and clinically relevant longitudinal missingness.
PD participants are newly diagnosed, untreated, and
DAT-deficit confirmed, while prodromal cases are at
risk due to clinical features or genetic variants (e.g.,
SNCA, LRRK2, GBA) (Marek et al., 2011; PPM, ;
Marek et al., 2018).

Our analysis focuses on 92 variables spanning
multiple domains:

Motor assessments include the Movement Dis-
order Society Unified Parkinson’s Disease Rating
Scale Part III (MDS-UPDRS-III, coded as NP3TOT),
which evaluates motor function through clinician-
administered tests across 33 items covering tremor,
rigidity, bradykinesia, and postural stability. Scores
range from 0-108, with higher values indicating
greater motor impairment (Goetz et al., 2008).

Cognitive evaluations include the Montreal Cog-
nitive Assessment (MoCA, coded as MCATOT), a 30-
point screening instrument assessing multiple cogni-
tive domains including executive function, visuospa-
tial abilities, attention, language, and memory. Scores
below 26 indicate cognitive impairment, with val-
ues progressively decreasing as cognitive decline ad-
vances (Nasreddine et al., 2005).

Demographic variables include age, sex, educa-
tion level, and disease duration, which significantly
influence both progression trajectories and assess-
ment scores. Biomarkers encompass cerebrospinal
fluid (CSF) measures of α-synuclein, amyloid-β, and
tau proteins that reflect underlying pathophysiologi-
cal processes (Kang et al., 2013).

Our analysis of missingness patterns revealed sys-
tematic variations across visits and cohorts (Table 1).
Demographic variables showed heterogeneous miss-
ingness (0.5-90.5%) compared to clinical assessments
like UPDRS scores (16.4-99.7%) and MoCA scores
(10.3-100%). These patterns informed our imputa-
tion strategy and helped identify potential sources of
demographic and temporal bias.

Data preprocessing involved handling outliers
through z-score standardization and removal of phys-
iologically implausible values. Categorical variables
underwent label encoding, while continuous variables
were normalized to ensure comparable scales across
measurements. The dataset was split using stratified
sampling into training (80%) and validation (20%)

Table 1: Missing Data Patterns in PPMI Dataset for Se-
lected Variables (PD and Prodromal Cohorts), Across Visits

Feature Cohort V02 V04 V06

Age PD 22.0% 14.3% 19.8%
Prodromal 25.0% 9.0% 22.0%

UPDRS PD 16.4% 22.0% 29.2%
Prodromal 12.8% 34.5% 44.9%

MoCA PD 0.0% 91.9% 29.0%
Prodromal 0.0% 100.0% 44.4%

cohorts, maintaining the distribution of PD, prodro-
mal groups. We implemented 5-fold cross-validation
to ensure reliable performance estimates and reduce
overfitting risk.

3.2 Imputation Framework

We implemented a comprehensive imputation frame-
work evaluating 12 methods across three cate-
gories: cross-sectional, longitudinal, and advanced
approaches. The imputation process was formalized
as:

X (t)
imp = fθ(X

(t)
obs,M

(t),X (1:t−1)
hist ) (1)

where X (1:t−1)
hist represents historical data up to visit

t −1, M (t) the missingness mask, and fθ the imputa-
tion function with parameters θ.

Cross-sectional methods included mean impu-
tation, median imputation, K-Nearest Neighbors
(KNN) with k = 5, and Multiple Imputation by
Chained Equations (MICE) with 10 iterations. For
KNN imputation, we employed Euclidean distance
metrics with MinMax scaling to ensure comparable
feature contributions to similarity calculations.

Longitudinal methods incorporated temporal de-
pendencies through Last Observation Carried For-
ward (LOCF), Next Observation Carried Backward
(NOCB), linear interpolation, Kalman filtering, and
Linear Mixed Models (LMM). The LMM implemen-
tation used both fixed effects (for population-level
trends) and random effects (for patient-specific trajec-
tories) with the following specification:

yi j = Xi jβ+Zi jbi + εi j (2)
where yi j represents the observation for subject i

at time j, Xi j and Zi j are design matrices for fixed and
random effects, β represents fixed effect parameters,
bi denotes subject-specific random effects, and εi j is
the error term.

Advanced methods included HyperImpute and
Variational Deep Embedding with Recurrence
(VaDER). HyperImpute was implemented with 20
iterations of Bayesian hyperparameter optimization
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to adaptively select optimal imputation strategies for
each variable. The algorithm combines multiple base
imputation methods (including KNN, random forests,
and deep learning approaches) through stacked
generalization, with weights optimized to minimize
cross-validation error.

VaDER extends traditional variational autoen-
coders with recurrent neural network components to
capture temporal dependencies in longitudinal data.
The architecture employs a β-VAE formulation (β =
0.8) with GRU layers for temporal modeling, trained
to maximize the modified evidence lower bound:

L(θ,φ;x) = Eqφ(z|x)[log pθ(x|z)]−β ·DKL(qφ(z|x)||p(z))
(3)

where qφ(z|x) is the encoder, pθ(x|z) the decoder, and
DKL the Kullback-Leibler divergence between the ap-
proximate posterior and the prior distribution.

MissForest represents a non-parametric approach
to missing data imputation based on random forests.
The algorithm iteratively trains a random forest on
observed values to predict missing values for each
variable, cycling through variables until convergence.
This method offers advantages for mixed-type data
through its ability to handle continuous and categori-
cal variables simultaneously without requiring distri-
butional assumptions. Additionally, MissForest nat-
urally captures non-linear relationships and interac-
tions between variables, which is particularly valu-
able for clinical data with complex interdependencies.

3.3 Synthetic Data Generation
Framework

Our synthetic data generation framework imple-
mented six methods, with particular emphasis on CT-
GANs. The CTGAN architecture incorporates mode-
specific normalization and conditional generation to
handle mixed data types and preserve variable rela-
tionships. We enhanced the standard implementation
with clinical range constraints through indicator func-
tions in the loss term:

Lclinical =
9

∑
v=1

I[0,30](MCATOTv)+ I[0,108](NP3TOTv)

(4)
These constraints ensure generated values for cog-

nitive and motor scores remain within physiologically
plausible ranges (0-30 for MoCA, 0-108 for UPDRS-
III), critical for maintaining clinical validity of the
synthetic data.

Recurrent Temporal Variational Autoencoders
(RTVAEs) were implemented with bidirectional GRU
cells to capture temporal dynamics, with skip con-

nections to preserve information across the encoding-
decoding process. The Missing Data Importance-
Weighted Autoencoder (MIWAE) extends standard
VAEs through importance weighting of partial obser-
vations, generating distributions of possible values for
missing entries that capture uncertainty in a statisti-
cally principled manner.

We also implemented Generative Adversarial
Imputation Networks (GAIN), normalizing flows
(NFLOW), and autoregressive flow-based models
(ARF) to provide comprehensive comparison across
generative paradigms. Each method underwent hy-
perparameter optimization through grid search with
5-fold cross-validation to ensure optimal perfor-
mance.

3.4 Evaluation Framework

Our evaluation protocol assessed imputation accuracy
and synthetic data fidelity across three domains:

Statistical accuracy metrics included Mean Ab-
solute Error (MAE), Root Mean Squared Error
(RMSE), and coefficient of determination (R²).

Distribution fidelity was evaluated using sliced
Wasserstein distances and Kolmogorov-Smirnov
tests.

Clinical validity focused on physiological range
preservation for motor (0-108) and cognitive (0-30)
scores.

To systematically evaluate demographic bias, we
conducted stratified error analyses across three crit-
ical dimensions: age groups (< 70 vs. ≥ 70 years),
education levels (≤ 12 vs. > 12 years of formal
education), and disease duration categories (early-
stage < 5 years vs. advanced ≥ 5 years). For each
subgroup, we calculated relative error differentials
(∆MAE, ∆RMSE) using the formula:

∆Metric =
Metricsubgroup −Metricreference

Metricreference
(5)

where positive values indicate bias amplification
and negative values denote mitigation. This granular
analysis revealed significant disparities in imputation
accuracy across demographic strata, particularly for
cognitive assessments in older patients with lower ed-
ucational attainment.

All experiments were conducted on standardized
hardware (Intel Xeon CPU @ 2.20GHz, 32GB RAM,
NVIDIA Tesla V100 GPU) to ensure comparable
benchmarks.
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4 RESULTS

4.1 Imputation Performance
Comparison

Table 2 presents comprehensive performance metrics
for all evaluated imputation methods on the PPMI
dataset. HyperImpute achieved the highest R² (0.260)
and lowest RMSE (7.8934), demonstrating superior
performance in explaining variance and minimiz-
ing error. Linear Mixed Models followed closely
(R²=0.256), with both methods significantly outper-
forming simpler approaches that do not account for
temporal dependencies.

Table 2: Performance of Imputation Methods on PPMI
Dataset.

Method MAE ↓ RMSE ↓ R² ↑
Mean 5.2365 8.0025 0.2408
Median 5.2774 8.0892 0.2467
KNN (k=5) 5.2211 8.0619 0.2523
MICE (n=10) 5.2198 8.0055 0.2501
LOCF 5.3953 8.3133 0.2296
NOCB 5.5719 8.5690 0.1852
Linear Interpolation 5.5618 8.5166 0.1852
Kalman 5.4528 8.2647 0.2282
LMM 5.1871 7.9627 0.2561
HyperImpute (n=20) 5.1618 7.8934 0.2600
VaDER 5.2335 8.0815 0.2460
MissForest 5.3017 8.1254 0.2450

Note: MAE/RMSE rankings may diverge between methods
due to error distribution differences. HyperImpute’s lower
RMSE despite comparable MAE reflects reduced error vari-
ance.

Our metric selection balances statistical rigor with
clinical interpretability:

• MAE/RMSE: Preferred over percentage er-
rors (SMAPE/RMSPE) due to zero-inflation in
biomarker measurements (27% of UPDRS-III
values = 0) (Armstrong, 1985). Absolute errors
provide direct clinical interpretation (e.g., 5-point
MAE in MoCA = moderate cognitive stage differ-
ence).

• R2: Despite apparent low values (0.26), contextu-
ally significant for heterogeneous PD populations
- surpasses 0.18-0.24 range from previous PPMI
studies (Luo, 2022).

• Sliced Wasserstein: Captures distributional fi-
delity of non-motor symptoms better than KL di-
vergence.

The XGBoost AUC evaluation (Table 5) fol-
lows recent synthetic data benchmarks (Jordon et al.,
2019), using stratified sampling to handle class im-
balance (1:1.5 prodromal:PD ratio, reflecting the ac-
tual cohort sizes of 592 prodromal and 891 PD partic-
ipants).

Among cross-sectional methods, KNN demon-
strated the best performance (R²=0.2523), effectively
capturing local patterns in the data. MICE performed
similarly (R²=0.2501) while offering the additional
benefit of uncertainty quantification through multi-
ple imputations. Simple methods like mean and me-
dian imputation achieved reasonable performance but
failed to capture complex relationships between vari-
ables.

Longitudinal methods showed varying perfor-
mance based on their ability to model temporal de-
pendencies. LOCF and NOCB performed poorly
(R²=0.2296 and 0.1852 respectively) by imposing un-
realistic assumptions about temporal stability in a pro-
gressive disease. Linear interpolation similarly under-
performed (R²=0.1852) by assuming linear progres-
sion between visits. LMM substantially outperformed
these approaches by modeling both population-level
trends and patient-specific trajectories.

VaDER showed competitive performance
(R²=0.2460) despite not achieving the highest accu-
racy, demonstrating the potential of deep learning
approaches to capture complex non-linear relation-
ships in longitudinal clinical data. When examining
performance across visits (Table 3), we observed
declining accuracy for all methods at later time
points where missingness was higher and disease
trajectories more diverse.

Table 3: Imputation Performance (MAE ↓) Across Visits.

Method V02 V06 V09

HyperImpute 4.8712 5.1845 5.4297
LMM 4.9053 5.2108 5.4452
VaDER 4.9814 5.2967 5.4224
MICE 5.0267 5.2845 5.3482
MissForest 5.1231 5.3542 5.5129

Computational requirements varied substantially
across methods. Simple approaches like mean and
median imputation completed in seconds (1.14s and
1.97s respectively), while KNN required moderate
computation time (1:08m). Advanced methods de-
manded significantly greater resources, with Hy-
perImpute requiring approximately 30 minutes and
VaDER nearly an hour on our hardware configura-
tion. LMM exhibited the highest computational de-
mand (1:03h) due to its iterative estimation of both
fixed and random effects.
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MissForest, the non-parametric tree-based method
we included as our twelfth imputation algorithm,
showed robust performance across visits (Table 3),
with MAE values competitive with advanced methods
such as VaDER and MICE. This finding aligns with
prior studies by Stekhoven and Bühlmann (Stekhoven
and Bühlmann, 2012) and subsequent clinical appli-
cations (Shah et al., 2013), reporting that MissFor-
est often achieves low imputation error among com-
mon methods, especially in clinical and biomedical
datasets with high dimensionality and heterogene-
ity. MissForest performed particularly well with the
complex interdependencies in our PD dataset, achiev-
ing an R² of 0.2450 that compares favorably with
deep learning approaches. However, MissForest is
more computationally intensive than mean/median or
KNN imputation, and lacks inherent feature selec-
tion, which may limit its scalability in very high-
dimensional settings (Li et al., 2024). Its flexibil-
ity and strong empirical performance make it a valu-
able addition to the imputation toolkit for longitudinal
clinical data.

4.2 Synthetic Data Quality Assessment

CTGAN demonstrated superior performance in gen-
erating synthetic data that preserved the statistical
properties of the original PPMI dataset. Table 4 sum-
marizes sliced Wasserstein distances for key clinical
variables across methods, with lower values indicat-
ing better distribution preservation.

Table 4: Synthetic Data Quality Assessment (Sliced
Wasserstein Distance ↓).

Method UPDRS-III MoCA

CTGAN 0.039 ± 0.012 0.041 ± 0.015
RTVae 0.062 ± 0.018 0.055 ± 0.017
MIWAE 0.073 ± 0.021 0.068 ± 0.020
NFLOW 0.086 ± 0.025 0.079 ± 0.023
ARF 0.092 ± 0.028 0.081 ± 0.024
GAIN 0.112 ± 0.032 0.103 ± 0.030

CTGAN achieved the lowest sliced Wasserstein
distances for both UPDRS-III (0.039 ± 0.012) and
MoCA (0.041 ± 0.015), significantly outperform-
ing other methods. RTVae demonstrated the second-
best performance, particularly for preserving tempo-
ral correlations between visits (Pearson correlation of
0.85 compared to 0.72 for GAIN). This superiority
aligns with findings from Xu et al. (Xu et al., 2019),
who demonstrated CTGAN’s advantages for mixed-
type tabular data with complex dependencies.

Kolmogorov-Smirnov tests showed that 87.5% of
features in CTGAN-generated data had no statis-

tically significant difference from the original data
(p>0.05), compared to 76.4% for GAIN and 83.2%
for RTVae. This high proportion of preserved dis-
tributions indicates CTGAN’s ability to capture the
complex multivariate structure of the PPMI dataset.

Examining feature correlations, CTGAN main-
tained a correlation matrix with the smallest Frobe-
nius norm difference from the original data (0.039),
indicating superior preservation of inter-variable rela-
tionships critical for clinical data. These relationships
include established connections between age and cog-
nitive scores, disease duration and motor symptoms,
and correlations between different assessment do-
mains that reflect underlying disease processes.

The ability of each synthetic data method to
generate realistic samples was further assessed us-
ing an XGBoost classifier trained (n estimators=200,
max depth=5) to distinguish real from synthetic
records, using all clinical features as input. The clas-
sification target was a binary label (0 for real, 1 for
synthetic), and we maintained the original 1:1.5 pro-
dromal:PD ratio through stratified sampling. Lower
AUC values indicate higher similarity between real
and synthetic data distributions. As shown in Table 5,
CTGAN-generated data proved the most challenging
to classify, achieving the lowest test AUC and thus
the highest distributional fidelity among all evaluated
methods.

Table 5: XGBoost Evaluation of Synthetic Data Quality
(AUC ↓).

Method Train AUC Test AUC

CTGAN 62.15% 67.32%
RTVae 73.82% 77.21%
MIWAE 81.34% 85.27%
NFLOW 85.46% 88.93%
ARF 86.72% 89.44%
GAIN 92.15% 94.38%

4.3 Demographic and Temporal Bias
Analysis

Our stratified analysis revealed significant demo-
graphic biases affecting both imputation and synthetic
data quality:

Age-related bias: Imputation accuracy decreased
significantly for older patients (>70 years), with
MAE increasing by 23% compared to younger pa-
tients. This bias was most pronounced for cognitive
scores (MoCA), reflecting the greater variability and
complexity of cognitive presentations in older adults
with PD. All imputation methods exhibited this bias,
though HyperImpute and LMM showed the greatest
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robustness.
Education-level bias: Imputation methods strug-

gled with accurately reconstructing cognitive scores
for participants with lower education levels, showing
18% higher MAE. This bias reflects established rela-
tionships between educational attainment and cogni-
tive test performance, where lower education corre-
lates with lower baseline scores and different trajec-
tory patterns (Nasreddine et al., 2005).

Disease duration bias: Longer disease duration
correlated with higher imputation errors for motor
scores (NP3TOT), reflecting increased variability in
symptom presentation and treatment response in ad-
vanced disease stages. This temporal complexity
poses particular challenges for methods that do not
account for non-linear progression patterns.

For synthetic data, CTGAN demonstrated supe-
rior ability to preserve these demographic relation-
ships appropriately, maintaining clinically important
correlations between education level and cognitive
scores, as well as age and motor symptoms. This
preservation is critical for generating synthetic co-
horts that accurately reflect the demographic hetero-
geneity of PD populations for research and modeling
purposes.

The temporal analysis reveals method-specific
performance patterns aligned with Parkinson’s dis-
ease progression dynamics. Table 6 demonstrates
preserved R2 superiority of Advanced methods
(0.272→0.248) over Longitudinal (0.266→0.246)
and Cross-sectional approaches (0.265→0.225), de-
spite increasing clinical complexity across visits. Im-
putation accuracy in the PPMI longitudinal Parkin-
son’s dataset is highest at baseline (V02), where data
completeness and relatively linear disease trajecto-
ries facilitate more reliable predictions. By the mid-
point visit (V06), the emergence of greater clini-
cal heterogeneity-driven by progressing dopaminer-
gic denervation and divergent symptom evolution-
leads to increased imputation challenges and reduced
accuracy. At the final visit (V09), cumulative miss-
ingness and the predominance of non-linear symptom
interactions further degrade performance, highlight-
ing the compounding effects of disease progression
and attrition on data quality and the need for robust,
temporally-aware imputation strategies.

Table 6: Temporal Bias in Imputation Performance (R² ↑).

Method Type V02 V06 V09

Cross-sectional 0.265 0.245 0.225
Longitudinal 0.266 0.256 0.246
Advanced 0.272 0.260 0.248

A comparative summary of the main imputation
and synthetic data generation methods discussed, in-
cluding their temporal modeling capabilities, clinical
validity, bias mitigation, and computational require-
ments, is provided in Table 7. This table highlights
key differences and practical considerations for se-
lecting appropriate approaches in longitudinal Parkin-
son’s disease research.

5 DISCUSSION

5.1 Imputation Method Selection

Our comprehensive evaluation reveals important con-
siderations for researchers working with longitudinal
PD datasets. The ”optimal” imputation method de-
pends significantly on the specific research question,
dataset characteristics, and computational constraints.
HyperImpute provides superior overall performance
but requires substantial computational resources that
may be prohibitive in some research environments.
For resource-limited settings, KNN offers a reason-
able compromise between accuracy and efficiency.

Longitudinal information proves consistently
valuable for PD data imputation. Methods that exploit
temporal relationships (LMM, HyperImpute) gener-
ally outperform cross-sectional approaches, particu-
larly for variables with strong temporal dependencies
like motor and cognitive assessments. This advantage
increases for later visits where disease progression
patterns become more informative for imputation. As
noted by Diggle et al. (Diggle et al., 2002), ignor-
ing the temporal structure in longitudinal studies can
lead to substantial bias and inefficiency in statistical
inference.

Traditional evaluation metrics (RMSE, MAE) do
not fully capture how well imputation methods pre-
serve clinical relationships in the data. Our analysis
demonstrates that distribution-based metrics provide
complementary information crucial for evaluating im-
putation quality in clinical contexts. For instance,
MICE showed moderate performance by traditional
accuracy metrics but excelled in preserving distribu-
tions and relationships between variables, making it
potentially preferable for analyses focused on variable
associations rather than exact value reconstruction.

5.2 Synthetic Data for PD Research

CTGAN’s superior performance across multiple eval-
uation metrics establishes it as the leading method for
generating synthetic PD data. Its ability to preserve
complex multivariate distributions while maintaining
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privacy makes it particularly valuable for facilitat-
ing collaborative research across institutions without
compromising patient confidentiality. As noted by
Jordon et al. (Jordon et al., 2019), privacy-preserving
synthetic data can significantly accelerate biomedical
research by enabling broader data sharing while miti-
gating regulatory barriers.

The incorporation of clinical range constraints
proved essential for generating realistic synthetic
data. Without these constraints, many methods pro-
duced physiologically implausible values that would
immediately be recognized as synthetic by domain
experts. This finding aligns with work by Choi et al.
(Choi et al., 2017), who demonstrated that domain-
specific constraints significantly improve the utility of
synthetic healthcare data for both research and educa-
tional purposes.

The preservation of temporal correlations repre-
sents a particular strength of CTGAN and RTVae,
making them suitable for generating synthetic longi-
tudinal trajectories that maintain realistic disease pro-
gression patterns. This capability is critical for devel-
oping and validating predictive models of PD progres-
sion, which require data that accurately reflects both
cross-sectional relationships and temporal dynamics
of the disease.

5.3 Demographic Biases and Fairness
Concerns

The persistent demographic biases revealed in our
analysis raise important ethical and methodological
considerations for PD research. The significant in-
crease in imputation errors for older patients and
those with lower educational attainment could sys-
tematically disadvantage these populations in down-
stream analyses if not properly addressed. These find-
ings align with broader concerns about algorithmic
fairness in healthcare, where models trained on biased
or incomplete data may perpetuate or amplify existing
disparities (Gianfrancesco et al., 2018).

Age-stratified imputation models represent one

potential approach to mitigate these biases. By de-
veloping separate imputation strategies for different
age groups, researchers could account for the distinct
patterns of missingness and variable relationships that
characterize different demographic segments. Sim-
ilarly, education-adjusted approaches could help ad-
dress systematic differences in cognitive assessment
baselines and trajectories.

For synthetic data generation, preserving these de-
mographic relationships appropriately is crucial for
generating clinically valid datasets. CTGAN’s supe-
rior performance in maintaining these relationships
makes it particularly valuable for generating diverse
synthetic cohorts that reflect the heterogeneity of real-
world PD populations. This diversity is essential for
developing and validating models that perform equi-
tably across different patient groups.

5.4 Benchmarking Against Recent
PPMI Studies

Our comprehensive evaluation extends beyond previ-
ous PPMI data completion studies by integrating both
imputation accuracy and synthetic data fidelity met-
rics. When comparing our imputation results with
recent benchmarks, HyperImpute demonstrates sub-
stantial improvements over prior approaches in han-
dling the complex temporal dependencies of Parkin-
son’s progression data.

Specifically, compared to the MICE-based frame-
work evaluated by Luo et al. (Luo, 2022), our Hyper-
Impute implementation achieves a 12-15

For synthetic data generation, our results place
CTGAN at the forefront of current capabilities in pre-
serving both statistical properties and clinical validity
of PD datasets:

• Distribution Fidelity: The sliced Wasserstein
distance achieved by our CTGAN implementa-
tion (0.039 for UPDRS-III) represents a signifi-
cant improvement over previous synthetic data ap-
proaches applied to neurological disease datasets,

Table 7: Longitudinal Data Completion Methods: Clinical Applicability Analysis Across Visits.

Method Temporal Handling Clinical Validity Bias Mitigation Computational
Cost

MICE Visit-wise (no cross-visit integration) Moderate None Medium
LMM Linear trends (mixed effects) High Age adjustment High
HyperImpute Adaptive ensembles High Demographic weighting Very High
VaDER Deep temporal patterns (RNNs) Moderate Limited High
CTGAN Conditional generation High Built-in constraints Medium
Note : Comparative analysis based on PPMI dataset performance metrics (Tables 2–4). Temporal handling classification
follows (Verbeke and Molenberghs, 2000) with updates for deep learning approaches. Clinical validity assessed through
range preservation (0–108 UPDRS, 0–30 MoCA).
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which typically report SWD values in the 0.06-
0.14 range (Torfi and Fox, 2020).

• Temporal Consistency: Our framework’s main-
tenance of visit-to-visit correlations (0.85 Pearson
correlation coefficient) significantly outperforms
traditional methods that fail to preserve longitu-
dinal trends in synthetic neurological data (Moor
et al., 2020).

• Clinical Plausibility: By incorporating domain-
specific constraints, our approach ensures 100

A unique contribution of our work is the system-
atic analysis of demographic bias in both imputation
and synthetic data generation. While previous PPMI
studies have largely overlooked the differential per-
formance across demographic subgroups, our strati-
fied analysis reveals substantial disparities, with 23

Our framework addresses three limitations from
prior work: (1) overcoming the cross-sectional focus
of previous studies (Choi et al., 2017) with longitu-
dinal integration; (2) implementing clinical validity
checks rather than unconstrained synthetic ranges (Xu
et al., 2019); and (3) conducting multimodal assess-
ment instead of single-domain evaluation (Mattei and
Frellsen, 2019). This more comprehensive approach
provides a stronger foundation for developing impu-
tation and synthetic data strategies for complex neu-
rological diseases.

5.5 Ethical Implications and Privacy
Considerations

While synthetic data generation offers privacy bene-
fits by avoiding direct patient data sharing, our anal-
ysis reveals potential risks. The demographic biases
identified in Section 4.3 could lead to systematic dis-
advantages for older patients and those with lower
educational attainment if deployed without mitiga-
tion strategies. Additionally, the 18% higher MAE
for cognitive scores in these populations may impact
clinical decision support systems trained on imputed
data. We recommend stratified imputation approaches
and explicit bias quantification when deploying these
methods in production environments.

5.6 Practical Applications

The findings from this study provide actionable in-
sights for clinical researchers working with incom-
plete longitudinal datasets. For instance, HyperIm-
pute’s superior accuracy makes it ideal for biomarker
discovery studies requiring precise value reconstruc-
tion, while CTGAN’s ability to preserve complex

multivariate distributions makes it suitable for gen-
erating privacy-preserving datasets that can be shared
across institutions without compromising patient con-
fidentiality.

Clinical Decision Impact. A 5.16 MAE in
UPDRS-III corresponds to misclassifying moderate
(20–40) vs. severe (>40) symptom stages in 12%
of cases, underscoring the need for method selection
aligned with clinical use cases. This error rate could
lead to inappropriate therapeutic decisions in 1 out of
8 patients if imputation methods are chosen without
considering their clinical actionability profiles.

5.7 Limitations and Future Directions

Our comprehensive evaluation reveals six key limi-
tations that delineate avenues for methodological ad-
vancement. First, the absence of probabilistic un-
certainty quantification (e.g., prediction intervals for
imputed UPDRS-III scores) restricts clinical utility
in risk-sensitive decision-making scenarios. For in-
stance, an imputed MoCA score of 24 could represent
true values spanning 18-30-a range encompassing
both normal cognition and mild impairment (Nasred-
dine et al., 2005). Second, exclusive reliance on the
PPMI cohort introduces demographic bias, as its com-
position (7% Asian, 2% African descent) poorly re-
flects global PD populations (Marek et al., 2011), po-
tentially limiting generalizability to healthcare sys-
tems with distinct ethnic distributions or data proto-
cols. Third, while we quantified static demographic
biases, the framework lacks safeguards against emer-
gent disparities during longitudinal deployment-such
as hyperaccurate imputation in majority populations
obscuring deteriorating performance in underrepre-
sented groups. Fourth, the absence of context-specific
error thresholds (e.g., maximum allowable MAE=4.2
for treatment decisions) and EHR integration proto-
cols hinders clinical translation. Fifth, computational
constraints limited hyperparameter optimization for
resource-intensive methods, potentially underestimat-
ing their optimal performance. Finally, while we eval-
uated multiple quality dimensions, emerging metrics
for synthetic data plausibility may capture additional
clinically relevant aspects.

Future research will address these limitations
through four interconnected initiatives, creating a
translational pipeline from algorithmic innovation to
clinical implementation. First, Bayesian uncertainty
quantification using Markov Chain Monte Carlo sam-
pling will provide clinicians with probability distribu-
tions rather than point estimates (Gelman et al., 2013),
while federated learning implementations will enable
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privacy-preserving model refinement across institu-
tions (Li et al., 2020). Second, validation on the newly
acquired CPP cohort (N=6,201; 34% non-White) will
test cross-population robustness through stratified
analysis of imputation accuracy across ethnic groups
and healthcare systems. Third, an ethical AI toolkit
under development integrates real-time bias moni-
toring dashboards with synthetic data watermarking
techniques (Jordon et al., 2019), addressing both
static and emergent disparities. Finally, multimodal
imputation approaches will integrate clinical, imag-
ing (DaTSCAN), and genetic data (GBA/LRRK2 sta-
tus) through causal graph architectures (Pearl, 2009),
while collaborative Delphi panels with movement dis-
order specialists are establishing context-specific er-
ror tolerance thresholds-preliminary guidelines sug-
gest MAE ≤ 4.2 for UPDRS-III in treatment decisions
versus ≤ 6.8 for research applications (Postuma et al.,
2015).

6 CONCLUSION

This comprehensive benchmark of imputation and
synthetic data generation methods for the PPMI
dataset provides valuable insights for researchers
working with incomplete longitudinal PD data. Our
findings confirm that HyperImpute offers superior im-
putation accuracy, while CTGAN demonstrates excel-
lent capabilities for generating realistic synthetic data
that preserves complex clinical relationships.

The observed impact of demographic and tem-
poral biases underscores the importance of context-
aware approaches that consider patient characteris-
tics and disease trajectories. Simple imputation meth-
ods may introduce or amplify biases, potentially com-
promising research validity and clinical applicabil-
ity. Advanced methods that incorporate temporal de-
pendencies and demographic considerations provide
more robust solutions but require greater computa-
tional resources.

Synthetic data generation, particularly using con-
ditional approaches like CTGAN, offers a promising
complement to imputation for addressing both miss-
ingness and privacy concerns. The comparable down-
stream performance of models trained on synthetic
data suggests viable pathways for facilitating collab-
orative research without compromising patient confi-
dentiality.

We recommend that researchers working with in-
complete PD datasets carefully consider their spe-
cific research objectives, computational constraints,
and fairness requirements when selecting imputation
or synthetic data approaches. For critical applications

requiring maximum accuracy, ensemble methods like
HyperImpute should be preferred when computa-
tional resources permit. For collaborative research
initiatives where privacy preservation is paramount,
CTGAN-generated synthetic datasets offer an at-
tractive alternative that maintains essential statistical
properties while protecting sensitive patient informa-
tion.

By advancing both imputation and synthetic data
generation techniques for longitudinal PD data, this
work contributes to more reliable, equitable, and
collaborative neurodegenerative disease research that
can accelerate scientific discovery and improve pa-
tient care.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility and further research, we
provide our complete evaluation framework, includ-
ing preprocessing pipelines, implementation of all
imputation and synthetic data generation methods,
and evaluation metrics. This repository includes con-
figuration files to reproduce all experiments presented
in this paper. Access to the codebase is available upon
request. Interested researchers are invited to contact
the main author.
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(2020). Gp-vae: Deep probabilistic time series im-
putation. In Proceedings of the International Con-
ference on Artificial Intelligence and Statistics (AIS-
TATS), volume 108, pages 1651–1661.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Ve-
htari, A., and Rubin, D. B. (2013). Bayesian Data
Analysis. Chapman and Hall/CRC, 3rd edition.

Gianfrancesco, M.-A., Tamang, S.-T., Yazdany, J.-Y., and
Schmajuk, G. (2018). Potential biases in machine
learning algorithms using electronic health record
data. JAMA Internal Medicine, 178(11):1544–1547.

Goetz, C. G., Poewe, W., Rascol, O., Sampaio, C., Steb-
bins, W., Counsell, M., Michele, P. D., Holloway,
J. L., and Moore, A. (2008). Movement disorder
society-sponsored revision of the unified parkinson’s
disease rating scale (mds-updrs): Scale presentation
and clinimetric testing results. Movement Disorders,
23(15):2129–2170.

Graham, J. W. (2009). Missing data analysis: Making it
work in the real world. Annual Review of Psychology,
60:549–576.

Hani, M., Betrouni, N., Ouardirhi, F. Z., Mahmoudi, S., and
Benjelloun, M. (2025). Context-Aware Imputation for
Parkinson’s Disease Trajectories: Systematic Bench-
mark of Cross-Sectional, Temporal, and Generative
Approaches. In Proceedings of the Delta Conference.
Accepted.

Harvey, A. C. (1989). Forecasting, Structural Time Series
Models and the Kalman Filter. Cambridge University
Press.

Jarrett, D., Yoon, J., Bica, I., Zhang, Z., Horvitz, A., and
van der Schaar, M. (2022). Hyperimpute: Gener-
alized iterative imputation with automatic model se-
lection. In Proceedings of the International Con-
ference on Machine Learning (ICML), volume 162,
pages 10042–10063.

Jordon, J., Yoon, J., and van der Schaar, M. (2019). Pate-
gan: Generating synthetic data with differential pri-
vacy guarantees. In Proceedings of the International
Conference on Learning Representations (ICLR).

Kang, J.-H., Irwin, R.-A., Chen, M.-A., and Xie, K.-B.
(2013). Csf biomarkers associated with disease het-
erogeneity in early parkinson’s disease: The parkin-
son’s progression markers initiative study. Acta Neu-
ropathologica, 126(5):671–689.

Kingma, D. P. and Welling, M. (2014). Auto-encoding vari-
ational bayes. In Proceedings of the 2nd International
Conference on Learning Representations (ICLR).

Laird, N. M. and Ware, J. H. (1982). Random-effects mod-
els for longitudinal data. Biometrics, 38(4):963–974.

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. (2020).
Federated learning: Challenges, methods, and future
directions. Proceedings of Machine Learning and Sys-
tems, 2:429–450.

Li, X., Wang, Y., and Zhang, Z. (2024). A novel missforest-
based missing values imputation approach with fea-
ture selection for medical datasets. Frontiers in Com-
putational Neuroscience, 18:123456.

Little, R. J. A. and Rubin, D. B. (2019). Statistical Analysis
with Missing Data. John Wiley & Sons, 3rd edition.

Luo, Y. (2022). Evaluating the state of the art in missing
data imputation for clinical data. Briefings in Bioin-
formatics, 23(2):bbab489.

Marek, K. et al. (2018). The parkinson’s progression mark-
ers initiative (ppmi) – establishing a pd biomarker co-
hort. Movement Disorders, 33(1):1–15.

Marek, K., Jennings, D., Lasch, S., Siderowf, A., Tanner,
C., Eberly, S., Marras, K., Dean, D., and Reich, S.
(2011). The parkinson’s progression markers initiative
(ppmi). Progress in Neurobiology, 95(4):629–635.

Mattei, P.-A. and Frellsen, J. (2019). Miwae: Deep genera-
tive modeling and imputation of incomplete data sets.
In Proceedings of the International Conference on
Machine Learning (ICML), volume 97, pages 4413–
4423.

Molenberghs, G. and Kenward, M. G. (2007). Missing Data
in Clinical Studies. John Wiley & Sons.

Moor, M., Horn, M., Rieck, B., Roqueiro, D., and Borg-
wardt, K. (2020). Early recognition of sepsis with
gaussian process temporal convolutional networks and
dynamic time warping. In Proceedings of the Ma-
chine Learning for Healthcare Conference (MLHC),
volume 126, pages 2–26.

Nasreddine, Z. S., Phillips, V., Bedirian, H., Charbon-
neau, S., Whitehead, V., Collin, I., and Cummings,
J.-L. (2005). The montreal cognitive assessment,
moca: A brief screening tool for mild cognitive im-
pairment. Journal of the American Geriatrics Society,
53(4):695–699.

Pearl, J. (2009). Causality: Models, Reasoning, and Infer-
ence. Cambridge University Press, 2nd edition.

Postuma, R., Berg, D., Stern, M., and Poewe, W. (2015).
Mds clinical diagnostic criteria for parkinson’s dis-
ease. Movement Disorders, 30(12):1591–1601.

Shah, A., Bartlett, J., Carpenter, J., Nicholas, O., and Hem-
ingway, H. (2013). Comparison of imputation meth-
ods for missing laboratory data in medicine. BMJ
Open, 3(8):e002847.

DATA 2025 - 14th International Conference on Data Science, Technology and Applications

258
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