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Abstract: Enhancing cycling is an increasingly important challenge, especially as it is promoted for its economic, 
environmental, and health benefits. However, ensuring safety of cyclists is crucial to support this shift in 
mobility. In this context, machine learning offers promising avenues. This study proposes a novel approach 
to identifying high-risk locations by dynamically incorporating spatiotemporal patterns and environmental 
conditions. The method was tested using comprehensive data from Germany, and its design suggests strong 
potential for generalization to different countries. This work can support urban planners, policymakers, and 
navigation systems in improving road safety and informing smarter mobility decisions. 

1 INTRODUCTION 

Cycling is an increasingly popular mode of 
transportation due to its economic, environmental, 
and health benefits. However, its widespread 
adoption is still hindered by a major concern: safety. 
Despite its advantages, cycling remains one of the 
most vulnerable forms of transport, with users often 
perceiving it as riskier than motorized alternatives. 
This perception is supported by the increasing 
number of bicycle-related accidents reported 
annually. For example, according to statistics from 
the National Safety Council (NSC), the number of 
deaths resulting from bicycle transportation incidents 
increased by 53% over a ten-year period, from 2014 
to 2023 (Bicycle Deaths, 2025). As a result, there is a 
pressing need for effective measures to improve 
cyclist safety. 

Traditional interventions aimed at enhancing 
cycling infrastructure and road signage have been 
shown to reduce the severity of bicycle accidents. For 
instance, in (Reynolds et al., 2009) it is shown that 
purpose-built bicycle-specific facilities can decrease 
crashes and injuries among cyclists. Additionally, in 
(Asgarzadeh et al., 2017) the types of intersections 
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where crashes are more likely to result in higher 
injury severity are highlighted, helping in identifying 
localized safety solutions. Nevertheless, 
infrastructure interventions have not been sufficient 
to prevent accidents entirely, as evidenced by the high 
number of fatalities. Recent advancements in data-
driven technologies, particularly Machine Learning 
(ML), offer promising tools to support the prediction 
and mitigation of traffic-related risks (Silva et al., 
2020). 

While a growing body of research has explored 
the use of ML in the context of bicycle safety, most 
existing studies have concentrated on post-accident 
analyses (Bassani et al., 2020; Ding et al., 2024; Zhu, 
2021). However, few studies have addressed the 
prediction of high-risk conditions for cyclists before 
an accident occurs, which is a crucial step toward 
proactive safety planning. 

This research aims to fill that gap by developing a 
ML model capable of predicting whether a given 
situation is potentially high-risk for cyclists. The 
novelty of our approach lies in its proactive 
processing methodology, assessing risk beforehand. 

By leveraging historical accident records along 
with contextual environmental variables, the 
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proposed model is able to identify high-risk locations 
and conditions for cyclists. This can serve as a 
valuable tool for urban planners, policy makers, and 
navigation applications, enhancing road safety and 
informing smarter mobility decisions. Furthermore, a 
key strength of our approach is its generalizability: it 
requires only a limited set of commonly available 
features, making it adaptable across different 
countries and urban contexts. 

This paper is structured as follows: Section 2 
reviews the existing literature on ML applications in 
the context of bicycle risk prediction and positions the 
contribution of this study within that body of work; 
Section 3 describes the proposed methodology; 
Section 4 presents and analyses the experimental 
results; Section 5 describes a potential application of 
our ML model for real-time bicycle risk prediction; 
finally, Section 6 concludes the paper by 
summarizing the key findings and outlining 
directions for future research. 

2 RELATED WORK 

This section reviews previous research in the field of 
bicycle accident analysis and risk prediction. 

The study of cyclist safety has gained increasing 
attention in recent years, largely due to the growing 
availability of data and the prioritization of road 
safety in urban policy. Two primary research 
directions emerge from the existing literature: the first 
involves post-event and spatial risk analysis; the 
second focuses on real-time detection methods. 

2.1 Post-Event and Spatial Risk 
Analysis 

The first category of research focuses on 
understanding the severity of crashes, identifying 
contributing factors based on retrospective crash data, 
and analysing spatial risk. 

(Zhu, 2021) developed classification models to 
assess the severity of vehicle-bicycle crashes in 
Victoria, Australia. The study aimed to identify the 
variables that contribute to more severe crash 
outcomes. 

(Birfir et al., 2023) proposed ML models to 
predict cyclist injury severity using Israeli road crash 
data. The study identified the most influential factors 
in determining whether an injury was minor, serious, 
or fatal. 

(Lu et al., 2022) combined ML and path analysis 
to investigate behavioural pathways in bicycle-motor 
vehicle crashes using data from North Carolina. Their 

framework included two models: one to predict pre-
crash behaviours and another to estimate injury 
severity, both informed by contributing behavioural 
factors. 

(Wang et al., 2019) analysed e-bike rider risk 
patterns in China using ML and quasi-induced 
exposure theory. The study classified riders into high-
risk and non-high-risk groups. 

(Ding et al., 2024) introduced a hybrid ML-
regression framework to model bicycle crash 
frequency in London. By combining SHAP-based 
feature interpretation from Random Forests with 
traditional regression analysis, the study quantified 
the impact of multiple predictors on crash occurrence. 

(Bassani et al., 2020) applied spatial analysis 
techniques to identify crash hotspots involving 
vulnerable road users in Turin. 

(Brito et al., 2024) used a geospatial approach to 
evaluate the risk of cyclist accidents in Münster, 
Germany. K-means clustering was applied to road 
intersections, bike lanes, and bus stops data, to 
identify risk clusters within the city. Furthermore, the 
authors found a correlation between past accident 
data and the computed critical zones. 

Collectively, these studies are instrumental for 
policy-making, planning, and post-crash evaluation. 
However, they are generally static and retrospective 
in nature. In contrast, our work proposes a forward-
looking approach that predicts high-risk situations 
before accidents occur, leveraging ML and dynamic, 
spatiotemporal and environmental features. This 
enables our model to be effectively used in real-time 
safety applications and cyclist-aware mobility 
solutions. 

2.2 Real-Time Detection 

The second area of research deals with real-time 
accident detection and cyclist safety monitoring using 
on-bike sensors and time series data. 

(Tabei et al., 2021) proposed a real-time crash 
detection system for cyclists using wearable sensors, 
principal component analysis and ML model to 
analyse motion data. The system aimed to detect 
crash events and potentially trigger emergency 
responses such as alerting emergency contacts. 

(Schnee et al., 2021) developed a probabilistic 
classification system based on on-bike sensors data to 
distinguish between normal riding, near-miss events, 
and actual crashes in real time. Their approach was 
designed to be integrated into bike-mounted or 
wearable safety devices, providing potentially 
triggering emergency responses. 
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(Lehmann et al., 2022) trained ML models on 
helmet-collected time series data to classify 
dangerous cycling segments in Copenhagen. The 
system enabled both municipal-level risk analysis and 
real-time user warnings via navigation apps. 

These sensor-based methods are technically 
sophisticated and accurate in detecting risk 
conditions. However, their primary limitation is 
scalability: they depend on individual riders being 
equipped with sensors and require continuous 
collection of detailed time series data. This could 
create a barrier for widespread adoption. On the other 
hand, our approach addresses this limitation by 
providing a generalizable, data-efficient alternative, 
enabling scalable deployment across cities. 

2.3 Paper Contribution 

This study introduces a novel, predictive ML 
framework aimed at enhancing cyclist safety by 
identifying high-risk scenarios for bicycle 
involvement in traffic accidents. 

The proposed model is trained on historical traffic 
accident records, where each instance corresponds to 
a known accident. Within this data record, some 
accidents involved bicycles and others did not, 
allowing us to formulate a binary classification task: 
predicting whether or not a bicycle was involved 
(target variable = 1 or 0) based on contextual features. 
The selected features include only those variables that 
are observable regardless of accident occurrence, 
such as time of day, lighting and road surface status. 

This approach enables the model to generalize 
beyond retrospective analysis and become a tool for 
conditional risk estimation, answering the question: 
“Given that an accident occurs at a certain place and 
time, under specific environmental conditions, how 
likely is it that a cyclist would be involved?”.  

The model can estimate cyclist risk in real-time or 
for future scenarios, even where no accidents have yet 
occurred, by using observable environmental 
features. This forward-looking approach supports 
urban safety planning, infrastructure prioritization, 
and cyclist alert apps—without relying on real-time 
sensors or intrusive data—ensuring efficient and 
ethical application across various settings. 

3 THE PROPOSED APPROACH 

In this section, the proposed approach will be 
presented in detail, covering the dataset description, 
preprocessing steps, model development, and 
evaluation. 

3.1 Original Dataset Description 

This study utilizes data from the open-access 
Germany georeferenced road accident dataset 
provided by the German Federal Statistical Office 
(Data.Europa.Eu, 2024). The dataset comprises 
detailed records of road accidents across Germany, 
covering the period from 2016 to 2023. 

The original dataset contains a wide range of 
features related to each recorded accident. These 
variables can be grouped into the following 
categories: 
 Spatial attributes: including federal state, 

administrative region, administrative district, 
municipality, and geographical coordinate 
(longitude and latitude); 

 Temporal attributes: such as year, month, hour, 
and day of the week; 

 Accident severity: indicating whether the 
accident resulted in fatalities, serious injuries, or 
minor injuries; 

 Kind of accident: describing the sequence of 
events that unfolded during the accident; 

 Type of accident: referring to the causal or 
conflict situation that led to the accident; 

 Road surface conditions: categorized as dry, 
wet/damp, or slippery due to winter weather; 

 Lighting conditions: distinguishing whether the 
accident occurred during daylight, twilight, or 
darkness; 

 Involved road users: identifying the categories 
of participants, such as passenger cars, 
motorcycles, bicycles, goods vehicles, and 
public transport. 

3.2 Variables Selection 

Since the goal of this study is to predict high-risk 
situations before an accident occurs, any variables 
that are only available after an accident, such as 
accident severity and type, were excluded from the 
dataset. From the location-related features, only 
geographic coordinates and federal state information 
were retained, to provide the model with both a 
precise spatial reference and a broader regional 
context. Lastly, among the variables describing the 
road users involved in each accident, only the binary 
indicator for cyclist involvement was retained. This 
variable takes the value 1 if a cyclist was involved in 
the accident, and 0 otherwise. It serves as the target 
variable in the classification task, enabling the model 
to learn patterns that differentiate between accidents 
that involved a cyclist and those that did not. 
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While this variable explicitly reflects the 
involvement of a bicycle in past accidents, its role in 
the model allows for a broader, predictive application. 
Indeed, when the trained model is applied to new 
scenarios—situations in space and time where no 
accident has occurred, but where the relevant 
contextual features (e.g., location, time of day, 
lighting, road surface) are known—the predicted 
probability of cyclist involvement reflects how 
similar that situation is to past accidents involving 
cyclists. In this way, a predicted value of 1 suggests 
that, if an accident were to occur under those specific 
conditions, it would likely resemble past cyclist-
involved accidents, marking it as a high-risk scenario 
for cyclists. Conversely, a value of 0 indicates 
conditions historically associated with non-cyclist 
accidents, implying lower relative risk to cyclists. 

3.3 Feature Engineering 

Feature engineering was applied to spatiotemporal 
variables to explore whether transformations could 
improve model performance. 

The temporal variables accounting for month, day 
of the week, and hour of the day were analysed to 
examine how the number of bicycle-involved 
accidents varied over time. Specifically, the aim was 
to observe how accidents were distributed across the 
months of the year, how their frequency changed 
depending on the day of the week, and how they 
varied over the hours of the day. 

This analysis, conducted on data from 2016 to 
2022 (Figures 1–3), revealed temporal patterns that 
informed the feature engineering process. Based on 
these patterns, the original time variables were 
grouped into categories reflecting different levels of 
cyclist-related risk and used as input features in the 
model.  

For the month variable, two grouping strategies 
were used: a detailed three-level split (low-risk: Jan, 
Feb, Dec; moderate-risk: Mar, Apr, Oct, Nov; high-
risk: May–Sep) and a binary split (low-risk: Jan, Feb, 
Mar, Nov, Dec; moderate/high-risk: Apr–Oct). For 
the day of the week, categories were either weekend 
or weekday (low-risk: Sat/Sun; high-risk: Mon–Fri) 
or separated into Sunday, Saturday, and weekdays for 
finer granularity. Hourly risk was grouped as either 
three levels (low: 0–5, 22–23; medium: 6, 8–11, 19–
21; high: 7, 12–18) or a three level simplified split 
(low: 0–4, 23; medium: 5–6, 20–22; high: 7–19). 
These categorizations allowed models to capture both 
detailed and broad temporal risk patterns based on 
accident frequency. 

 

 
Figure 1: Percentage of bike accidents per month, 
considering the total number of recorded accidents. 

 
Figure 2: Percentage of bike accidents per day of the week, 
considering the total number of recorded accidents. 

 
Figure 3: Number of bike accidents per hour of the day, 
considering the total number of recorded accidents. 

To further enhance the predictive capability of the 
model, an additional feature was engineered to 
represent the spatial risk level associated with bicycle 
accidents: bike accident density. This variable was 
designed to incorporate localized accident history 
into the dataset, providing spatial context that enables 
the model to learn from patterns observed across 
different geographic areas. This feature was created 
by dividing Germany into 500 m × 500 m grid cells 
and assigning each accident to its corresponding cell 
based on geographic coordinates. The density 
variable reflects the number of bicycle accidents in 
each cell, capturing localized risk. To avoid data 
leakage, density for each accident was calculated 
using only data from prior years (e.g., 2018 risk used 
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2016–2017 data), ensuring that model training relies 
solely on historical information simulating a real-
world deployment scenario. 

Therefore, the final dataset contains month, day of 
week, hour (all with raw and two engineered 
features), latitude, longitude, federal state, year, 
lighting and road surface conditions, grid cell bike 
accident density, and a binary target indicating cyclist 
involvement. 

3.4 Models Development and 
Performance Evaluation 

To develop the predictive classification model, 
several ML experiments were conducted using the 
processed dataset. 

For models evaluation, the dataset was split into a 
training set (from 2016 to 2022) and a test set (2023). 

Initially, models were developed using only non-
engineered features. Subsequently, the impact of 
including the variable representing the bike accident 
density was evaluated to assess its predictive value. 
Then, for temporal-related features, multiple 
experiments were conducted to explore a variety of 
configurations, including models using only raw date-
time features, models using only transformed 
features, and models using a combination of both. 

Following this, due to class imbalance, random 
under sampling was applied to the majority class 
through the imbalanced-learn library in Python 
(Imbalanced-Learn Documentation, 2024). 

All selected models are tree-based algorithms, 
chosen for their high performance ability. Among the 
most robust and widely used algorithms, the 
following were implemented: Random Forest 
(Breiman, 2001), XGBoost (Chen and Guestrin, 
2016), Gradient Boosting (Friedman, 2001), Extra 
Trees (Geurts et al., 2006), CatBoost (Prokhorenkova 
et al., 2019), and LightGBM (Ke et al., 2017). The 
models were developed using the Python scikit-learn 
library (Pedregosa et al., 2011), with base 
hyperparameter settings. 

Evaluation metrics were carefully selected to 
assess the performance of the models (Rainio et al., 
2024). In this task, missing a true bicycle accident is 
costlier than a false positive, so maximizing recall for 
Class 1 is prioritized. Weighted precision, recall, and 
F1 score are also reported to ensure balanced 
performance. 

To compare model configurations, a metric-based 
ranking was applied: models were ranked for each 
metric (with ties assigned the same rank, and 
subsequent ranks adjusted accordingly). Each 
model’s total ranking score was the sum of its ranks 

across metrics, with lower scores indicating better 
overall performance. 

4 RESULTS 

In this section, the results achieved in the study will 
be presented and discussed. 

Multiple models were developed and evaluated to 
identify the best-performing approach for the defined 
prediction task. 

4.1 Impact of Feature Engineering on 
Models Performance 

An initial experiment assessed the effect of adding the 
bike accident density variable. The first test used 
standard features (results in Table 1); the second 
included bike accident density (Table 2). 

Table 1: Models performance without accident density 
variable. 

Models Metrics 
Recall 1 Precision Recall F1 

RF 0.679 0.669 0.6 0.612 
XGB 0.737 0.691 0.601 0.62 
GB 0.751 0.665 0.552 0.56 
ET 0.643 0.641 0.57 0.583 

CatB 0.734 0.695 0.617 0.628 
LGBM 0.733 0.679 0.589 0.6 

Table 2: Models performance with accident density 
variable. 

Models Metrics 
Recall 1 Precision Recall F1 

RF 0.731 0.694 0.616 0.628 
XGB 0.764 0.71 0.627 0.638 
GB 0.768 0.699 0.602 0.613 
ET 0.71 0.682 0.607 0.619 

CatB 0.764 0.712 0.631 0.642 
LGBM 0.773 0.706 0.614 0.625 
 
Including bike accident density improved all 

models, highlighting the value of spatial accident 
history for identifying high-risk situations. 

As a second step, we conducted experiments to 
assess the impact of various representations of the 
month, day of the week, and hour variables. The 
results indicate that Random Forest, Extra Trees, 
LightGBM and CatBoost perform best with raw 
temporal features, suggesting these models 
effectively utilize the original structure of the data. In 
contrast, Gradient Boosting benefits from selective 
feature engineering for the month and day of the week 
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variables (approach 1), while retaining the hour 
variable in its raw form. XGBoost achieved optimal 
performance with a combination of raw features for 
month and hour and an engineered representation for 
the day of the week (approach 1). 

4.2 Performance of Best-Performing 
Models 

In Table 3, the performance of the final best models 
for each algorithm is reported. Models are listed in 
descending order of performance. 

Table 3: Models performance in descending order. 
Models Metrics 

Recall 1 Precision Recall F1 
CatB 0.764 0.712 0.631 0.642 
XGB 0.762 0.71 0.628 0.639 

LGBM 0.773 0.706 0.614 0.625 
RF 0.731 0.694 0.616 0.628 
GB 0.768 0.699 0.604 0.614 
ET 0.71 0.682 0.607 0.619 

 
CatBoost emerges as the top-performing 

algorithm, confirming its ability to provide balanced 
and high-quality predictions, and making it 
particularly effective in settings where both class-
specific and overall performance matter. Figures 4 
and 5 compare observed and CatBoost-predicted 
bicycle accidents in Freiburg im Breisgau, illustrating 
the model’s performance on a local example.  

The road network shown is restricted to bike-
accessible streets. Street segments are coloured black 
if at least one bike accident (actual or predicted) 
occurred in close proximity. All other streets are 
shown in light grey for context. 

 
Figure 4: Actual Bike Accidents in an urban area of 
Freiburg im Breisgau, Germany. 

 
Figure 5: Predicted Bike Accidents by CatBoost model in 
an urban area of Freiburg im Breisgau, Germany. 

Figure 4 shows actual recorded accidents, while 
the Figure 5 displays accidents predicted by the 
model. By comparing the two, we can see that the 
model successfully identifies many of the high-risk 
areas, including key intersections and major cycling 
corridors. The number of streets with observed 
accidents that were not predicted by the model is 
relatively small. Conversely, some segments are 
flagged by the model as high-risk despite having no 
recorded accidents, which may indicate model 
caution or areas where accidents are underreported. 

5 PROPOSAL FOR REAL-TIME 
BICYLE RISK PREDICTION 

The proposed ML model is designed to function as a 
real-time bicycle risk estimation tool that predicts 
cyclist risk before accidents occur. This approach 
offers a proactive method for identifying high-risk 
conditions, allowing cyclists to make informed route 
decisions in real-time. 

A potential application of the model involves 
predicting road safety within a 500-meter radius of a 
cyclist’s specified location. By utilizing the cyclist’s 
geographical coordinates (latitude and longitude) and 
the time of the query, relevant spatiotemporal features 
can be accurately extracted. Moreover, integrating 
real-time weather data it would be possible to detect 
current surface conditions, such as dry (sun), wet 
(rain), or icy (ice). 

To demonstrate the applicability of the model, we 
simulated a scenario in which a cyclist is located in 
Berlin (coordinates: 52.597858, 13.332482), in June 
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2023 at 17:00 on a Monday, under dry road 
conditions. Based on the cyclist’s location, the 
accident density rate from the corresponding grid was 
retrieved. Bicycle-accessible roads were identified 
using the OpenStreetMap network graph (OSMnx 
Documentation, 2024). Each road segment was 
evaluated at three points (start, middle, end), with risk 
classified as high if all points were identified as high-
risk by the model, moderate if one or two points were 
high-risk, and low if none were high-risk. Figure 6 
shows risk levels by colour: black for high-risk, grey 
for moderate, dashed light grey for low-risk, with the 
cyclist marked by an icon. 

By providing real-time, localized risk predictions, 
this tool demonstrates a practical application of the 
proposed model for enhancing urban cycling safety. 
The proactive identification of high-risk areas offers 
cyclists valuable guidance for safer route planning, 
potentially reducing accident likelihood and 
improving overall cycling experiences. 

 
Figure 6: Map with roads safety predictions. 

6 CONCLUSIONS 

This study proposed a data-driven approach to 
proactively identify high-risk situations for cyclists 
by leveraging spatiotemporal patterns and 
environmental conditions, moving beyond 
retrospective crash analysis. 

Using data from a German accidents dataset, we 
developed and evaluated several tree-based ML 
models, exploring both raw and engineered features 
derived from temporal and spatial characteristics. A 
key contribution of this work lies in the integration of 

a spatial accident density feature, computed through 
a dynamic grid-based method that preserved temporal 
integrity. The inclusion of this feature consistently 
improved model performance across all algorithms. 

Our results demonstrate that CatBoost 
outperformed the other models in terms of both class-
specific and overall predictive performance. Another 
key insight was the differential impact of feature 
engineering across algorithms. 

This work offers a scalable and generalizable 
framework for forecasting cyclist risk in real-time. By 
relying solely on pre-accident features, the approach 
supports proactive safety measures, such as dynamic 
route planning in navigation apps, where temporal 
and spatial context can be inferred and environmental 
conditions obtained from external sources. Future 
work will focus on advanced model tuning, and 
incorporating infrastructure data. 
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