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Abstract: This position paper introduces a conceptual general process chain for leveraging artificial intelligence (AI) in 
demand prediction and procurement scheduling for small and medium-sized enterprises (SME). While AI 
offers significant advantages, such as reducing inventory costs, improving delivery reliability, and optimizing 
logistics, its adoption in SME is hindered by limited expertise, restricted access to AI tools, and psychological 
barriers like trust and acceptance. The proposed framework integrates probabilistic modeling, clustering 
algorithms, feature extraction methods and temperature scaling to enhance prediction accuracy and efficiency. 
By aggregating demand forecasts, the system enables risk-adjusted and cashflow-optimized scheduling. A 
preliminary result is presented, demonstrating robust predictions within confidence intervals. While the 
findings are preliminary, this paper highlights the transformative potential of AI in SME scheduling and 
outlines future research directions, including model optimization and the integration of explainable AI 
methods to further enhance traceability and user acceptance. 

1 INTRODUCTION 

The field of artificial intelligence (AI) has emerged as 
a pivotal technology for numerous automated systems 
and data-driven algorithms, offering significant 
potential for enhancing business processes across 
various sectors, including large corporations and 
small- and medium-sized enterprises (SME). 
According to an expert survey, the foremost 
opportunities for AI in SME are projected to lie in the 
domains of optimizing distribution and logistics and 
enhancing process efficiency (Lundborg et al., 2023; 
WIK GmbH, 2019). While the processing of goods 
can vary significantly depending on the specific 
industry, many procurements and scheduling 
processes in the manufacturing industry maintain a 
high degree of similarity. These processes are often 
driven by factors such as market conditions, order 
volume, and company-specific circumstances. The 
overarching objective of procurement scheduling is to 
optimize service quality, particularly delivery 
reliability while minimizing capital expenditures, 
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resource utilization and inventory holding costs. 
While the prioritization of these factors varies across 
individuals, their overall relevance remains consistent 
across all domains. The economic activity of the 
manufacturing industry is defined as the treatment or 
processing of products for the purpose of 
manufacturing or refining products. Procurement 
planning and organization is a prerequisite for the 
value creation process. In the context of SME, 
procurement planning often consists of a separate 
department that regulates procurement depending on 
demand. The central task is to define the order 
quantity and the order time and to organize the 
transport to some extent. In SME, this process is 
predominantly executed manually, relying on 
employees' experiential knowledge. However, this 
experiential knowledge is vulnerable to fluctuation 
when employees depart from the company. 
Moreover, complex issues such as market 
fluctuations or demand variations may not be fully 
integrated into employees' experiential knowledge. 
Large volumes of data accumulate in the planning and 
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purchasing departments, which are often incomplete, 
inaccessible, or underutilized. The advent of 
technological progress, the proliferation of data, and 
the emergence of sophisticated algorithms in the big 
data domain have rendered extensive analyses and 
models viable tools for process optimization in 
procurement scheduling. Given the capacity of 
planners to consider a limited amount of data during 
the decision-making process, the development of 
prediction models and efficient algorithms for data 
preparation and feature extraction is imperative to 
optimize processes (Allal-Chérif et al., 2021; 
Baryannis et al., 2019). 
 
The integration of AI into various sectors of industry 
and research has been a subject of considerable 
interest in recent years. According to a McKinsey 
report from 2023, the global potential of AI is 17.1 to 
25.6 trillion dollars (roughly 20% of global GDP), 
making it a significant economic opportunity in 
today's economic landscape (Chui et al., 2023). The 
effectiveness of AI in the domain of supply chain 
management has been a subject of notable attention 
(McKinsey & Company, 2021). However, the 
implementation of AI in SME is hindered by several 
obstacles, primarily the lack of specialized expertise 
and the challenges in accessing AI as a service (WIK 
GmbH, 2019). While prominent companies 
successfully develop and utilize AI services, such as 
Forecast Pro (Business Forecast Systems, Inc., 
2025), and proprietary AI solutions to enhance their 
own processes, there is a paucity of interest in 
disseminating this knowledge to the public. 
 
The primary benefit of the framework to be 
developed lies in the reduction of stock levels and the 
increase in delivery reliability through the use of AI, 
especially for SME. While the economic benefit of 
reducing stock can be quantified using a capital 
replacement rate, the economic benefit of increasing 
delivery reliability is difficult to quantify. An increase 
in delivery reliability has a positive effect on the 
expansion, stability, and interdependence of business 
relationships. The successful implementation of AI in 
supply chain management has been shown to result in 
a 15% reduction in logistics costs, a 35% decrease in 
stock levels, and a 65% improvement in service 
quality (McKinsey & Company, 2021). A recent 
study by Samuels confirms that the integration of AI 
into supply chain management improves demand 
forecasting, inventory optimization and decision-
making. This leads to lower inventory levels, cost 
savings and higher delivery reliability, as AI enables 

accurate forecasting, minimizes stock-outs and 
reduces excess inventory (Samuels, 2024).  
 
Global economic uncertainties and supply chain 
disruptions in recent years have increased the need for 
smart warehousing systems. Reports such as the 
OECD SME and Entrepreneurship Outlook show that 
SME worldwide are struggling with supply 
bottlenecks and inefficient warehousing strategies, 
resulting in high storage costs and limited flexibility 
(OECD, 2023). The use of AI-supported scheduling 
has the potential to meet these challenges. It 
facilitates the early recognition of situations such as a 
drop in demand and the implementation of suitable 
measures. While the majority of German companies 
perceive AI as a potential benefit, only a small 
percentage of companies currently utilize existing 
methods (Bitkom e. V., 2022). In addition to the 
challenge of adapting existing solutions to the needs 
and resources of SME, psychological constructs such 
as acceptance and trust in AI solutions must 
increasingly be considered. Studies show that 
acceptance of AI drops when users see it as a control 
tool or fear losing decision-making power and jobs. 
This is especially true in small and medium-sized 
enterprises, where long-standing routines often make 
employees less open to change. To foster acceptance 
of AI, these aspects must be addressed in technical 
development. 
 
The process chain presented here aims to address the 
following research questions regarding its application 
in SME: 
 
• Which combination of data preprocessing, model 

architecture, and model training maximizes 
prediction quality? 

• To what extent does the proposed process chain, 
in terms of accuracy, outperform established 
forecasting models such as ARIMA and Prophet? 

• How does AI-supported procurement scheduling 
impact costs, stock levels, inventory turnover 
time, and delivery reliability? 

2 STATE OF THE ART 

Baryannis et al. (Baryannis et al., 2019) highlight the 
potential of AI in supply chain risk management but 
point out a lack of research on proactive and 
predictive AI applications, especially regarding 
decision-making, prediction methods, and the 
integration of different AI technologies. Their 
findings emphasize the need for further investigation 
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in these areas. For instance, Venkatesan, and Goh 
(Venkatesan & Goh, 2016) developed a multi-criteria 
mixed integer linear program (MILP) model to 
identify the optimal selection of suppliers and the 
allocation of order quantities under the risk of 
disruption. The findings indicate that the likelihood 
of supplier default exerts a more substantial influence 
on the anticipated aggregate expenditures compared 
to the suppliers' adaptability and the ensuing loss 
expenses. Pareto-optimal solutions facilitate the 
assessment of a diverse array of decision alternatives. 
Nevertheless, the authors highlight several 
limitations, including those pertaining to 
deterministic demand or unchanging purchase costs, 
underscoring the necessity for further research to 
elucidate these domains. A comparison of different 
AI-based forecasting methods to improve the 
accuracy of demand forecasting in supply chains 
shows that the use of artificial neural networks 
significantly improves the accuracy of demand 
forecasting for intermittent demand (Amirkolaii et al., 
2017). In the context of SME Wong et al. (Wong et 
al., 2024) demonstrated the benefits of AI-based risk 
management in terms of improving business 
continuity through improved response to changes 
caused by disruptions. 
 
This paper aims to address the existing research gaps 
by developing a software process chain for combining 
probabilistic AI predictors, thereby combining the 
advantages of big data and machine learning with 
individual prioritizations. This integration process 
serves to reduce risk and enhance traceability for the 

user. Despite the limited attention devoted to human 
factors in the introduction and utilization of AI 
applications in recent years, these factors have 
gradually emerged as a focal point of research 
interest. However, a more comprehensive 
understanding of influencing factors such as trust, 
acceptance, and other psychological factors, which 
have proven to be key factors for success in the 
interaction with other technologies and have already 
been mapped in various models, is still lacking 
(Choung et al., 2023; Davis, 1989; Manchon et al., 
2021). In addition to AI-specific aspects such as 
representation and the degree of machine intelligence 
(i.e., its capabilities), findings in the area of trust 
highlight the relevance of antecedents that shape the 
cognitive and emotional trust of users. These include 
the tangibility, transparency, reliability, and 
immediacy of AI applications, together with the role 
of anthropomorphism. Explainability has been 
identified as another pivotal factor influencing trust in 
AI applications (Ferrario & Loi, 2022). However, the 
extant empirical findings are subject to certain 
limitations, including small samples, cross-sectional 
observations, and experimental studies with 
constraints on field environments. The samples 
considered also differ considerably, impeding the 
attainment of generalizability. Nevertheless, 
enhancing our understanding of these phenomena 
appears to be of paramount importance, particularly 
in the context of SME with limited staffing and lower 
levels of specialization. 
 

 
Figure 1: Process chain for predicting customer requirements and procurement times. 
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3 METHODOLOGY 

For developing the software framework, we focus on 
an exemplarily SME, which is at the center of a 
network of suppliers and customers. On the supplier 
side, the procurement time as a function of the unit 
quantity, and on the customer side, the quantity of 
demand as a function of time are particularly relevant 
for the scheduling tasks. There are often only a 
limited number of data points available for individual 
customers during the training period. Therefore, we 
propose to train a machine learning algorithm not for 
each individual customer, but to use a consolidated 
model for all customers and all articles. Specific 
customer and item parameters are then fed into the 
machine learning algorithm as input. The prediction 
for item demand can thus be made for each individual 
customer and then aggregated at component level.  

Figure 1 illustrates the process chain from data input, 
through the machine learning algorithm, to the 
processed model output. Each step of the process 
chain will be presented in the following: 

 
Model Inputs 
All available and potentially relevant data should be 
initially used as input variables. A post-analysis, for 
example using SHapley Additive exPlanations 
(SHAP) (Lundberg & Lee, 2017), makes it possible 
to evaluate the influence of the input variables on the 
target variables. By neglecting less relevant inputs, 
model complexity can be reduced and efficiency 
increased. The following model inputs, listed in Table 
1, are initially and exemplarily used for prediction.  
 

Table 1: Description of the input variables. 

Input Description Format 

Customer Since the model represents the demand of all customers within an organizational unit, 
the customer identity is provided as a unique categorical variable. 

One-hot 
vector 

Article Since the model represents the demand of all articles within an organizational unit, the 
article identity is provided as a unique categorical variable. 

One-hot 
vector 

Customer group Customers within an organizational unit are typically grouped. This grouping is 
included in the model as a categorical variable. 

One-hot 
vector 

Article group Articles within an organizational unit are typically grouped. This grouping is included 
in the model as a categorical variable. 

One-hot 
vector 

Historical demand 
… 

Historical demand contains information on patterns, trends, and seasonality. It can be 
derived from actual deliveries and is provided to the model at three different levels: 

 

… on customer 
and article level 

Historical demand for the specific customer and the specific article. Numerical 
vector 

… on customer 
and article level 

Historical demand of the specific customer for all other articles purchased. Numerical 
vector 

… on customer 
level of the article 

Historical demand of all other customers who purchase the specific article. Numerical 
vector 

Order frequency Number of times a customer has ordered an article within a defined period. Numerical 
scalar 

Average order 
quantity 

Mean order quantity of an article for a specific customer within a defined period. Numerical 
scalar 

Prediction 
timestamp 

Cyclic encoding of the time in the year. Numerical 
vector 

Start-of-
Production (SoP) 

Difference between the SoP and the prediction timestamp. Numerical 
scalar 

Demand 
announcements 

In certain organizational units, demand is announced in advance. In this case, the 
VDA4905 standard has been established. Both current and revised announcements are 
included in the model. 

Sparse 
array 

Customer 
reliability 

Based on historical demand announcements and actual demand, the reliability of the 
announcements can be quantified numerically. 

Sparse 
array 

External indices Publicly available indices provide information on global economic conditions, 
industry trends, and logistics factors. 

Numerical 
vector 
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Machine Learning Algorithms – Design of 
Experiment 
At the center of the proposed process chain is an AI-
based model that aims to map the relationship 
between input and output data as accurate as possible 
and has the highest possible generalization capability. 
Established methods for trend prediction such as the 
“Autoregressive Integrated Moving Average” 
(ARIMA) (Shumway & Stoffer, 2017) and the open 
source library Prophet (Taylor & Letham, 2018) are 
initially used as a baseline. A central aspect of the 
research question is the comparative performance 
analysis between conventional methods and machine 
learning based models. In order to achieve a high 
model quality, a systematic test matrix is applied to 
the task and examined with regard to its suitability. 
The overall structure is illustrated in Figure 2. 
 
Both customers and articles can exhibit similar or 
contrasting patterns in terms of their input/output 
behavior, which are systematically analyzed as part of 
the feature extraction process by forming clusters. 
Clustering algorithms such as k-Means (Lloyd, 1982) 
or DBSCAN (Ester, M., Kriegel, H. P., Sander, J., & 
Xu, X., 1996) are used to group customers and 
articles. This improves the model's learning ability 
and data structure. Since the demand announcements, 
including past revised demand announcements, are in 
a generalized format and in this case include a large 
number of input dimensions, compression or 
convolution can improve training and data structure. 
This can be done on the feature extraction side by an 
autoencoder that learns a dimension-reduced latent 
representation of the input data (Hinton & 
Salakhutdinov, 2006). This representation contains 
almost the original information content and enables a 

reduction in model size and more efficient 
processing. Instead of dimension reduction at the data 
pre-processing level, convolutional layers can also be 
used at the network architecture level to enable 
efficient data propagation. As a reference, the 
convolutional networks are contrasted with pure 
feedforward networks. Another decisive aspect is the 
comprehensibility and explainability, which is crucial 
for acceptance and trust in the AI application 
(Afroogh et al., 2024). The probabilistic modeling of 
the output contributes to the interpretability and 
explainability of the model. In addition, architecture-
independent model-agnostic methods such as SHAP 
can be used to increase transparency and 
interpretability. Furthermore, rule-based machine 
learning approaches with limited complexity can 
provide additional insight into traceability and 
explainability. Here, the advantages of traceability 
have to be evaluated against any losses in model 
quality. Although the processes of deliveries and 
orders represent recurring events that could be 
adequately modeled formally by recurrent neural 
networks (RNNs), specific requirements speak 
against the use of this architecture. A central aspect 
of the problem is the need to generate not only point 
predictions (quantities or points in time), but also 
probability distributions for future events. This is 
particularly crucial as decisions in procurement 
scheduling are typically made under uncertainty. In 
addition, the cumulative demand over a defined 
period of time is more relevant than isolated 
individual values, as this is directly linked to resource 
planning and allocation. However, the feedback of 
data within recurrent architectures poses considerable 
challenges. 

 

Figure 2: Design of experiment for machine learning algorithms. 
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In particular, either a large number of possible 
scenarios have to be modeled or probabilities cannot 
be adequately taken into account. These limitations 
would reduce the validity of the predictions and 
impair the practical applicability of the model. For 
this reason, approaches are preferred that can directly 
predict probabilities for future periods on the basis of 
historical data. 
 
Model Output 
Probabilistic modeling enables demand and 
procurement time to be expressed as a function of 
their probability of occurrence. This provides the 
basis for risk- or cash flow-optimized procurement 
scheduling and warehousing. A key advantage of this 
approach lies in the subsequent adjustment of the 
desired delivery reliability through user interaction. 
Quantifying the risk increases transparency and 
promotes acceptance and trust in the AI-based system 
(Magnus Liebherr et al., 2025). Modeling multiple 
output layers enables the simultaneous estimation of 
multiple target values. Typically, the loss functions to 
be minimized include the difference between the 
target variable and the prediction. The output can be 
calibrated to any quantile 𝑞 ∈ (0,1)  by an 
asymmetric weighting of over- and underestimation: 
 𝐿(𝑦,𝑦ො) =  ൜ 𝑞 (𝑦 − 𝑦ො) (1 − 𝑞)(𝑦ො − 𝑦),   𝑖𝑓 𝑦 > 𝑦ො𝑒𝑙𝑠𝑒          (1)

 
The choice of different weightings 𝑞 in several output 
layers enables the simultaneous estimation of 
different quantiles or confidence intervals. By 
providing different confidence intervals and 
interpolation methods, the user can interactively 
explore risk-based scenarios and dynamically adapt 
scheduling parameters to changing framework 
conditions. 
 
Aggregation of Probability Distributions  
The AI-based model generates multivariate quantile 
forecasts for each customer-article pairing. The 
aggregated probability distributions of all customers 
per article are primarily relevant for decision-making 
in procurement scheduling. Depending on the number 
of customers and the granularity of the quantiles, 
these forecasts are calculated either analytically or 
empirically: an analytical convolution combines the 
individual distributions and calculates the resulting 
overall distribution with mathematical precision: 
 𝑃௧௧ = 𝑃ଵ ∗ 𝑃ଶ ∗ … ∗ 𝑃ே (2)
 
The convolution method is suitable due to the 
computational complexity with a lower number of 
customers and lower quantile granularity and 

provides a mathematically exact calculation. The 
Monte Carlo method approximates the resulting 
distribution empirically by sampling. The calculation 
effort can be reduced at the expense of accuracy. 
These methods are based on the assumption of 
stochastic independence between the probability 
distributions generated by the AI. In a global market, 
demand patterns can correlate due to common 
economic factors. If these factors are not fully 
integrated in the AI model, the premise of stochastic 
independence does not apply. The resulting 
systematic errors require an analysis that provides 
information about the demand correlation of different 
customers. Depending on the result of the analysis, 
the systematic errors can be compensated by 
integrating copula models, for example. If there is no 
significant correlation between certain customers, 
uncertainties can be compensated for by temperature 
scaling. 
 
Probabilistic Calibration 
Despite the use of regularization methods, machine 
learning algorithms have a tendency to overfitting, 
especially in more complex architectures (Sun et al., 
2017). This overfitting leads to overconfident 
predictions for test or validation data. Temperature 
scaling offers an effective approach to improve 
calibration by introducing a scalar parameter 𝑇 that 
scales the output distribution of the logits. 
Temperature scaling was originally developed for 
classification models (Chuan Guo et al., 2017). In 
2020, Utpala & Rai show that the concept can also be 
applied to quantile calibrations in regression models 
(Utpala & Rai, 2020). The temperature parameter 𝑇 
is applied to the distribution function and can be 
estimated based on past data. 

4 INITIAL RESULTS AND 
DISCUSSION 

The process chain presented offers a generalized, AI-
based approach to forecasting demand and 
procurement time. By integrating probabilistic 
modelling, the aggregation of individual customer 
demand at article level and temperature scaling, the 
system enables a realistic quantification of 
probabilities of occurrence and supports risk-adjusted 
and cash flow-optimized scheduling. Both human 
schedulers and downstream software agents can use 
the AI-supported forecasts to optimize decisions, 
increase delivery reliability and reduce storage costs. 
Explicit risk quantification increases the transparency 
of the system, thereby promoting user acceptance and 
building trust. 
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A first exemplary aggregated demand forecast over 
52 weeks for a reference article (Figure 3) shows that 
the spread of the confidence intervals increases with 
increasing forecast horizon. In this case, the base 
model slightly underestimates demand, but the actual 
values are predominantly within the 90 % confidence 
interval (without applying temperature scaling). 
 

 
Figure 3: Exemplary aggregated demand forecast over 52 
weeks. 

The completion of the process chain includes a 
systematic analysis and optimization of model 
architectures and hyperparameters in order to further 
increase the prediction quality. Future work will 
address the adaptation of the process chain to the 
prediction of procurement times, the integration of 
explainable AI methods to increase traceability and 
the extension to correlated demand patterns in global 
supply chains using copula models. The presented 
AI-based process chain makes the central advantages 
of AI usable for SME in procurement scheduling by 
enabling risk-conscious, efficient and transparent 
scheduling, which both reduces storage costs and 
sustainably increases delivery reliability. 
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