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Abstract: Generative AI and large language models (LLMs) offer significant potential for automating the extraction of
structured information from web pages. In this work, we focus on food product pages from online retailers and
explore schema-constrained extraction approaches to retrieve key product attributes, such as ingredient lists
and nutrition tables. We compare two LLM-based approaches, direct extraction and indirect extraction via
generated functions, evaluating them in terms of accuracy, efficiency, and cost on a curated dataset of 3,000
food product pages from three different online shops. Our results show that although the indirect approach
achieves slightly lower accuracy (96.48%, −2.27% compared to direct extraction), it reduces the number of
required LLM calls by 95.82%, leading to substantial efficiency gains and lower operational costs. These
findings suggest that indirect extraction approaches can provide scalable and cost-effective solutions for large-
scale information extraction tasks from template-based web pages using LLMs.

1 INTRODUCTION

Recent advances in large language models (LLMs),
such as OpenAI’s ChatGPT, Meta’s LLaMa, and
DeepSeek’s V3, have significantly expanded the pos-
sibilities for automated language understanding and
generation in a wide range of applications, including
text and code generation, classification, and image un-
derstanding. This paper focuses on automation in web
scraping for food product pages, which often include
attributes such as product name, ingredient list, nu-
tritional values, and alcohol content. Although basic
attributes such as name or price are often embedded
using standardized formats like JSON-LD (modeled
with, e.g., Schema.org), more product-type specific
details typically require custom extraction. We ad-
dress this challenge by targeting selected product at-
tributes as examples, including the nutrition table and
ingredient statement (as defined by EU Regulation
No. 1169/2011). However, the presented approach is
designed to be general and can be adapted to extract a
wide range of structured information from HTML, or
other structured documents.

Automating the extraction of rich product infor-
mation from online food retailers enables a wide
range of downstream applications, including real-
time competitor price and ingredient analysis, regu-

latory compliance monitoring such as allergen label-
ing under EU law, nutritional search and filtering for
consumers, assortment planning, and the creation of
structured product catalogs to support aggregator ser-
vices such as automated knowledge graph population.
In this work, we enforce a schema-constrained out-
put, allowing the extracted data to seamlessly inte-
grate into these downstream tasks.

In conventional web scraping, data is often ex-
tracted from HTML using manually defined func-
tions tailored to the structure of a given site. Al-
though product pages within a single shop are often
template-based and follow a consistent layout, struc-
tures can vary considerably between different shops.
Even within a single shop, subtle structural differ-
ences, such as layout variations or optional attributes,
may occur. These inconsistencies present challenges
for automated extraction approaches relying on gen-
erated functions, potentially reducing their robustness
and generalizability.

To this end, we investigate the potential of LLMs
to generate extraction logic automatically. We com-
pare and improve two approaches discussed by Kros-
nick and Oney (Krosnick and Oney, 2023): direct ex-
traction, where the model directly extracts data from
the (compressed) HTML or its text content, and in-
direct extraction, where the model first generates a
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function that performs the extraction. Our improve-
ments include the use of newer reasoning models,
schema-constrained outputs via structured prompting,
and a cost-efficient hybrid strategy that combines both
extraction modes. Since invoking an LLM for ev-
ery individual page is costly, especially in the direct
approach, we aim to minimize unnecessary calls by
identifying when model usage is truly required. This
is essential to achieve an economically viable and
therefore scalable solution.

The remainder of the paper is organized as fol-
lows: Section 2 reviews related work on information
extraction and large language models (LLMs). Sec-
tion 3 describes our extraction approaches for nutri-
tion tables and ingredient lists as representative use
cases. Section 4 presents the experimental results, fol-
lowed by a discussion in Section 5. Finally, Section 6
concludes the paper and outlines directions for future
work.

2 RELATED WORK

Information extraction (IE) is a core task in natural
language processing, which involves the identifica-
tion and structuring of relevant data from unstruc-
tured sources. Web scraping, a key application of
IE, enables the automated extraction of information
from HTML content. Tools such as Scrapy1 and Sele-
nium2 follow rule-based paradigms that require man-
ual adaptation to different web page structures.

In contrast, more recent approaches to HTML-
based information extraction leverage language mod-
els to improve generalizability and minimize human
effort. Gur et al. (Gur et al., 2023) showed that LLMs
perform well in semantic classification of HTML el-
ements, supporting their use in structuring raw web
data. Dang et al. (Dang et al., 2024) employed GPT-
3.5 and GPT-4 to extract Schema.org entities but ob-
served that naive prompting frequently led to invalid,
inaccurate, or non-compliant outputs. These findings
highlight specific error types and motivate several of
the refinements introduced in our approach, such as
ensuring adherence to a predefined schema.

LLMs have also proven effective in code gener-
ation, making them suitable for automatically creat-
ing web scraping logic. Li et al. (Li et al., 2024)
proposed a framework in which Python classes are
passed to LLMs, which then return objects of these
classes filled with information extracted from natural

1Scrapy: https://docs.scrapy.org/, last visited
27.03.2025.

2Selenium: https://www.selenium.dev/documentation/,
last visited 27.03.2025.

language text. Guo et al. (Guo et al., 2025) extended
this idea by introducing retrieval-augmented genera-
tion, dynamically selecting relevant schema-text-code
examples to improve accuracy. Huang et al. (Huang
et al., 2024) introduced AutoScraper, a two-phase
method that generates XPath-based action sequences
to extract information from websites.

Recent advancements in reasoning-capable LLMs
enable more structured, multi-step problem solving.
This has further motivated the use of such models for
generating and refining reliable extraction functions,
particularly for extracting nutritional information and
ingredient statements.

3 METHODS

In this section, we present the methodologies used in
our research, which combine preprocessing, prompt
design, and LLM-based function generation for the
extraction of structured product information from
web pages. Our methods rely on language models
provided by OpenAI. For most experiments, we use
the cost-efficient reasoning model o3-mini3. To re-
duce the input size and improve model efficiency, all
HTML pages are preprocessed using two different
compression techniques.

The core of our study consists of two comple-
mentary information extraction approaches: a direct
approach and an indirect approach. The direct ap-
proach extracts information from compressed HTML
or plain text using structured prompting. Struc-
tured outputs are obtained by leveraging OpenAI’s
response format functionality to parse model re-
sponses directly into Pydantic4-based data models.

The indirect approach dynamically generates cus-
tom extraction functions, which are then applied to
the HTML content to retrieve structured informa-
tion. For generating these functions, we use gpt-4o5

alongside o3-mini. To ensure schema adherence,
a JSON representation of the data model, generated
using the Instructor6 package, is embedded in the
prompts used for function generation.

In future work, we plan to evaluate our method-
ology with alternative LLMs beyond the OpenAI
ecosystem.

3OpenAI Model o3-mini: https://openai.com/index/
openai-o3-mini/, last visited 27.03.2025.

4Pydantic Package: https://github.com/pydantic/
pydantic, last visited 30.03.2025.

5OpenAI Model gpt-4o: https://openai.com/index/
hello-gpt-4o/, last visited 27.03.2025.

6Instructor Package: https://github.com/instructor-ai/
instructor, last visited 29.03.2025.
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(a) Direct information extraction.

(b) Indirect information extraction with dynamic refine-
ment.

Figure 1: High-level description of the two information ex-
traction approaches presented in this paper.

3.1 Direct Extraction

The direct extraction process involves extracting the
desired information object directly from a given in-
put string, which may be either a compressed HTML
page or its plain text content. To parse the extracted
information into a predefined Pydantic data model,
we make use of the response format parameter pro-
vided in the official OpenAI Python package7.

The corresponding flow chart in Figure 1 illus-
trates the simplicity of this approach. Each product
page is processed separately: After preprocessing, the
page is passed to the o3-mini model along with a
prompt that specifies the required information objects
and the expected output format.

7OpenAI Package: https://github.com/openai/
openai-python, last visited 30.03.2025.

3.2 Indirect Extraction

For indirect extraction, we implemented an algorithm
that leverages the o3-mini and gpt-4o models to au-
tomatically generate extraction functions capable of
retrieving the desired information from web pages.
As illustrated in Figure 1 b), the process begins with
the generation of a decision function based on a set
of ten manually selected pages, including both exam-
ples that contain the target information objects and
those that do not. This function predicts the presence
of relevant information on a given page using only
its textual content, thus avoiding dependence on the
sometimes inconsistent HTML structure across dif-
ferent web pages.

To enhance robustness, multiple independent de-
cision functions are generated using gpt-4o, each re-
turning a Boolean result. The final decision is made
by majority vote.

We then iterate over all product pages of a given
webshop. If no extraction function has been created
yet, we select the first page for which the decision
function returns True and use it to initiate the gener-
ation of an extraction function. This process consists
of two steps. First, we perform a direct extraction to
obtain a reference object containing at least 80% of
the fields defined in the target Pydantic model. This
object serves as the basis for generating an initial ex-
traction function using the o3-mini model.

If the similarity metric described in Section 4.2
yields a perfect score of 1.0, the function is ac-
cepted. Otherwise, a refinement loop is initiated:
Guided by error feedback from the similarity evalua-
tion, the function is iteratively refined using o3-mini
by adding the error feedback to the prompt, up to five
times. If none of the refinements achieves a similarity
score of 1.0, up to three alternative functions are gen-
erated from scratch, each with their own refinement
cycles. The best-performing function — either per-
fect or closest to the reference object — is retained.

Once a reliable extraction function is available, we
apply it to the remaining pages. For each page, all ex-
isting extraction functions are executed and the result
with the highest number of extracted attributes is se-
lected. If none of the functions produces a valid result,
but the decision function indicates that relevant infor-
mation is present, a new extraction function is gener-
ated and processed following the same procedure.

3.3 Web Page Compression

To reduce the context size of each web page before
passing it to an LLM, we applied two preprocess-
ing steps that remove specific elements, attributes,
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and other parts of the HTML document. All HTML
source manipulation was performed using the Beauti-
fulSoup4 Python package8.

The first step, referred to as HTML COMPRESSED,
removes the following HTML5 elements: <head>,
<footer>, <header>, <script>, <iframe>,
<path>, <style>, <symbol>, <noscript>, <svg>,
<g>, <use>, and <option>. In addition, all attributes
are stripped from HTML tags - except for “class”
and “id” - since only these usually hold semantic
meaning and are required to define CSS selectors.
The resulting HTML document is further optimized
by removing all whitespace between tags and
eliminating HTML comments.

The second step extracts only the plain text con-
tent from the HTML COMPRESSED document, by using
BeautifulSoup4's get text method. We refer to this
variant simply as TEXT. Both formats serve as input
representations for the LLMs used in our experiments.

3.4 Response Model

In both direct and indirect extraction approaches, we
enforce the output to adhere to a Pydantic model.
This facilitates generalization of our work and sim-
plifies integration into existing workflows and error
handling.

For this study, we base the implementation
on a subset of attributes belonging to the class
FoodBeverageTobaccoProduct9 from the GS1 Web
Vocabulary. The Web Voc is a semantic web ontology
officially marketed as an extension to schema.org’s
eCommerce class suite (Product, Offer, etc.).

class FoodBeverageTobaccoProduct(BaseModel):
" A food, beverage or tobacco product. "
[...]
ingredient_statement: Optional[str] = \
Field(
None, description="""
Information on the constituent
ingredient make up of the product
specified as one string.

Additional description:
- Remove unnecessary prefixes
""",

)

Listing 1: Exemplary portion of the FoodBeverage-
TobaccoProduct Pydantic class.

8BeautifulSoup4: https://pypi.org/project/
beautifulsoup4/, last visited 17.03.2025.

9GS1 Web Voc - FoodBeverageTobaccoProduct: https:
//gs1.org/voc/FoodBeverageTobaccoProduct, last visited
18.03.2025.

Listing 1 illustrates a portion of our defined Py-
dantic model for the expected output. At its core is
the class FoodBeverageTobaccoProduct, which de-
fines eight attributes. Seven of which represent nu-
tritional values, selected according to EU Regulation
No. 1169/2011. Each nutritional attribute is typed
as QuantitativeValue10, containing two primitive-
typed attributes: value and unit code.

We import the field descriptions from the original
ontology and pass them to the LLM for both the direct
and indirect approach.

For the ingredient statement attribute, we
added supplementary instructions directly within the
field description to guide the model’s output. Embed-
ding such instructions directly into the schema im-
proves the clarity and consistency of the expected out-
put. This design ensures that the LLM receives pre-
cise, field-level guidance from the schema itself - re-
ducing ambiguity and increasing the accuracy and re-
liability of the generated responses.

4 EXPERIMENTS

4.1 Dataset

The data set consists of 3,000 products collected from
three German online shops between March 2024 and
January 2025, each contributing 1,000 food products.

Each product has been manually classified accord-
ing to the Global Product Classification (GPC)11 sys-
tem at the brick level. The products in the data set
come from a variety of different product categories
and can be assigned to a total of 207 different bricks.

If available, the ingredient lists and nutritional ta-
bles were extracted from the product web pages using
a web scraper. Of all food products, 132 lack only the
nutrition table, 160 have only the ingredient statement
absent, and 184 are missing both.

To standardize the extracted values, a gpt-4o-
based transformation procedure was applied to con-
vert the raw nutritional data into the target format.
This process was further validated using a rule-based
approach to ensure consistency and correctness. In
addition, the results were manually reviewed to verify
accuracy.

The ingredient list string had unnecessary pre-
fixes, such as ”Zutaten: ” (engl. ”Ingredients: ”) re-
moved. No additional processing was performed.

10GS1 Web Voc - QuantitativeValue: https://gs1.org/voc/
QuantitativeValue, last visited 29.03.2025.

11GS1 GPC Browser: https://gpc-browser.gs1.org/, last
visited 30.03.2025.
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Figure 2: Comparison of average token counts per docu-
ment for the original HTML, HTML COMPRESSED, and
TEXT representations. For the compressed formats, the rel-
ative compression rate compared to the original HTML is
also shown.

Figure 2 illustrates the resulting compression rate
after applying the two preprocessing steps discussed
in Section 3.3.

4.2 Accuracy Evaluation

To evaluate the accuracy of our information extraction
strategies, we developed a custom similarity func-
tion for the FoodBeverageTobaccoProduct class.
This function quantifies the similarity between two in-
stances on a scale from 0 to 1. Throughout this paper,
we use the term attribute to refer to JSON keys that
represent fields of the structured product data model.

The similarity function iterates over all attributes
of the extracted object, comparing them with the
corresponding values in the ground-truth instance
provided by the data set. For primitive data
types, equality is checked using the standard equal-
ity operator. For attributes associated with nested
NutritionMeasurementType fields, the similarity
function is applied recursively to both the extracted
and ground-truth instances. If the values of an at-
tribute match, a local similarity score of 1 is assigned.
Otherwise, one of three error types is recorded: Ad-
ditionalAttributeError, MissingAttributeError, or
ValueError, depending on the nature of the mis-
match.

Each attribute is thus assigned a local similarity
score between 0 and 1, depending on whether the ex-
tracted value matches the ground-truth value exactly
or only partially (e.g., based on string similarity). The
overall similarity score is then calculated as the aver-
age of all top-level attribute scores. This score reflects
how closely the extracted instance matches the ground
truth and serves as the basis for evaluating the perfor-
mance of the extraction strategies.

Table 1: Accuracy values for the direct extraction conducted
using the o3-mini model. The values have been calculated
according to our similarity function.

Shop HTML COMPRESSED TEXT
Globus 97.77 96.00

Edeka24 98.46 96.69
Supermarkt24h 98.05 95.44

Table 2: OpenAI API pricing specification12.

Category o3-mini gpt-4o
Input ($ / 1M Tokens) 1.10 2.50
Cached Input ($ / 1M Tokens) 0.55 1.25
Output ($ / 1M Tokens) 4.40 10.00

4.3 Direct Extraction

To evaluate the direct approach, we extracted infor-
mation structured according to the response model
from both compressed and plain text versions of the
source files, as described in Section 3.1. The results,
presented in Table 1, indicate that the direct approach
performs well for both document types, with slightly
better performance on the HTML COMPRESSED version.

Due to the substantial costs involved, this extrac-
tion was performed only once, as depicted in Figure 3.
The costs were calculated according to the pricing
model outlined in Table 2.

4.4 Indirect Extraction

In our experiment, we executed the algorithm de-
scribed in Section 3.2 ten times for each shop, as
we observed noticeable variability in the resulting
accuracy scores. Figure 3 shows these results and
illustrates that all three shops can be successfully
processed using the proposed algorithm; however,
the accuracy values vary between runs and lack sta-
bility, reflecting the inherent variability of the ap-
proach. This variability is primarily caused by the
non-deterministic behavior of the o3-mini model
during the generation and refinement of extraction
functions. Additionally, randomizing the order of the
products before each run may lead to the selection of
suboptimal pages for initial function generation, fur-
ther contributing to performance fluctuations.

To evaluate the quality of the decision functions
generated by gpt-4o, we conducted an additional ex-
periment for each shop, measuring classification ac-
curacy against our data set. Across all shops, the
decision functions achieved an average accuracy of
97.34% over ten runs.

12OpenAI Pricing: https://openai.com/api/pricing/, last
visited 26.03.2025.
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Figure 3: Costs occurred during the direct extraction for
HTML COMPRESSED (left) and TEXT (middle) and the
indirect extraction performed for HTML COMPRESSED
(right). The indirect extraction has been performed ten
times, costs are averaged.

Figure 3: Accuracy value distribution for each shop across
ten independent runs.

During each run, an average of 2.26 functions
were generated and refined 3.96 times across all
shops. Additionally, 36.06 direct extraction requests
were made to find suitable reference objects for the
function generation and refinement process. In total,
this resulted in 44.18 calls to the o3-mini model per
run. Furthermore, five additional requests were sent
to the gpt-4o model to generate the decision func-
tion.

5 DISCUSSION

In this paper, we explored two approaches for extract-
ing information from product web pages using large
language models (LLMs): direct and indirect extrac-
tion. Both approaches adapt to user-provided data
models and demonstrated strong performance in ex-
tracting nutritional information and ingredient lists.

The indirect approach offers significant efficiency

gains by dynamically generating and refining extrac-
tion functions. Its performance is comparable to that
of the direct approach, particularly for web pages fol-
lowing consistent templates, such as those used by
online shops, internet forums, or news outlets. This
consistency enables efficient iterative generation of
reusable extraction functions and substantial cost re-
ductions in large-scale web scraping scenarios. For
example, while the direct approach required 1,000 re-
quests per run for a single shop, the indirect approach
averaged only 44.18 requests, a reduction of 95.82%
when querying o3-mini, not including the five static
requests to gpt-4o for the decision function.

While direct extraction generally incurs higher
costs, it achieves slightly better overall accuracy
(+2.27%). One notable observation from the direct
extraction experiments was a slight decline in accu-
racy for one shop, attributed to missing ingredient
statements for certain products such as fresh fruits
and vegetables. In these cases, the model (o3-mini)
tended to hallucinate attributes, for instance by in-
ferring ingredients from simple product names (e.g.,
”Braeburn apple”).

Variability in accuracy was also observed in indi-
rect extraction experiments, indicating room for fur-
ther improvement. Refining the attribute-level or ag-
gregated meta-attribute decision procedures could en-
hance performance.

Figure 5: Attribute list for the GPC brick code 10000164
- Bread (Perishable), showing a subset of defined attribute
values for attribute 20000190 - Type of Bread.

For template-based product pages, the indirect ap-
proach appears to be the more scalable option, as its
efficiency depends on the number of unique templates
rather than the number of individual pages. However,
broader applicability remains to be tested. Certain
product attributes, such as those defined by the GPC
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taxonomy, may not always be accessible via CSS or
XPath selectors, as they can be nested within prod-
uct descriptions or other unstructured text rather than
explicitly encoded in the HTML source.

As illustrated in Figure 5, the GPC attribute list
for bread products contains detailed attribute val-
ues that are often embedded in unstructured formats.
This complexity suggests that, for such cases, di-
rect extraction may outperform indirect extraction ap-
proaches.

6 CONCLUSION

Our comparative study shows that both direct and in-
direct LLM-based extraction approaches can effec-
tively automate information retrieval from product
web pages. The indirect approach offers substan-
tial cost savings and comparable accuracy, particu-
larly when pages follow largely consistent templates,
even if minor structural variations exist within a sin-
gle shop.

Future work will focus on evaluating a wider
range of LLMs, refining the dynamic function gener-
ation process, and expanding applicability to more di-
verse web structures and attribute types. In particular,
our goal is to utilize attributes defined in the GPC tax-
onomy with our methods by reliably classifying prod-
ucts to their lowest hierarchy level (brick), thereby
improving automated attribute extraction from com-
plex product pages.

Ultimately, our results suggest that LLM-based
automation could serve as a practical and scalable al-
ternative to manually defined web scraping, enabling
seamless integration with existing data models and a
wide range of downstream applications.

CODE AVAILABILITY

All Jupyter notebooks, scripts, and data can be found
in repositories within the following group: https://
gitlab.rlp.net/ISS/smartcrawl.
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