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Abstract: Urban traffic monitoring is crucial for mobility, but the implementation of fixed sensors is costly and leads to 
restricted coverage. Floating Car Data (FCD) is emerging as an option, but its low penetration makes accurate 
traffic flow estimation difficult. This research proposes a Long Short-Term Memory (LSTM) model to scale 
FCD-based traffic estimates by learning flow patterns from routes with existing sensors. The model is trained 
with data from the most correlated sensors, but never the same one used for testing. The model identifies flow 
patterns from the available sensors and applies them to related paths. The findings indicate that the strategy 
is effective on routes with consistent flow but has limitations in regions with high traffic variability. This 
work contributes to the advancement of FCD scalability methods, expanding the coverage of urban traffic 
estimation without the need for new infrastructure. 

1 INTRODUCTION 

As the population of urban areas continues to increase 
across the world, cities and municipalities are 
showing a growing interest in better leveraging 
technology to manage their urban area transportation 
networks more effectively.  With the advent and 
acceleration of the Internet of Things (IoT), traffic 
management organizations can deploy fixed based 
sensors providing them with real-time traffic data 
such as vehicle speeds and counts for a given road 
segment or route.  Unfortunately, when using 
traditional closed-loop technologies the cost to 
deploy physical traffic monitoring devices across an 
entire urban area comes at a significant cost.  This has 
led traffic managers to seek alternative, lower-cost 
solutions; however, even when using lower-cost 
sensor technologies for road traffic monitoring as 
explored in (Bernas et al., 2018), the cost to deploy 
and maintain the large number of devices needed to 
fully cover an entire network can remain substantial.  
As a result, many regions are facing the challenge of 
having incomplete traffic data. 
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The use of Floating Car Data (FCD), which 
involves the collection of anonymised real-time data 
from GPS-enabled devices used by road users, has 
emerged as a promising tool for applications such as 
real-time traffic monitoring, travel time estimation, 
and traffic flow prediction (Houbraken et al., 2018).  
By integrating FCD with data from traditional road 
sensing device data, traffic conditions can also be 
estimated in areas lacking sensor coverage.  However, 
a notable limitation of FCD is that it represents only 
a sample of the total traffic volume, as data collection 
depends on users of specific platforms (e.g., TomTom 
or Google). To solve this, scaling techniques are 
employed to adjust the FCD data to reflect the actual 
traffic flow. Due to the complexity and non-linearity 
of this process, standard modelling techniques often 
do not perform well enough, and Machine Learning 
(ML) methodologies offer a practical solution to 
effectively capture intricate patterns within the data. 

The aim of this paper is to analyse the 
effectiveness of using a specific approach that can be 
used to scale FCD data on sensorless roads allowing 
traffic management organizations to have a 
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comprehensive understanding of traffic volumes for 
their entire network, even where sensors are not 
deployed.  The approach specifically analyzed in this 
research is the use of a Long Short-Term Memory 
(LSTM) machine learning model to scale FCD for 
roads without sensor data.  In the scenario, each of the 
roads where both sensors and FCD are available is 
used to train an individual scaling model and then to 
test the scaling these models are used to scale data 
using only the TomTom data from another router. For 
each route the route with the most correlated 
TomTom data from the set of training routes is used 
to scale the FCD data for the unseen route. This 
methodology is also important because it helps to 
determine whether training the model with data from 
just one sensor, rather than a group of sensors at once, 
can achieve effective results while improving 
computational efficiency, reducing the complexity in 
the training process and allowing the model to be 
adapted to the characteristics of each specific road. 

2 RELATED WORKS 

In the mid-2000s, with the increased use of GPS 
enabled mobile phones and vehicles collecting 
vehicle location and speed data, researchers began to 
evaluate how FCD could be used to support improved 
traffic forecasting (De Fabritiis et. Al., 2018).  
Initially, traditional statistical models such as 
Autoregressive Integrated Moving Average models 
(ARIMA), Kalman Filter or basic regression, tree-
based or ensemble machine learning algorithms were 
used for traffic flow prediction (Berlotti et al., 2024).  
However, over the last several years, as computing 
power has increased, big data and machine learning 
have become key components in predicting and 
managing traffic flows which has led to an increase 
in the research focused on using advanced neural 
network and deep learning techniques that leverage 
FCD for traffic prediction (Mystakidis et al., 2025; 
Almukhalfi et al., 2024; Vázquez et al., 2020). 

This research paper focuses on using an LSTM 
architecture for our FCD data scaling.  LSTM is one 
of the most used neural network-based algorithms for 
time series predictions (Gomes, 2023).   

When looking at the use of LSTM for traffic 
forecasting, LSTM models have been studied for use 
in traffic flow and speed forecasting since 2016 
(Duan et al., 2016) while more recent research 
indicates a trend towards using hybrid models where 
the LSTM architecture is combined with other types 
of architectures such as a Convolutional Neural 

Network (CNN), ARIMA or regression model such 
as in (Wang et al., 2024) or (Wang et al., 2023). 

The consideration of correlation between road 
segments has occasionally been leveraged for traffic 
modelling.  For example, the correlation between 
routes has been exploited to create road segment 
groupings that determine model parameters (Tu et al., 
2021) and the correlation strength between time-
series data from monitoring points has been used to 
determine the data sequence length and lag time for 
forecasting for specific routes (G. Dai, 2019). 

Given that the use of an LSTM model for traffic 
prediction has become a common practice, the real 
novelty of our approach lies both in how we work to 
scale the FCD data for sensorless routes and how we 
use the correlation strength of FCD data between 
sensor-measured and sensorless routes to determine 
which model to use for the scaling, neither of which 
appear to be specific topics of current research. 

3 RESEARCH METHODOLOGY 

The area chosen for the development of this study is 
the metropolitan city of Catania, located on the island 
of Sicily, Italy. Catania is currently suffering from a 
wide range of problems related to poor urban 
planning, low levels of investment in mobility and 
infrastructure, and an increasing dependence on cars 
for travel. These challenges also lead to critical levels 
of environmental problems and a sharp decline in the 
quality of life of the city's residents (La Greca et al., 
2018). Currently, Catania ranks 83rd out of 107 cities 
in the annual ranking for quality of life published by 
Sole 24 Ore (Catania Today, 2024). Inevitably, it is 
important to develop methodologies that assist in 
improving mobility within the city.  

The authors are currently involved in a research 
project aimed to develop a machine learning model to 
predict traffic flows in areas not covered by sensors, 
using data from sensors installed on specific routes 
and FCD accessible for the entire road network.  

As said in the Introduction, a notable limitation of 
FCD is that it represents only a sample of the total 
traffic volume, as data collection depends on users of 
specific platforms (e.g., TomTom or Google). To 
solve this, scaling techniques must be applied to 
adjust the FCD data to reflect the actual traffic flow. 

This paper presents a machine learning model to 
establish the relationship between the sensor data, 
which covers only a few specific roads but represents 
the users on those routes, and the FCD data, which 
covers almost the entire city but with a limited 
representation of about 5%. 
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As previously stated, the primary idea proposed 
is to analyze the effectiveness of using a specific 
approach designed to scale FCD data in roads where 
sensor data may not be available. The method 
involves using a LSTM machine learning model to 
learn the patterns presented by sensor data in other 
routes and use this information to scale the FCD data 
for routes that lack sensor information. In this 
approach, the model is trained using only data from 
one or a maximum of two sensors, and by selecting 
those routes whose TomTom data is the most 
correlated with the one we want to scale. 

The results outlined in this paper will indicate 
that the strategy is efficient on routes with consistent 
flow and represents a good solution to improve 
computational efficiency and training complexity, 
providing the capacity to have accurate traffic flow 
estimates for routes with defined characteristics, even 
if they lack real traffic flow data. 

4 DATA SOURCES 

This study collects data from three main sources: The 
Intelligent Transport System (ITS) of University of 
Catania, the TomTom database, which collects FCD 
using a network of GPS-enabled devices, and weather 
data from https://meteostat.net/it/, which provides 
hourly weather data such as temperature, 
precipitation, wind speed and direction. 

The ITS is managed by the University of Catania 
and is able to continuously monitoring, evaluating 
and traffic forecasting, traffic conditions in real time, 
providing a complete overview of the whole 
transportation system. Furthermore, it provides users 
with relevant information to help them make 
informed decisions regarding route selection (Torrisi 
et al., 2018). Data were collected from 21 microwave 
traffic counters located throughout the city which 
collect essential data including timestamp, traffic 
volume, traffic direction, and lane occupancy. 

Twelve traffic sensors with data recorded at 5-
minute intervals were selected, considering the period 
from October 1, 2022, to December 31, 2022. The 
quality of the available data led to the filtering of this 
time frame. The majority of the sensors monitor a 
single road, recording dynamic traffic patterns that 
represent regional traits in a single direction. 
However, there are a few cases where sensors are 
either positioned on the same road but in different 
locations or they monitor traffic in opposite 
directions.  

The second data set consists of traffic samples 
collected by the TomTom database, which receives 
FCD through a network of GPS-enabled devices, 

such as smartphones, car navigation systems and 
vehicles equipped with TomTom's own navigation 
system. This system allows the transmission of 
information, such as anonymous location and speed 
data, to be transmitted to TomTom's servers. The 
collected data is aggregated, processed and 
distributed, to provide real-time traffic information 
over large geographical areas (TomTom, 2025). The 
FCD sample analyzed corresponds to the same time 
period and road sections monitored by the physical 
sensors. It includes data on traffic flow, travel times, 
and harmonic average speed, recorded at 1-hour 
intervals. 

Finally, the weather data, which included hourly 
weather-related data such as temperature, pressure, 
wind speed and wind direction, was merged with the 
combined sensor and FCD dataset. 

5 DATA PREPROCESSING 

The pre-processing phase of our research consists of 
verifying the quality and reliability of both datasets, 
as well as managing data standardization, dealing 
with outliers and missing data, and ending with the 
unification of both datasets. 

For the sensor dataset, the roads analyzed were 
categorized into three types: single-lane roads, roads 
with two lanes in each direction, and two-lane roads 
with one lane per direction. Each type of road, due to 
its individual characteristics, requires specific pre-
processing steps to better handle the data. For two-
lane roads in the same direction, the vehicle flow for 
both lanes was aggregated into a unified time series 
for the total traffic flow, while two-lane roads with 
one lane per direction required disaggregation into 
separate time series to capture different directional 
information.  

The final sensor names follow a pattern extracted 
from the data files. For one-way roads, the zone name 
is taken directly from the file. For two-way streets, 
the data is split into two directions, and each direction 
is given an identifier in the final name, clearly 
indicating the direction of traffic. So, the final list of 
sensors combines an inherent code from the file, the 
street name and, where applicable, the direction of 
flow.  Here is the list of the final routes/sensors used 
in the study: 
 MT6aSuperstradaCataniaPaterno 
 MT6bSuperstradaCataniaPaterno 
 MT7aVialeLorenzoBolanocirconvallazione 
 MT9ViaSantaSofiaVersoCarubella 
 MT9ViaSantaSofiaVersoCatania 
 MT10aViaPassoGravina 
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 MT10bViaPassoGravina 
 MT13ViaNuovaceloVersoCatania 
 MT13ViaNuovaceloVersoCerza 
 MT14aVialeGiuseppeLainoVialeEnzoLongo 
 MT14bVialeGiuseppeLainoVialeEnzoLongo 
 MT16ViaAccicastello 
 MT17aSS114VialeAfrica 
 MT18bViaAFleming 

In addition to this processing, one of the sensors 
exhibited a different pattern from the others, 
recording data at 10-minute intervals instead of the 
usual 5-minute periods. To ensure standardization, its 
values were adjusted for a 5-minute interval, using the 
average of the data within that period.  

Like many real-world datasets, the sensor data 
contained many missing values and inaccuracies.  
These data issues were due to sensor operational 
problems or malfunctions that can occur due to road 
maintenance or urban greenery issues, which can lead 
to temporary obstructions. To handle the missing data 
values, we adopted a strategy based on the average of 
similar time periods. First, the data were organized by 
indexing the timestamp column, then the missing 
values were filled with the average of the non-missing 
data in the corresponding period within the month, 
considering a grouping that combines the normalized 
month, day of the week, hour and minutes of the 
timestamp. This approach aims to preserve seasonal 
patterns and periodic variations, ensuring that the 
imputed values have the characteristics and patterns 
typical of the analyzed period. Finally, the data were 
converted from float to integer, to ensure the 
consistency of the data processed. 

At the end of the sensor data pre-processing step, 
we added to the dataset some categorical variables 
based on information provided by the research group 
working in the mobility department of the University 
of Catania. These variables relate to the physical 
characteristics of the roads, such as the number of 
lanes, the lane width class and the presence of 
parking. In addition, we created new features based 
on the Timestamp, these features were: ‘Weekday, 
'Day of the month' and 'Time of day'. 

In the TomTom data pre-processing phase, we 
matched the data to the sensors by mapping the 
database route numbers to the associated route/sensor 
names.  In the TomTom dataset, in addition to the 
routes directly corresponding to the roads where the 
real data sensors are installed, information was also 
included from two roads located before each sensor 
road, to represent the inbound traffic flow, as well as 
from two roads that receive flows from the same 
roads monitored by the sensors, to reflect the 
outbounding traffic flow. In the case of the FCD data, 

no missing values were found as they come from 
multiple sources and undergo additional processing to 
smooth out errors. (TomTom, 2021). 

To deal with outliers in both datasets, we used the 
Interquartile Range (IQR) method, a statistical 
technique used to identify outliers by measuring the 
spread of the middle 50% of a dataset, specifically the 
range between the first quartile (Q1) and the third 
quartile (Q3). Two advantages of the IQR method are 
its robustness to extreme values and its non-
parametric nature, which allows it to be applied to 
datasets without assuming a specific distribution 
(Dash et al., 2023). 

Finally, the sensor and TomTom datasets were 
merged based on the Timestamp and route columns. 
To optimize computational efficiency and 
visualization, we aggregated the data from 15-minute 
intervals into 1-hour periods. The traffic count 
columns were renamed to differentiate between 
sensor and FCD flow counts, and finally the order of 
the columns was rearranged according to a predefined 
pattern for data clarity. The pre-processing resulted in 
a dataset with the following variables and containing 
30.589 observations. 

Table 1: Final dataset. 

Features Definition Type 
Zone Region where the sensor 

is installed 
Categorical 

Count FCD Traffic Flow recorded 
with FCD 

Numerical 

Count sensors Traffic flow recorded in 
that sensor 

Numerical 

Hour Each hour of the day Categorical 
Weekday Day of the week Categorical 

Day of Month Day of month in a scale 
from 1 to 31 

Categorical 

Time of the 
Day 

Hour of the Day Categorical 

Number of 
Lanes 

Number of lanes for each 
road (1 or 2) 

Categorical 

Lane Width 
Class 

Width of the lane (1 for 
narrow lanes, 2 for wide 

lanes) 

Categorical 

Parking 
Presence 

Binary features that 
indicate if parking is 

present or not 

Categorical 

Harmonic 
Average 
Speed 

Average vehicles speed Numerical 

15th percentile 
speed 

The speed at or below 
which 15% of observed 

vehicles 

Numerical 

85th percentile 
speed 

The speed at or below 
which 85% of observed 

vehicles 

Numerical 

IN_1 First inbound traffic flow Numerical 
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Table 1: Final dataset(cont.). 

IN_2 Second inbound traffic flow Numerical 
OUT_2 First outbound traffic flow Numerical 
OUT_2 Second outbound traffic 

flow 
Numerical 

Congestion   
Index 

Ratio of the 85th speed to 
free flow speed  

Numerical 

Speed Ratio Ratio of the 85th to 15th 
percentile speed 

Numerical 

Free Flow 
Speed Diff 

Difference between free-
flow speed and observed 

speed 

Numerical 

Temperature 
(C) 

Air temperature in Celsius 
degrees 

Numerical 

Dew Point 
Temperature 

Temperature at which air 
reaches saturation, leading 

to condensation 

Numerical 

Relative 
Humidity 

Ratio of actual to maximum 
possible atmospheric 

moisture 

Numerical 

Rain (mm) Precipitation recorded in 
millimeters 

Numerical 

Wind dir Compass direction from 
which the wind originates 

Numerical 

Wind Speed 
(km/h) 

Magnitude of wind velocity. Numerical 

Pressure 
(hPa) 

Atmospheric pressure in 
hectopascals 

Numerical 

Coco Weather condition indicator  Categorical 

6 FEATURE ENGINEERING 

As our dataset contains a large number of features, it 
is crucial to assess the degree of impact, positive or 
negative, that each of these features has on our model, 
as selecting the correct features aims to improve the 
quality and accuracy of the algorithm’s results 
(Kohonen, 1972). 

To ensure an effective selection of features from 
our final dataset, different approaches were applied 
when working with numerical and categorical 
variables. For numerical variables, we applied the 
correlation matrix to assess the degree of association 
between all variables, eliminating variables that do 
not bring a relevant correlation with our target feature 
while also removing variables that are correlated with 
each other in the model, to avoid information 
redundancy (Kent, 2018). Three different methods 
were used for categorical variables, (i) Chi-Square 
analysis to identify relationships between categorical 
variables (Rana et al., 2015), (ii) regression analysis 
to explore dependencies between independent and 
dependent variables (Alkharusi, 2012), and (iii) 
ANOVA to compare means between different groups 
(Jaeger, 2008). This multi-method approach allowed 

us to evaluate the statistical relevance of each selected 
feature.  

Finally, to optimize model performance, we 
tested the group of chosen models with the three sets 
of features to determine which one yielded the best 
results. 

7 MACHINE LEARNING 
ARCHITECTURE AND 
EVALUATION 

The main goal of this machine learning research was 
to perform a series of tests, exploring different 
variations of the chosen models, increasing the 
complexity and optimizing the parameters, in order to 
identify the most effective approach, both to achieve 
the final objective and to adapt to the specific type of 
data frame used. 

It is important to note that all these changes were 
made in separate steps and incrementally, with the 
results being evaluated after each step. This allowed 
for a more detailed and individualised understanding 
of the results.  

7.1 Training and Test Division 

The division of the data into training and testing was 
done using an approach that ensured that there was no 
overlap between training and testing data. To achieve 
this, we used data from one or more roads to train the 
model and verified its accuracy by testing it with data 
from a new road. 

To determine the groups of roads to use, we 
implemented a correlation matrix between the routes, 
testing the correlation between two different 
variables. The first variable was ‘TomTom count’, 
with the idea that the FCD counts are able to identify 
similarities in the characteristics of a route. The 
second variable selected was the ‘85th percentile 
speed’, as similar traffic conditions and road 
characteristics often result in similar speed patterns. 

Correlations between the routes were calculated 
using Pearson's correlation coefficient, which 
allowed us to quantify the linear relationship between 
the variables on each road (Sedgwick, 2012). 

All tests were performed using both ‘TomTom 
count’ and ‘85th percentile speed’ as the correlation 
index alternately.  To train the models, we consider 
the correlation ranking: for example, if route A had 
the highest correlation with route B, we trained the 
model on route B’s data and evaluated its 
performance on route A.  In addition, we tested 
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variations where the training data included the two 
most correlated routes. 

7.2 Baseline Model: Simple LSTM 

Since the LSTM model is one of the most widely used 
deep learning methods when working with time series 
data, it was chosen as our baseline model for this 
investigation. The LSTM is more effective for time-
series tasks than traditional RNNs because it 
improves long-term memory retention and mitigates 
the vanishing gradient issue. A three-gate 
mechanism—input, forget, and output gates, that aids 
in capturing, managing, and storing pertinent data 
during learning is used for this (Kang, 2017). 

The model was implemented using the Keras 
library in Python (Keras, 2025), which was integrated 
with the TensorFlow library (Tensorflow, 2024), to 
build and train the neural network. The data was then 
processed using the scikit-learn library (scikit-learn, 
2025). We employed the One-Hot Encoding 
technique to deal with the categorical variables, 
which converts them into numerical representations 
that can be used in machine learning models 
(Rodríguez et al., 2018). 

The temporal sequences were processed by a 
single layer of 50 memory units in our initial LSTM 
model, which was set up with the default parameters. 
A dense layer was used for the final prediction. The 
Adaptive Momentum Estimation (Adam) optimizer, 
a first-order gradient-based optimization algorithm 
for stochastic objective functions, was used to train 
this base model. Its running average of the gradient's 
first and second moments is used to determine 
adaptive learning rates for each parameter (Tato, 
2018).  

Since the mean square error (MSE) is the most 
often used loss function in regression models with a 
continuous target variable and an independent 
variable representing the features, the model was 
configured to use it as the loss function. The mean 
squared discrepancies between actual and anticipated 
output are used to calculate it (Pandey, 2022). 

7.3 Model Architecture Refinements 

After working with a simple LSTM as our baseline 
model, we made some refinements to the original 
model to ensure that it could capture more complex 
patterns, improve the generalization capacity of the 
LSTM architecture, and mitigate the possibility of 
underfitting (Jabbar, 2015). 

The first model improvement was to increase the 
depth, expanding the number of layers from 1 to 3, in 

order to increase the learning ability of the model. In 
addition, we also increased the number of units from 
50 to 200 per LSTM layer to enhance feature 
extraction (Yu et al., 2019). 

The subsequent test was a transformation of the 
structure of the previous LSTM model architecture by 
using a variation that included a bi-directional LSTM 
layer instead of a forward only LSTM. A bi-direction 
LSTM layer processes the input sequence from both 
the forward and backward directions. In other words, 
the network has information about the past (from the 
forward pass) and the future (from the backward pass) 
at any given time step. This can improve accuracy in 
situations where context from both directions is 
crucial, like language processing and specific time 
series data (Kim et al., 2023). 

As a final adjustment to the model architecture, 
we evaluated the results from adding a dropout layer 
after each of the LSTM layers. A dropout layer 
stochastically sets to zero the activations of hidden 
units during training, effectively breaking co-
adaptation of feature detectors, and the main 
advantage is its ability to reduce overfitting by 
preventing complex adaptations of feature detections, 
that improves the generalization performance of the 
model (Wu et al., 2015). 

7.4 Hyperparameter Fine-Tuning 

For the fine-tuning phase, we developed a specific 
LSTM architecture adapted to our dataset, using the 
Keras library in Python (Keras, 2025) to improve the 
model's performance. Keras provides several 
optimization techniques and the one we selected to 
use is Random Search. This method tests several 
different combinations of hyperparameters to identify 
which configuration makes the model perform better. 
Based on this process and these results, we fine-tuned 
the following parameters: optimizers, loss functions, 
epochs and batch sizes. 

The random search bases its final results on the 
combination that minimizes the MSE, ensuring 
reliability through cross-validation, where the dataset 
is split into multiple subsets and each subset is used 
for testing while others are used for training, ensuring 
a good generalization level of the model (Meiying et 
al, 2011). In the end, the optimal set of 
hyperparameters was identified based on the 
performance metrics from the random search process. 

7.5 Performance Evaluation  

To verify the results of our models, some 
performance metrics were used for evaluation. The 
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first metric used was the MSE, but for more 
comprehensive results, we also used the Mean 
Absolute Error (MAE) which represents the average 
of the absolute differences between the predicted and 
observed values. Additionally, we used the Root 
Mean Squared Error (RMSE), a measure of the 
standard deviation of the errors and effectively the 
square root of the MSE (Hodson, 2022). Because of 
its insensitivity to short-term forecasts, though, the 
Mean Absolute Percentage of Error (SMAPE) was 
adopted as the primary evaluation measure. As in 
(Chen et al., 2017) defined, the SMAPE is an 
accuracy measure of percentage error; therefore, the 
lower the SMAPE, the lower the prediction error. 

8 RESULTS AND DISCUSSION 

In this section, we present the results of all stages of 
our research, from feature analysis to the final model 
results, including a final evaluation and interpretation 
of the results. 

8.1 Optimal Feature Selection 

According to the correlation matrix, the feature 
‘Count_TomTom’ has a strong positive correlation 
with the target variable, ‘IN_1’ also shows a positive 
correlation, but to a lesser extent. Other speed-related 
features, such as the ‘85th percentile Speed’, 
‘Harmonic Average Speed’, and ‘15th percentile 
Speed’, display moderate positive correlations, in this 
order of strength. The temperature related features 
have weak, but positive correlation. The only strong 
and negative correlation is with the variable “Free 
flow Speed Diff”.   Considering this, we performed 
some tests with a very reduced number of numerical 
variables, keeping only ‘Count_TomTom’, ‘85th 
Percentile Speed’, ‘IN_1’ and ‘Free Flow Speed 
Diff’. 

For the categorical variables, according to the chi-
test, the feature ‘Hour’, ‘Time of the day’, ‘Weekday’ 
and ‘Parking Presence’ should be retained in the 
model. According to the regression analysis, the 
features ‘Month’, ‘Time of the day’, ‘Hour’, ‘Number 
of Lanes’, ‘Lane Width Class’, ‘Parking Presence’ 
and ‘coco’ should be maintained in the model, and 
according to the ANOVA test, all the categorical 
features are valuable and should be kept in the model. 
The model tests were carried out with all three groups 
of variables to see the difference in the efficiency 
between them. 

8.2 Sensor Correlation Analysis 

In order to separate the training and test data, we 
ranked the TomTom data based on Pearson’s 
correlation, as mentioned above. The results are 
shown in Table 2. 

Table 2: Correlation between sensor’s data. 

Sensor Most Correlated 
Sensor 

Correlation 
Index 

MT6a MT7a 0.96 
MT6b MT6a 0.87 
MT7a MT16 0.85 

MT9Carrubella MT13Cerza 0.85 
MT9Catania MT14b 0.83 

MT10a MT10b 0.65 
MT10b MT13Catania 0.90 

MT13Catania MT10b 0.90 
MT13Cerza MT16 0.87 

MT14a MT6b 0.82 
MT14b MT6b 0.64 
MT16 MT17a 0.85 
MT17a MT16 0.85 
MT18b MT10b 0.88 

 
It is important to note that Pearson's correlation 

coefficient was used to measure the relationship 
between roads, taking into account the speed variable. 
This means that the street most correlated with a 
particular road, in terms of speed, may not be the 
same for another road. This is because Pearson's 
coefficient evaluates the linear relationship between 
traffic speeds on different streets (Sedgwick, 2012). 
Therefore, even if two roads present similar speed 
patterns, they may have different correlations when 
compared to other roads, depending on factors such 
as traffic behaviour at certain times, geometric 
characteristics of the road or weather conditions, 
which may affect speed differently. 

8.3 Hyperparameter Selection 

Some changes have been made to our simple LSTM 
architecture based on the results of hyperparameter 
fine-tuning. According to the results of the grid 
search, the changes start with the chosen optimizer, 
switching to Root Mean Square Propagation 
(RMSprop), which is an alternative to the default 
optimizer (Adam), and is often used when the data 
has a large variance (Peng et al., 2024). The loss 
function is MAE, which is also different from the 
default loss function (MSE) of LSTM. The model was 
trained using a batch size of 32, which is more typical 
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and effective in many situations than the default value 
of 64 and running for 6 epochs (instead of the default 
of 10). The purpose of these settings is to optimize the 
model for the particular task of time series forecasting 
with sensor data. 

8.4 Scaling Results 

After running the tests with all combinations of 
features, model types and correlation index, we 
arrived at the results shown in Figure 1. As we can 
see, the best results are obtained using the categorical 
features determined by Linear Regression, only 4 
numerical features.  ('Count TomTom’, ‘85th 
percentile Speed', 'IN_1' and 'Free Flow Speed Diff'), 
optimized hyperparameters, the ‘85th Percentile 
Speed’ as correlation index and a Simple LSTM 
model. The results of this best model architecture can 
be seen more clearly in Table 3, divided into three 
groups of results: good, moderate and weak.  

Table 3: Results best model architecture. 

Route SMAPE MAE RMSE 
Good Results 

MT6b 16.94 13.90 18.30 
MT7a 21.34 25.15 33.43 
MT6a 34.71 33.89 42.87 

MT18b 39.36 7.48 10.18 
MT14a 44.46 70.06 10.91 
MT14b 50.47 9.61 12.35 

Moderate Results 
MT10a 65.64 32.21 38.93 
MT16 66.82 57.06 71.23 

Weak Results 
MT10b 74.89 72.74 77.65 

MT9Carrubella 75.20 20.89 25.47 
MT13Catania 78.04 13.29 18.87 
MT13Cerza 80.59 29.06 38.53 
MT9Catania 80.69 9.92 13.40 

MT17a 103.56 70.27 83.96 

  
Figure 1: Results of all model architectures. 

 
Figure 2: MT6bSuperstradaCataniaPaterno prediction results. 
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For this type of data, the results are classified as 
follows: SMAPE less than 50% is considered good, 
between 50% and 70% is considered moderate and 
above 70% is considered poor. In this way, the 
sensors were grouped into three categories, showing 
that the model has different performances. 

For certain routes, the model is able to predict the 
actual traffic flows fairly well, demonstrating its 
capability of learning sensor data patterns and scaling 
the FCD data with reasonable accuracy, as shown in 
Figure 2, which displays the predicted scaled data as 
compared to the actual sensor counts for the route 
MT6b (MT6bSuperstradaCataniaPaterno) which 
achieved the best SMAPE value of 16.94.  However, 
as can be expected, the performance is not the same 
for all sensors leading us to further analyse the route 
differences. 

8.5 Road Geometry Analysis 

The results obtained with the final machine learning 
model showed satisfactory performance on some 
roads, while on others the performance was moderate 
or unsatisfactory. Given this variation, we started an 
analysis to investigate possible statistical or 
geometric correlations between the characteristics of 
the roads and the performance of the model. 
We can begin our discussion with a more in-depth 
analysis of the best performing sensor, the 
MT6bSuperstradaCataniaPaterno,  that is located in 
one of the main extra-urban arterial roads linking 
Catania with the western hinterland, facilitating the 
movement of vehicles in a north-westerly direction, 
for goods transport and commuting. The road section 
consists of two separate carriageways with two lanes 
in each direction. It is a high-capacity road with 
significant traffic flows, mainly related to commuters 
travelling between Catania and the surrounding areas. 
Traffic flows tend to be higher in the morning and 
evening, with possible slowdowns near the access 
junctions to the Catania ring road. 

The second-best performing sensor, 
MT7aVialeLorenzoBolanocirconvallazione is also 
on a dual carriageway, with two lanes in each 
direction and, in some sections, a wide central traffic 
divider separating the lanes and allowing good traffic 
capacity. 

Regarding the weaker results, such as those of the 
sensors MT13ViaNuovaceloVersoCatania and 
MT13ViaNuovaceloVersoCerza, it can be noted that 
they are located on a road in the southern part of 
Catania that crosses a predominantly residential and 
commercial area, serving as a link between different 
residential and industrial areas and facilitating access 
to the city center. The road has a narrower cross-

section than the main urban arterials analysed so far, 
with only one lane in each direction and large side 
lay-bys for parking. The presence of frequent 
intersections and side entrances reduces the flow 
capacity in some sections, resulting in slower and 
more discontinuous traffic.  

Another weak result, the sensor 
MT17aSS114VialeAfrica, located in the heart of city 
center of Catania, is one of the main arteries 
connecting the southern area to the city center, the 
port area and the waterfront. It is characterized by 
high traffic flows, with peaks at arrival and departure 
times, influenced by commercial activities, public 
transport stops and access to the city center and the 
port. The road section of Viale Africa is wide, with 
several lanes in each direction, with a central 
reservation and wide pavements that facilitate 
pedestrian movement. However, the presence of side 
car parks and junctions contributes to increased 
congestion during peak hours. 

In such contexts, sudden peaks and decelerations 
in traffic flow significantly reduce the accuracy of our 
model’s estimates. 

These results suggest that geometric 
characteristics, such road typology and traffic flows, 
play a fundamental role in the efficiency of the model 
analyzed. Roads with a SMAPE below 50 are high-
capacity arterial roads with significant and stable 
traffic flows. These roads present a relatively stable 
penetration rate of FCD data (i.e. the percentage of 
vehicles tracked by GPS technology in relation to the 
total number of vehicles in transit), which allows for 
a more accurate estimation of traffic flows, whereas a 
low and variable penetration rate can limit the quality 
and reliability of forecasts. This instability, combined 
with factors such as frequent intersections, side 
entrances, and parking areas, disrupts traffic patterns 
and increases estimation errors. As a result, our 
chosen model architecture performs significantly 
better in structured, high-flow environments than on 
roads with irregular or inconsistent traffic patterns. 

9 CONCLUSIONS 

The findings of this research indicate that the chosen 
methodology for scaling FCD data on sensorless 
roads has a promising performance, particularly on  
high-capacity, constant-flow roads. The strategy 
based on the LSTM model has proven to be effective 
in identifying traffic patterns under certain 
circumstances, allowing for more accurate estimates 
of vehicle flow in sensorless regions.  

In addition, a detailed study has shown that the 
geometric and structural characteristics of the roads 
have a significant impact on the performance of the 
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model. High-traffic arterial roads with constant 
distribution have lower prediction errors, while roads 
with large variations in FCD penetration rates, 
frequent intersections and side parking are barriers to 
the prediction accuracy using this type of approach. 

A key point of this research is to validate of the 
methodology’s ability to generate accurate 
predictions using data derived from a single 
correlated route, rather than relying on a larger group 
of sensors for training. This has important 
advantages, in terms of computational efficiency, 
reduced complexity and a greater degree of 
adaptation to the specifics of each route being 
processed. This flexibility is critical for real-life 
urban traffic management systems and helps their 
implementation by enabling infrastructure-
constrained areas to improve the mobility monitoring 
and planning strategies in a more accessible and 
systematic way. 

Based on these findings, the future work related 
to this study can evaluate hybrid approaches that 
enhance traffic prediction on more complex routes by 
combining deep learning techniques with regular 
models or other methods that are based on type of 
road networks. In addition, it could be valuable to 
develop a deeper investigation on the effects of FCD 
data penetration, and potentially using other sensor 
correlation techniques that may improve upon the 
current results. 
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