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Abstract: Cybercrime complaint narratives encompass complex sequences of criminal activities that challenge conven-
tional sequence modeling techniques. This work introduces a framework that employs dynamic temporal event
scene graphs to represent each narrative as an evolving, structured network of entities and events. Our approach
converts complaint texts into temporal event scene graphs in which nodes symbolize key entities and edges
capture interactions, annotated with their sequential order. This structured representation provides a richer and
more intuitive understanding of how cybercrime incidents unfold over time. To forecast missing or forthcoming
events, we fine-tune a pre-trained BART model using a masked sequence-to-sequence paradigm.Our experi-
ments are performed on a dataset comprising thousands of real-world cybercrime reports, containing roughly
76,000 distinct event descriptions—a scale that introduces significant sparsity and generalization challenges.
Our results demonstrate that while models such as GPT-2 and T5 struggle to capture robust patterns in this
diverse domain, the BART-based approach achieves modest yet promising improvements.

1 INTRODUCTION

Predicting the next event in a narrative sequence is an
important task to understand and anticipate complex
scenarios. In the domain of cyber-crime complaints,
accurately forecasting the subsequent step in an attack
or crime sequence could assist investigators and auto-
mated systems in taking proactive measures. However,
this task is challenging due to the unstructured nature
of free text reports and the enormous variety of events
(Al-Zaidy et al., 2012). Each report may contain vari-
ous entities, such as victim details, crime details, and
additional items (e.g., banks, accounts, cryptocurren-
cies) along with idiosyncratic event descriptions. Tra-
ditional sequence modeling approaches for narrative
understanding, such as narrative event chains, capture
temporal event sequences centered on a protagonist,
but might not fully utilize the rich connections between
multiple entities involved in a cybercrime incident.
Graph-based textual representations, on the other hand,
can encode complex relationships: for example, mul-
tiple entities like (victim, bank, money) might be in-
volved in a single event (“unauthorized transaction
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without OTP”), and an entity can reappear across
events, linking the storyline together.
Our approach is related to previous work on event
prediction, often framed as script learning, which has
laid the foundation for our method. Early studies in-
troduced the concept of narrative schemas or event
chains, where structured representations of common
event sequences were learned from text corpora to pre-
dict likely subsequent events (Schank and Abelson,
1977), (Chambers and Jurafsky, 2008). More recent
research has explored the use of knowledge graphs
to capture complex interconnections between events
(Li et al., 2018). Inspired by these advancements,
our method explicitly represents each narrative as a
dynamic graph of entities and actions, enabling the
model to capture melianingful state changes and in-
terevent relationships.
We represent each complaint narrative as a tempo-
ral event scene graph (TESG), where entities (e.g.,
“Bank,” “victim,” “INR 4500”) are nodes and actions
(e.g., “transaction without OTP”) are time-stamped
edges. Converting text into these graphs exposes each
entity’s participation in events, but here we focus on
the extracted event sequence to leverage BART for
next-event prediction rather than on graph visualiza-
tion.
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Our backbone is BART, a Transformer based en-
coder decoder pretrained denoising autoencoder. Its
bidirectional encoder and autoregressive decoder sup-
port next event prediction and missing event interpola-
tion. To our knowledge, this is one of the first applica-
tions of temporal event scene graphs to forecast events
in cybercrime narratives.We focus on two inference
tasks that predict the next event and infer intermediate
events while addressing the roles of arguments and co-
reference preprocessing. In summary, we demonstrate
a novel representation of cybercrime narratives as tem-
poral event scene graphs, a BART based sequence
generation model for event prediction, and an empiri-
cal comparison of next event versus intermediate event
masking strategies that advance incident forecasting,
leveraging extensive experiments and robust evalua-
tion metrics across diverse datasets.

We describe our modeling methodology in Section
3, present our data set and the graph construction pro-
cess in Section 4, and outline the planned experiments
in Section 5.

2 RELATED WORK

We review three related research directions: (i) event
detection, (ii) temporal event prediction, and (iii) crime
event detection.

2.1 Event Detection

Early event detection drew on script theory, modeling
scripts (Schank and Abelson, 1977). Chambers and
Jurafsky (Chambers and Jurafsky, 2008) introduced
unsupervised bootstrapping to induce chains. Recent
methods integrate neural networks with knowledge
graphs for event extraction. Li et al. (Li et al., 2018)
propose a narrative event evolutionary graph capturing
semantic relationships via graph-based attention. We
employ dynamic temporal event scene graphs to en-
force sequential ordering and isolate entity transitions
in cybercrime narratives.

2.2 Temporal Event Prediction

Temporal event prediction models timing and event
order. Du et al. (Du et al., 2016) introduced recur-
rent marked temporal point processes; Mei and Eisner
(Mei and Eisner, 2017) proposed Neural Hawkes for
irregular intervals. Kong et al.’s Language-TPP (Kong
et al., 2025) adds continuous temporal tokens to Trans-
formers. We instead employ dynamic temporal event
scene graphs on noisy text.

2.3 Crime Event Detection

Crime event detection and prediction aid law enforce-
ment. Yang (Yang, 2023) proposed TransCrimeNet,
fusing text with criminal-network graph embeddings
to predict crimes. Zhu and Xie (Zhu and Xie, 2022)
introduced a spatiotemporal-textual point process for
crime linkage. Khairova et al. (Khairova et al., 2023)
applied cross-lingual transfer on parallel corpora for
low-resource event extraction. These works under-
score graph–text integration, motivating our dynamic
temporal event scene graphs with BART.

3 METHODOLOGY

3.1 Construction

Each cybercrime complaint (a free text narrative) is
converted into a temportal event scene graph, where
nodes represent entities and edges denote actions. In
this process, we extract key information by identifying
entities such as people (e.g. the victim), organiza-
tions (e.g., a bank), and other relevant objects (e.g.,
amounts of money, devices), as well as the actions
or incidents and the order in which they occur. For
example, the first event is assigned timestamp T0, the
next T1, etc. Each distinct action is represented as an
edge connecting the involved entities along with its
relative timestamp. The final result is a temporal event
scene graph that captures how the narrative structure
evolves with each successive event.

For example, consider a complaint: “The victim
received a phishing email claiming to be from a [Pri-
vate] Bank. Later, a transaction of Rs 4500 was made
from his account without an OTP.” From this narra-
tive, we extract the entities {Victim,Bank,Rs 4500}.
The first action, “phishing email”, connects the Victim
and the Bank (indicating that an email was received
from a fraudster impersonating the bank), and is as-
signed timestamp T0. The second action, “unautho-
rized transaction without OTP”, involves the victim
and the amount Rs 4500 (indicating a funds transfer),
and is assigned a timestamp T1. Figure 1, shows that
these events, arranged chronologically, produce an
event graph that reflects the initial phishing email be-
tween the victim and the bank, followed by the fraudu-
lent transaction involving Rs 4500.

T0: Phishing Email
Victim ↔ Bank

T1: Unauthorized Transaction
Victim ↔ Rs4500

Figure 1: Dynamic TESG illustrating two-step event se-
quence in a phishing incident.
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3.2 Sequence Generation with BART

We linearize the events from each event graph into an
ordered sequence based on the timestamp, e.g.

[e1,e2, . . . ,en+1],

where each ei represents an event description at times-
tamp Ti−1. We then employ the BART base model
(Lewis et al., 2019) as our sequence-to-sequence
predictor for the modeling of masked events. BART
is particularly suitable here because it was pretrained
with a span-masking objective (among others),
learning to reconstruct text with missing spans. We
fine-tune BART on our data by feeding it sequences of
events with certain events replaced by a mask token
and training it to generate the missing event text. The
fine-tuning is configured in two modes corresponding
to our experimental scenarios.

1. Next-Event Prediction:
In this setup, we mask only the final event in the se-
quence and ask BART to predict it. Formally, given
a sequence of events, e1,e2,e3, . . . ,en+1, generated
from a complaint description, where e1 occurs at T0
and en+1 is the final recorded event at Tn. We cre-
ate an input where en+1 is replaced by the [MASK]
token as shown in Figure 2. BART’s encoder pro-
cesses the sequence of past events e1,e2, . . . ,en
along with the mask token, and the decoder is
trained to output en+1 (the next event)Ṫhis is anal-
ogous to a conditional next-step prediction task, ex-
cept that BART, unlike a standard language model,
can leverage the bidirectional encoding of the pre-
ceding events. The target output is the textual
description of the held-out event en+1. By train-
ing on many such sequences, the model learns to
infer what typically comes last given the earlier
events in cybercrime scenarios (e.g., after “victim
receives a phishing email”, the next event might
be “unauthorized bank transaction”).

e1 at T0 e2 at T1 · · · [MASK] at Tn

Figure 2: Dynamic event sequence illustrating a masked
event at Tn within a sequential narrative.

2. Intermediate-Event Prediction:
Here, we evaluate the model’s ability to predict
any single event in the sequence when that event is
hidden (missing event), using the rest of the events
as context. For a sequence

[e1,e2,e3, . . . ,en+1],

occurring at T0,T1,T2, . . . ,Tn, we create multiple
training examples by masking one event at a time.

For instance, (e1,[MASK],e3, . . . ,en+1) with tar-
get e2; (e1,e2,[MASK],e4, . . . ,en+1) with target e3;
and so on, (including a case masking en+1 as in
the first experiment) as shown in Figure 3. BART
is trained to fill in the blank in each case. This
setup forces the model to use both preceding and
following events to predict the missing one, tap-
ping into its sequence infilling capability. It is
effectively a form of data augmentation, since a
single narrative yields multiple training samples
(one for each event masked). During inference, we
can similarly mask an event and have the model
generate a prediction for what event should be at
that position.

e1 at T0 [MASK] at T1 · · · en+1 at Tn

Figure 3: Dynamic event sequence demonstrating the mask-
ing of an intermediate event, where the context before and
after the masked event is utilized for prediction.

Training BART with these masked event objectives
requires a proper formulation of the input-output pair.
We concatenate the sequence of event descriptions into
a single textual input separating events with a delim-
iter (semicolon ’;’), and use a special [MASK] token
in place of the hidden event’s text. The decoder’s tar-
get is the text of the hidden event. We initialize the
model with Facebook/bart-base weights and fine-
tune for a fixed number of epochs, using a loss function
based on the cross-entropy between the generated to-
ken sequence and the ground-truth event. Because
event descriptions in our data can be a short phrase
or a full sentence, we treat each action as a segment
of text to be generated. Notably, BART’s ability to
consider the entire input sequence (with knowledge
of both prior and subsequent events in the sequence
for intermediate prediction) gives it an advantage over
unidirectional models in the second scenario. The
model effectively learns a conditional distribution for
an event given its surrounding context events.

3.3 Baseline Models

We experimented with two pre-trained models as base-
lines: GPT-2 and T5. GPT-2 is a decoder-only lan-
guage model that generates text left-to-right. We fine-
tuned a GPT-2 model (117M parameters) to predict the
next event given the preceding events as input. How-
ever, GPT-2 struggled with the highly variable event
vocabulary, often generating generic or incoherent out-
puts when confronted with rare or complex events.
Although it achieved a semantic similarity of 49.8%,
GPT-2 failed to produce robust performance in terms
of Hit and other metrics.
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T5, an encoder-decoder transformer pre-trained on
a wide variety of text-to-text tasks, was fine-tuned in a
similar manner—treating the task as text generation,
where the input is the sequence of prior events and
the output is the next event. T5-generated outputs ex-
hibited a semantic similarity of only 9.25%, making
it less reliable. Consequently, both GPT-2 and T5 un-
derperformed compared to BART. BART’s superior
performance can be partly attributed to its pretrain-
ing objective, which included an in-filling task (i.e.,
predicting masked spans), making it inherently well
suited for our formulation. Therefore, our methodol-
ogy focuses on BART for the reported results.

4 DATASET

We compiled a data set of cybercrime complaint nar-
ratives filed on the official online reporting portal
(https://cybercrime.gov.in/), which serves as
the primary source of our data. Each entry in the
data set is a textual description of an incident written
by the victim or a police transcript thereof. These nar-
ratives typically range from a few sentences to a few
paragraphs detailing how the crime unfolded. From
an initial pool of reports, we filtered and segmented
the text to isolate discrete events and identify entities,
yielding a collection of structured event sequences.

Examples to Illustrate the Data:
Consider the following example narrative.
“On [Date], a fraudulent transaction of 4500 Rs.

occurred approximately [Time] from a Private Bank
account, without the victim receiving any OTP or mes-
sage regarding the transaction.”

We extract entities, events, and a temporal event
scene graph from this narrative.

• Entities: [’Private Bank’, ’4500 Rs.’,
’Victim’]

• Events: [’fraudulent transaction of 4500
Rs.’, ’no OTP received’, ’no message
received’]

Statistics: The processed data set contains approx-
imately N = 11,500 narratives (reports). The number
of events per narrative varies , while some reports
record only a single event, the most detailed ones
include up to 23 events. Importantly, the vocabulary
of unique events is extremely large, on the order of
76,000 unique event descriptions. This indicates that
authors of the reports seldom use identical phrasing,
and many actions/events are very specific (e.g., “user’s
credit card limit was increased without authorization”
might appear only once).

Table 1: Extracted data from example narrative.

Entities [’Private Bank’, ’4500 Rs.’,

’Victim’]

Events [’fraudulent transaction of

4500 Rs.’, ’no OTP received’, ’no

message received’]

Scene Graph { ’nodes’: [{ ’id’: ’Private

Bank’ }, { ’id’: ’4500 Rs.’ }, {
’id’: ’Victim’ }],

’edges’: [

{ ’source’: ’Private

Bank’, ’target’: ’4500 Rs.’,

’relationship’: ’fraudulent

transaction of’, ’timestamp’: ’T0’

},
{ ’source’: ’4500 Rs.’,

’target’: ’Victim’, ’relationship’:

’no OTP received’, ’timestamp’:

’T1’ },
{ ’source’: ’4500 Rs.’,

’target’: ’Victim’, ’relationship’:

’no message received’, ’timestamp’:

’T2’ }
] }

4.1 Preprocessing

We preprocess raw multilingual cybercrime narratives
by prompting a large language model to produce
unified English summaries that preserve key events,
entities, and relations, thereby standardizing input
for downstream analysis. Named Entity Recognition
then extracts persons, organizations, and other salient
entities, while dependency parsing isolates event
predicates and arguments, yielding entity–action–
entity triples with synthetic timestamps derived from
narrative order. These actions serve as event labels.
We do not yet merge semantically similar actions (e.g.,
“withdrew money from ATM” vs. “cash withdrawal at
ATM”), leaving sparsity reduction to future work.

Sparsity and Pattern Learning: The sheer
number of unique events means that most of the
event sequences in the training set are nearly unique
in their exact surface form. Therefore, the model
cannot rely on memorizing frequent event diagrams
or templates; it must learn higher-level patterns or
analogies. For example, even if ”phishing email
→ bank transaction” appears only once, the model
might learn a broader pattern that an event involving
a social engineering attack (like phishing) is often
followed by a financial fraud event. Our hope is that
by representing events in context with their entities,
the model can learn latent connections (e.g., if the
same bank entity appears in two events, they might
be related). We acknowledge that without explicit
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semantic clustering, this is a difficult task; the model
must generalize from very few examples per event
type. This characteristic of the data set underscores
the need for a structured approach and informs our
decision to compare different modeling strategies
(standard language models vs. event-based BART).

Train/Validation/Test Split: We split the data set
into training, validation, and test sets at the narrative
level. The validation set comprises 25% of the en-
tire dataset, while the remaining 75% is divided into
training and test sets in an 80:20 ratio (resulting in
approximately 60% training and 15% test). This strat-
egy ensures each narrative appears in only one set,
reducing train-test overlap.

5 EXPERIMENTS AND RESULTS

5.1 Next-Event Prediction

In this, we evaluate the prediction of the next event
using a fine-tuned BART model. Here, the model is
provided with a dynamic temporal event scene graph
constructed from a cybercrime narrative up to time
t—that is, it observes all events e1,e2, . . . ,en−1 prior
to the incident to be predicted. The objective is to
generate the subsequent event en at time t +1. Unlike
approaches that benefit from both preceding and suc-
ceeding context (as in intermediate event inpainting),
this next-event prediction task is constrained by the
fact that only historical events—with the last observed
event en−1 serving as the immediate cue—are used for
prediction. This limited context typically results in
fewer generated examples and often leads the model
to produce degenerate outputs, such as simply echoing
the final observed event, thereby failing to introduce
the necessary novelty for en.

To address these challenges, BART is fine-tuned to
generate a descriptive textual output for the predicted
event. This output is subsequently parsed into its struc-
tured components—source, target, relationship, and
timestamp. The evaluation protocol is twofold. Firstly,
we utilize text similarity metrics: ROUGE scores quan-
tify the lexical overlap between the generated and true
event descriptions, while an embedding-based seman-
tic similarity metric assesses the alignment in meaning
between them. Secondly, we employ rank-based met-
rics by reporting Hit@K (for K = 1 to 5), which indi-
cate whether the ground-truth event appears among the
top K model predictions. Table 2 summarizes these
overall performance metrics for next-event prediction,
including Semantic Similarity, ROUGE-1, ROUGE-2,
ROUGE-L, and Hit@K values.

Table 2: Performance on Next-Event Prediction using BART.

Metric Score

Semantic Similarity 0.5459
ROUGE-1 0.4283
ROUGE-2 0.2199
ROUGE-L 0.41695
Hit@1 0.0094
Hit@2 0.0135
Hit@3 0.0165
Hit@4 0.0183
Hit@5 0.0193

Additionally, we compute the accuracy for each
individual event component to better understand the
model’s ability to correctly identify the roles and
the temporal ordering within the event. Table 3 pro-
vides a detailed analysis of the first predicted event
(i.e., Hit@1), reporting component-wise accuracies for
source, target, relationship, and timestamp.

This experimental setup is inherently challenging
because predicting an unseen future event using solely
the historical sequence—where only en−1 directly in-
forms the prediction of en—provides less contextual
information compared to settings that incorporate both
past and future cues. Consequently, the limited num-
ber of training examples and the absence of forward-
looking indicators lead to lower overall performance,
particularly in terms of Hit@K scores and the accuracy
of predicting the target and relationship components.

Table 2 summarizes the overall performance met-
rics for next-event prediction, ordered as: Semantic
Similarity, ROUGE-1, ROUGE-2, ROUGE-L, fol-
lowed by Hit@1 to Hit@5. The average semantic
similarity between the predicted and ground-truth
events is 0.5459, indicating that the model output is
somewhat related in meaning to the intended events.
The ROUGE scores are moderate, with ROUGE-1
at 0.4283, ROUGE-2 at 0.2199, and ROUGE-L at
0.41695, suggesting partial lexical overlap between
predicted and actual events. The Hit metrics show that
Hit@1 is only 0.0094 and Hit@5 is 0.0193, meaning
that the correct (exact) event appears as the top predic-
tion in less than 1% of cases and within the top five
predictions in fewer than 2% of cases.The prediction
components analysis (Table 3) reveals that while the
model correctly identifies the source 49.72% of the
time, it struggles with predicting the target (11.59%)
and the relationship (4.02%), even though the times-
tamp is correctly predicted in 91.76% of instances.

For a more detailed analysis of the first predicted
event (i.e. Hit@1), Table 3 reports the component-wise
accuracies.
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Table 3: Prediction Components Analysis for Hit@1 in Next-
Event Prediction.

Component Accuracy

Source Accuracy 0.4972
Target Accuracy 0.1159
Relationship Accuracy 0.0402
Timestamp Accuracy 0.9176

Table 4: Performance on Intermediate Event Inpainting using
BART.

Metric Score

Semantic Similarity 0.6073
ROUGE-1 0.4968
ROUGE-2 0.2920
ROUGE-L 0.4844
Hit@1 0.0287
Hit@2 0.0417
Hit@3 0.0489
Hit@4 0.0535
Hit@5 0.0559

5.2 Intermediate Event Inpainting

Here, we evaluate intermediate event inpainting using
the same BART architecture. In this task, an event
in the middle of a narrative is hidden, and the model
must infer this missing event given the surrounding
context (all prior events up to time t and subsequent
events after time t +1). The model is provided with
a narrative with a ‘gap’ and is asked to fill that gap
with a plausible event that connects logically to both
the preceding and the following events. We fine-tuned
the model on this inpainting task, expecting that the
additional future context would guide the generation
of the missing event.

Table 4 shows the overall performance metrics
for the inpainting task, ordered as: Semantic Simi-
larity, ROUGE-1, ROUGE-2, ROUGE-L, followed by
Hit@1 to Hit@5. The table shows that the average
semantic similarity in intermediate event inpainting is
0.6073, which is higher than in the Next-Event Pre-
diction—indicating that the painted events are seman-
tically closer to the true events. The ROUGE scores
also show improvement, with ROUGE-1 at 0.4968,
ROUGE-2 at 0.2920, and ROUGE-L at 0.4844. The
Hit metrics reveal that Hit@1 is 0.0287 and Hit@5
is 0.0559, signifying an increased likelihood of the
correct event appearing in the top predictions when
both past and future contexts are available.

Similarly, Table 5 details the prediction compo-
nents for the first predicted event (Hit@1) in the
inpainting experiment. The prediction components

Table 5: Prediction Components Analysis for Hit@1 in In-
termediate Event Inpainting.

Component Accuracy

Source Accuracy 0.5723
Target Accuracy 0.2261
Relationship Accuracy 0.0876
Timestamp Accuracy 0.9768

analysis (Table 5) indicates enhanced performance in
event component prediction, with source accuracy at
57.23%, target accuracy at 22.61%, relationship accu-
racy at 8.76%, and timestamp accuracy at 97.68%.

5.3 Comparative Analysis of Results

Comparing the results of the next event prediction and
intermediate event inpainting side by side, we observe
a consistent improvement in all metrics when perform-
ing intermediate event inpainting instead of the next
event prediction. The semantic similarity increases
from 0.5459 to 0.6073, and ROUGE scores are higher
in intermediate event inpainting (e.g., ROUGE-1 im-
proves from 0.4283 to 0.4968 and ROUGE-L from
0.41695 to 0.4844). The Hit metrics approximately
triple, with Hit@1 increasing from 0.0094 to 0.0287
and Hit@5 from 0.0193 to 0.0559. These improve-
ments suggest that providing both preceding and sub-
sequent context allows the model to generate missing
events more accurately.The prediction component ac-
curacies are also notably higher in intermediate event
inpainting, particularly for the target and relationship,
which roughly double in accuracy compared to Next-
Event Prediction, while the source and timestamp pre-
dictions show moderate improvements.

5.4 Qualitative Analysis and Error
Discussion

Table 6 shows both successes and failure modes. The
most frequent issue is entity confusion: in the third row
the model predicts “phone – priced at → Rs 38 000”
at T1, whereas the gold event is “suspect – claimed
to be selling on → MARKETPLACE,” misassigning
subject and predicate. A second pattern is loss of fine-
grained detail: in the second row it outputs “individual
– made payment via → PAYMENT” instead of the
precise “individual – completed payment.” Yet, with
unambiguous context the model can be exact, as in
the first row where it perfectly recovers “hacker – sent
inappropriate messages → friend” at T1. These ob-
servations align with moderate ROUGE and semantic-
similarity scores: predictions capture the event frame
but often slip on roles or verbs. Prior experiments with
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Table 6: Qualitative examples for Intermediate Event Inpainting (three illustrative cases). Each row shows the masked input
sequence, the model’s prediction, and the ground-truth event. Entity tokens replace personal information and proper nouns
(e.g., SOCIAL, ECOMMERCE, PAYMENT).

Input (with [MASK]) Predicted Event Target Event

Complete: account - account hack → hacker at T0
; [MASK] ; hacker - sent nude photos → friend
at T2 ; victim - seeking assistance regarding the
incident → assistance at T3

hacker - sent inappropriate mes-
sages → friend at T1

hacker - sent inappropriate mes-
sages → friend at T1

Complete: individual - encountered → SOCIAL at
T0 ; SOCIAL - misleading advertisement for a sale
→ ECOMMERCE at T1 ; individual - clicked link
to fraudulent website → ECOMMERCE at T2 ; in-
dividual - purchased → MOBILE at T3 ; [MASK]
; PAYMENT - payment amount → Rs 1999 at T5
; individual - transaction identified as fraudulent
→ fraudsters at T6 ; individual - requested action
against → fraudsters at T7 ; individual - requested
to freeze associated accounts → fraudsters at T8

individual - made payment via
→ PAYMENT at T4

individual - completed payment
→ PAYMENT at T4

Complete: suspect - sold on → phone at T0 ;
[MASK] ; suspect - manipulated into paying →
victim at T2 ; victim - paid total amount of →
Rs 38000 at T3 ; suspect - requested additional
payment of → Rs 11000 at T4 ; suspect - falsely
claimed penalty to → victim at T5 ; suspect -
claimed to be in → MILITARY at T6

phone - priced at → Rs 38000
at T1

suspect - claimed to be selling
on → MARKETPLACE at T1

GPT-2 and standard T5 were even less accurate, likely
due to sparse event inventories and long-range depen-
dencies. BART, guided by dynamic temporal scene
graphs, offers a stronger inductive bias but still re-
quires richer role-aware encodings and semantic clus-
tering to curb entity confusion and sparsity.

6 DISCUSSIONS

The experimental findings highlight key insights into
modeling cybercrime narratives through event predic-
tion. Quantitatively, the intermediate event inpainting
task demonstrates a clear advantage over next-event
prediction. The availability of both preceding and sub-
sequent context yields higher semantic similarity and
improved ROUGE scores, as well as significantly en-
hanced Hit@K metrics. These improvements confirm
that additional future context helps mitigate challenges
inherent to unidirectional prediction, such as the lim-
ited cue provided by the immediate past event.

Qualitatively, the analysis reveals critical error pat-
terns that impact overall performance. In the next-
event prediction task, a notable issue observed with
models such as T5 is the tendency to simply repeat the
final observed event. Additionally, there is a prevalent
confusion between the roles of entities, specifically a
misassignment of source and target, which is particu-
larly detrimental. In contrast, the inpainting approach

benefits from a more robust context that reduces these
errors, although difficulties in precisely capturing com-
plex relationships remain. These challenges are further
compounded by the lack of unique event patterns in cy-
bercrime data, highlighting the importance of effective
long-range dependency modeling. These observations
underscore the importance of structured inputs, such as
dynamic temporal event scene graphs, and suggest that
future work should focus on refining entity role dif-
ferentiation and exploring hybrid architectures. Such
advancements may lead to further improvements in the
capture of the nuances of cybercrime narratives and
the improvement of prediction accuracy.

7 CONCLUSION

We presented a dynamic temporal event scene graph
approach for next-event prediction in cybercrime nar-
ratives. By converting free-text reports into event
sequences, we harnessed pretrained BART to pre-
dict missing events. We compared next-event pre-
diction and intermediate-event inpainting. Quantita-
tive evaluations (Hit@K, ROUGE, semantic similar-
ity) show next-event prediction remains challenging
(Hit@1 < 1%), while inpainting leveraging both prior
and subsequent context triples. Qualitative analysis re-
vealed issues like event repetition and entity confusion.
Future work will address these via event clustering,
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entity resolution, event standardization, and external
knowledge integration. Our framework also boosts
interpretability and situational awareness by detecting
subtle narrative shifts, offering actionable insights for
law enforcement.
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