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Accurate soil moisture prediction is critical for improving agricultural practices and managing water supplies.
While feature selection techniques have proven useful in enhancing machine learning models’ performance
in predicting soil moisture, their adaptation to different soil conditions remains limited. To address this gap,
this study presents a novel multisite feature selection framework that draws on meteorological and soil data
from three distinct locations with mineral, calcareous, and organic soils. The framework identifies soil-specific
features through targeted selection processes and then uses SHAP, an explainable Al technique, to assess their
global importance and influence. Furthermore, cross-site validation is performed to assess the transferability
and generalizability of selected features, giving insight into their resilience across different environments. The
proposed approach, which combines explainable Al and cross-site validation, provides a complete approach
to understanding and improving feature relevance for soil moisture prediction. Overall, this study establishes
the foundation for building more generalizable and robust predictive models, which will improve their appli-

cability in a variety of agricultural and environmental scenarios.

1 INTRODUCTION

Global water scarcity is a developing issue caused by
various factors, including global warming and exces-
sive water consumption. As global temperatures rise,
the earth’s climate changes, resulting in droughts, less
rainfall, and higher evaporation rates. These changes
could affect crop development as well as access to
clean water, resulting in food insecurity and scarcity
(Togneri et al., 2023). In addition to global warm-
ing, many regions use water inefficiently, resulting
in water source depletion and increased competition
for scarce water resources. Overirrigation, inefficient
water distribution infrastructure, and water-intensive
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agricultural techniques are all examples of wasteful
water use. Numerous scenarios have investigated the
incorporation of IoT technologies into agricultural ac-
tivities (Fattouch et al., 2020), facilitating more in-
telligent and adaptable decision systems aimed at ad-
dressing such inefficiencies. To solve these issues, it
is critical to enhance water use efficiency in irrigation
systems and practices. Irrigated agriculture accounts
for almost 40% of global food production despite ac-
counting for only 17 %of cultivated land (Fereres and
Garcia-Vila, 2018). Efficient water use in this setting
may alleviate water shortages and increase food pro-
duction.

Irrigated agriculture requires precise crop water
requirements based on irrigation scheduling (IS) for
optimal water usage (Jones, 2004), (Ben Abdallah
et al., 2022), (Ben Abdallah et al., 2023a). Further-
more, predicting upcoming soil moisture is critical to
accomplishing effective irrigation management since
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it allows for an accurate assessment of water stress
or availability in the soil. Forecasting such a criti-
cal parameter is, therefore, crucial for proactive, long-
term decisions in efficient IS (Prasad et al., 2018) and
water management (Sanuade et al., 2018). This is
because future soil moisture knowledge may capture
previously difficult-to-record unexpected land-water
fluctuations, avoiding ineffective irrigation decisions.
As a result, researchers have extensively utilized ma-
chine learning (ML) to forecast such a vital parameter
(Ben Abdallah et al., 2023b), (Koné et al., 2023).

Furthermore, feature selection is a crucial step in
developing machine learning models because it se-
lects the most relevant features for the prediction task,
hence reducing model complexity and enhancing pre-
dictive performance. This process is especially sig-
nificant for soil moisture prediction because numer-
ous studies have investigated the impact of various
environmental and climatological factors on model
accuracy. Several studies, including (Togneri et al.,
2023), (Yu et al., 2021), and (Adeyemi et al., 2018),
have used varying climatological and soil-related fea-
tures to forecast future soil moisture content. De-
spite the widely recognized advantages of feature se-
lection, attempts to identify the most important fea-
tures in soil moisture prediction have not been thor-
oughly evaluated in contrasting circumstances. More
specifically, existing soil moisture prediction studies
(Togneri et al., 2023), (Adeyemi et al., 2018), (Yu
et al., 2021), (Dubois et al., 2021), (Cai et al., 2019),
(He et al., 2022), while achieving high performance
with fewer features, often lack comprehensive investi-
gation of the influence of their selected input features
under contrasting soil conditions. This lack of gen-
eralizability emphasizes the need for a more robust
methodology capable of accounting for a wide range
of soil and climate variables.

To address this limitation, we propose a novel fea-
ture selection approach to effectively identify relevant
features for soil moisture prediction across distinct
sites with contrasting soil conditions. Specifically, we
examine three different soil types: mineral, calcare-
ous, and organic. Overall, the main focuses of this
paper are as follows:

1. Development of a Multisite Feature Selection
Framework: This framework assesses feature rel-
evance across distinct soil types, enabling a ro-
bust comparison of feature importance for min-
eral, calcareous, and organic soils.

2. Cross-Site Validation of Feature Relevance: We
evaluate models trained on selected features from
one site on other sites, providing insights into the
cross-site transferability of feature sets. This val-
idation highlights the robustness of the selected
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features when applied to different soil conditions,
helping to identify universally impactful predic-
tors.

3. Feature Analysis Using SHAP Explanations: We
use SHAP, a widely used explainable Al tech-
nique, to assess the input features. SHAP gives
global rankings and insights into the contributions
of specific features to soil moisture predictions,
allowing for a better understanding of their im-
pact across different soil types. By comparing
SHAP explanations from different sites, we can
see how the relevance and behavior of features
change with soil and environmental variables.

It is crucial to note that this paper does not attempt
to comprehensively address all challenges associated
with soil moisture prediction. Instead, the emphasis in
this study is on advancing the field by proposing a fo-
cused feature selection approach customized to soil-
specific as well as cross-site scenarios. As a result,
substantial training and evaluation of machine learn-
ing models, whether shallow or deep, are outside the
scope of this paper as these aspects have been thor-
oughly documented in earlier studies. Therefore, the
fundamental purpose of this research is to improve
soil moisture prediction by developing a more ef-
fective and generalizable feature selection framework
that is intended to supplement and reinforce existing
predictive methods.

2 MATERIALS AND METHODS

The proposed approach in this study is illustrated in
Figure 1. We begin by selecting meteorological and
soil data from a multisite dataset collected at three
different locations, each characterized by unique soil
types: mineral, calcareous, or organic. For each soil
type, the dataset is analyzed independently to per-
form feature selection, which results in identifying the
most relevant soil-specific properties. To further un-
derstand the value and influence of these features, we
use SHAP, a widely used explainable Al technique.
SHAP allows us to evaluate selected features’ global
ranking and contribution to soil moisture prediction.
Furthermore, the SHAP explanations developed for
each site are then compared to study the variability
in feature impact across the three soil types, reveal-
ing how soil-specific factors influence the prediction
process. This framework not only highlights the rel-
evance of soil-specific feature selection but also em-
phasizes the need to understand feature contributions
under varying environmental conditions, laying the
groundwork for developing robust and generalizable
soil moisture prediction models.
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Table 1: Descriptive summary of Balruderry training site.

Feature full name Abbreviation Unit
Net radiation RN Watts per square meter (Wm™2)
Precipitation PRECIP Millimetres (mm)
Air pressure PA HectoPascals (hPa)
Air temperature Abbreviation Degrees Celcius (°C)
Wind speed WS Metres per second (ms™ 1)
Wind direction WD Degrees (°)
Absolute humidity Q Grams per cubic meter (gm™3)
Relative humidity RH Percent (%)
Heat Flux Gl, G2 Watts per square meter (Wm™2)
Soil temperature from 7'DT, sensor TDTx_TSOIL Degrees Celcius (°C)
Soil moisture from 7 DT, sensor TDTx_VWC Percent (%)
Incoming longwave radiation LWIN Megajoule per square meter (MJm™2)
Outgoing longwave radiation LWOUT Megajoule per square meter (MJm™2)
Incoming shortwave radiation SWIN Megajoule per square meter (MJm™2)
Outgoing shortwave radiation SWOUT Megajoule per square meter (MJm™2)
Effective depth of CRNS (D86 at 75m) D86_75m Centimetres (cm)
Albedo ALBEDO

Furthermore, we combine the chosen site-specific
features into a categorization scheme that has four
subsets: core, enhanced core, union, and enhanced
core + secondary features. The particulars of each
subset are defined as follows:

1. Core Consistent Features: This subset contains
the features that are shared among the core fea-
tures across all three sites.

2. Enhanced Core Features: This subset includes
the core consistent features and adds any sec-
ondary features that appear consistently across all
three sites.

3. Union of Core Features: This subset consists of
the union of core features across the three sites,
capturing all primary predictors for each site.

4. Extended Core Plus Secondary Features: This
subset builds on the union of core features by
adding any secondary features that are important
across all sites. In this case, only RH meets this
criterion.

By examining these subsets, we seek to lay a solid
foundation for a soil moisture prediction model that
can effectively generalize over a wide range of envi-
ronmental conditions. Detailed descriptions of each
component of our approach are provided in the fol-
lowing sections of this research.

2.1 Study Site and Data Preprocessing

This study used the Cosmic-ray soil moisture mon-
itoring (COSMOS) dataset (Stanley et al., 2023) to
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train and evaluate models because of it’s availabil-
ity and broad range coverage. The dataset is made
up of data collected from 51 different sites across
the United Kingdom, each with its own unique set of
characteristics. This study used the most recent ver-
sion of COSMOS and included daily hydrometeoro-
logical and soil measurements for approximately ten
years, from October 2013 to December 2023. Me-
teorological data include radiation (shortwave, long-
wave, and net), precipitation, atmospheric pressure,
air temperature, wind speed and direction, and humid-
ity. Soil observations include measurements of soil
heat flux, temperature, and moisture reported as volu-
metric water content (VWC) at different depths.

From the initial dataset of 51 sites, we chose nine
different sites for the purpose of our study, with three
sites for each soil characteristic. For effective mod-
eling, we emphasized sites with few missing values
while maintaining site diversity. The characteristics
of the different sites are summarized in Table 2. Fur-
thermore, missing values were interpolated to prevent
the models from performing significantly worse. In-
terpolation is the process of calculating missing val-
ues for an observation based on its preceding values.
The sequential nature of this interpolation technique
fits the temporal nature of time-series data. A brief de-
scription of the main features of the dataset are sum-
marized in Table 1.

Table 2: Characteristics of the training and test sites.

Site Name Abbreviation Soil type Land cover
Balruddery BALRD Mineral soil Arable and Horticulture
Alice Holt ALIC1 Mineral soil Broadleaf woodland
Bickley Hall BICKL Mineral soil Grassland
Chimney Meadows CHIMN Calcareous soil Improved grassland
Lullington Heath LULLN Calcareous soil Calcareous grassland
Porton Down PORTN Calcareous soil Improved grassland
Glensaugh GLENS Organic soil Heather
Henfaes Farm HENFS Organic soil Acid grassland
Plynlimon PLYNL Organic soil Acid grassland

The dataset was then divided into training, vali-
dation, and test data. Because we are working with
time-series data, the split was performed sequentially
to preserve the data’s temporal dynamics. As a re-
sult, we used data from 2014 to 2019 for training and
2020 and 2021 for validation. Additionally, data gath-
ered in 2022 at each location was not included in the
training phase and therefore constitute evaluation or
test sets. Finally, we standardized the data as an addi-
tional preprocessing step to deal with the wide range
of input parameters. This ensures that the mean value
of each input parameter is 0 and the standard devi-
ation is 1, allowing neural network-based models to
learn more effectively from data.
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2.2 Feature Selection Techniques

Feature selection is a critical preprocessing step in
machine learning that identifies the most relevant fea-
tures (variables) in a dataset for model training. The
optimization technique analyzes alternative subsets of
features to identify one that is optimal or near-optimal
based on specific performance criteria, with the goal
of minimizing a given measure (Karnan et al., 2011).
This study focuses on two widely used feature selec-
tion techniques: recursive feature elimination (RFE)
and Boruta.

Recursive Feature Elimination (Guyon et al.,
2002) is a feature selection method that improves
model performance, decreases overfitting and in-
creases interpretability. The method iteratively re-
moves the least significant features based on a rank-
ing criterion until the target amount of features is ob-
tained. The initial stage in RFE is to train a machine
learning model on the original dataset and rank the
features according to relevance. Feature weights in
linear models, feature importance in tree-based mod-
els, and support vector machine coefficients all serve
as ranking criteria. Several research studies have
shown that RFE is useful in a range of domains, in-
cluding soil quality assessment and decision support
systems in agriculture (Ijadi Maghsoodi et al., 2023).

Boruta (Kursa et al., 2010) proposes a powerful
feature selection approach for selecting key charac-
teristics from huge datasets. It is specifically devel-
oped for all-relevant feature selection, as opposed to
RFE, which concentrates on selecting a minimal sam-
ple of features. The approach compares the signifi-
cance of the original features to random shadow fea-
tures. These shadow features are created by individu-
ally rearranging the values of each feature. Boruta can
determine the true relevance of each feature and suc-
cessfully remove insignificant or noisy ones by com-
paring the importance scores of the original features
to the shadow features.

3 RESULTS AND DISCUSSIONS

3.1 Site-Specific Feature Relevance
Analysis

To determine the most important features for soil
moisture prediction across different soil types, we
used an iterative feature selection procedure with re-
cursive feature elimination. This approach allowed us
to identify variables that consistently improve fore-
cast accuracy across soil types, as well as those that
are context-dependent. By adapting feature selection
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to each soil type, we seek to develop models that are
more resilient in terms of assessment metrics for pre-
dicting soil moisture in a variety of environments.
Furthermore, for each soil type, we examined three
different locations, using RFE to determine the most
essential subsets of features for each site. Table 3
shows the top features identified for each site and soil
type, along with the R? scores of fine tuned random
forest models trained on these subsets. Each site’s
data is divided into three rows: the first represents the
initial set of all features, the second shows selected
features via RFE, and the third displays those cho-
sen by Boruta. This structured method allows us to
compare feature significance across feature selection
techniques and environments, which helps us better
understand cross-soil predictors and site-specific fea-
tures.

Our findings show that RFE and Boruta effectively
select relevant features, minimizing inputs and im-
proving model performance across all sites and soil
types. Regarding the selection techniques, Boruta
outperformed RFE in most sites, demonstrating its
robustness. As for the soil types, mineral soils have
consistent features such as LWIN, SWOUT, PRECIP, and
TDT1_VWC (previous soil moisture values). These fea-
tures were consistently ranked among the best selec-
tions in at least one selection technique across all
sites, with PRECIP and TDT1_VWC showing reliability
across both RFE and Boruta. Other factors, such as
RN and RH, were generally important but not as consis-
tently impactful as the main features. Based on these
results, we classified the features as follows:

1. Core Features: Features consistently appearing in
the top selections of at least one method across all
sites of the soil type.

2. Secondary Features: Features relevant in most
sites of the soil type but less critical than the pri-
mary group.

3. Supplementary Features: Features of lesser rele-
vance, appearing in fewer sites.

Table 4 summarizes all relevant features by soil type
according to this classification. These insights lay the
groundwork for the following subsection.

3.2 Interpreting Feature Importance
and Impact with SHAP

Figure 2a illustrates the global explanation of the
model by highlighting the importance of each feature
as well as its effect on the model’s outputs in mineral
soil. Similar illustrations for calcareous and organic
soils are depicted in Figures 2b and 2c.

Given these global explanations, we might infer
that the model efficiently captures soil moisture dy-
namics by utilizing essential environmental interac-
tions rather than relying on less interpretable or co-
incidental data patterns to improve accuracy. This is
demonstrated by the model’s identification that fac-
tors such as low precipitation and high levels of so-
lar radiation are significant contributors to lower soil
moisture. Such trends are consistent with accepted
environmental principles: higher radiation typically
reduces soil moisture, whereas increasing precipita-
tion usually increases it. Thus, the model’s capac-
ity to reflect these well-known contextual interactions
contributes to increased confidence in its predictions,
strengthening its trustworthiness even in the context
of typically opaque “black-box” models.

Based on the model’s explanations for each type
of soil, it is obvious that soil type has a major impact
on how the model understands the correlations be-
tween features and soil moisture forecasts. In mineral
and organic soils, TDT1_VWC consistently improves
forecasts. At the same time, its dominance is some-
what reduced in calcareous soils due to the addi-
tional influence of thermal and radiative features like
STP_TSOIL50 and SWIN. Furthermore, PRECIP has a
strong positive effect in mineral soils but becomes
less impactful in calcareous and organic soils, prob-
ably due to varying water retention and drainage ca-
pacities. Further investigation demonstrates that some
features have conflicting effects depending on the soil
type. For example, SWOUT, which significantly effects
forecasts in mineral soils, has a less pronounced or
even opposite effect in organic soils.

As a result, the plots show how environmental
variables including radiation, precipitation, and soil
temperature interact differently depending on the soil
type. Mineral soils have more linear and clear in-
teractions (for example, increased precipitation in-
creases soil moisture). However, in organic soils with
higher water retention, the impact of these drivers
can be mitigated or exhibit nonlinear trends. Overall,
changing soil type modifies the magnitude and direc-
tion of feature impacts. Universally significant fea-
tures (e.g., TDT1_VWC) remain important but may in-
teract differently with secondary factors based on soil
physical and hydrological properties. Some features,
such as SWOUT, switch their impact polarity, reflect-
ing how different soils respond to environmental vari-
ables. Given these findings, the limitations of prior
research that rely solely on feature selection for a par-
ticular soil type become obvious, despite the great
predictive performances achieved in those studies. A
more generalized approach is to incorporate soil type
data into the feature selection process.
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Table 3: Model Performance by Soil Type, Site, and Feature Set.

Soil Type | Training Site | Features R? Score
Mineral BALRD All 25 features 0.6713
SWIN, RN, PRECIP, RH, TDT1_VWC, TDT2_VWC 0.7001
LWIN, SWIN, SWOUT, RN, PRECIP, RH, TDT1_VWC, TDT2_VWC 0.7133
ALIC1 All 25 features 0.9793
LWIN, SWOUT, PRECIP, RH, TDT1_VWC, STP_TSOILS5 0.9898
LWIN, SWOUT, PRECIP, Q, TDT1_VWC 0.9902
BICKL All 25 features 0.9004
RN, PRECIP, TDT1_VWC, TDT2_VWC, D86_75M, ALBEDO 0.9062
LWIN, SWOUT, PRECIP, TDT1_VWC, ALBEDO 0.9405
Calcareous CHIMN All 25 features 0.8407
SWIN, PRECIP, PA, RH, G1, TDT1_VWC 0.8619
SWIN, PRECIP, RH, TDT1_VWC 0.8718
LULLN All 25 features 0.9414
SWIN, PRECIP, G1, TDT1_VWC, TDT2_VWC, STP_TSOIL20 0.9400
SWIN, PRECIP, TDT1_VWC, TDT2_VWC 0.9440
PORTN All 25 features 0.8983
PRECIP, PA, RH, TDT1_TSOIL, TDT1_VWC, TDT2_VWC 0.9001
LWIN, PRECIP, TDT1_TSOIL, TDT1_VWC 0.9166
Organic GLENS All 25 features 0.8224
PRECIP, RH, TDT1_VWC, TDT2_VWC, D86_75M, ALBEDO 0.8670
RH, TDT1_VWC, TDT2_VWC, D86_75M 0.8784
HENFS All 25 features 0.7108
PRECIP, PA, TDT1_VWC, TDT2_VWC, STP_TSOIL50, D86_75M 0.7197
PRECIP, PA, TDT1_VWC, TDT2_VWC, STP_TSOIL50, D86_75M 0.7356
PLYNL All 25 features 0.6512
LWIN, SWIN, PRECIP, TDT1_VWC, TDT2_VWC, STP_TSOIL50 0.6931
LWIN, SWIN, SWOUT, PRECIP, RH, TDT1_VWC, TDT2_VWC, STP_TSOIL?2, 0.6839
STP_TSOIL50 ’
Table 4: Feature Classification by Soil Type.
Soil Type | Classification Features
Mineral Core Features LWIN, SWOUT, PRECIP, TDT1_VWC
Secondary Features RN, RH
Supplementary Features | SWIN, TDT2_VWC, STP_TSOILS5, Q, D86_75M, ALBEDO
Calcareous | Core Features PRECIP, TDT1_VWC
Secondary Features SWIN, PA, RH, G1, TDT2_VWC
Supplementary Features | STP_TSOIL20, TDT1_TSOIL, LWIN
Organic Core Features PRECIP, TDT1_VWC, TDT2_VWC, STP_TSOILS50
Secondary Features RH, D86_75M
Supplementary Features | PA, LWIN, SWIN, SWOUT, STP_TSOIL2

3.3 Evaluating Feature Subsets for
Cross-Site Generalization

Building on the prior research, our goal here is to
identify features that are consistent across sites rather
than those that are unique to each one. These cross-
site features are not site-specific, yet they are neces-
sary for reliable soil moisture prediction across a wide
range of soil types. To accomplish this, we evalu-
ated four feature subsets: core, enhanced core, union,
and enhanced core plus secondary features (specified
in Section 2). These feature subsets are evaluated
for their overall usefulness in predicting soil moisture
across different locations and soil types (Table 5). The
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table compares cross-site model performance using
feature classification at three training sites (BICKL,
CHIMN, and GLENS). Key conclusions can be drawn
regarding the effectiveness of each feature subset in
producing accurate and generalizable soil moisture
predictions across different sites:

¢ Enhanced Core Features Perform Well Across
Sites: The enhanced core features subset, con-
sisting of PRECIP, TDT1_VWC, and RH, consistently
yields strong R? scores across all evaluation sites.
For example, when BICKL is the training site,
models evaluated at CHIMN and GLENS achieve
R? scores of 0.8391 and 0.8708, respectively.
Similarly, training on CHIMN and evaluating on
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Figure 2: SHAP beeswarm plot showing the impact of various features on the model’s prediction for each type of soil.

BICKL and GLENS yields R? scores of 0.9404
and 0.8720. This subset often performs compara-
bly to, or better than, larger feature sets (such as
the Union of Core Features and Extended Core
Plus Secondary Features), suggesting that these
three features offer both efficiency and predictive
strength.

Core Consistent Features Provide a Simpler,

Yet Effective, Model: The core consistent fea-
tures subset (PRECIP and TDT1_VWC) achieves rel-
atively high R? scores, but it is slightly outper-
formed by the enhanced core features subset in
most cases. For example, training on CHIMN
with this subset yields R?> scores of 0.9410 on
BICKL and 0.8655 on GLENS, while adding RH
(in the enhanced core features subset) improves
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Table 5: Cross-Site Model Performance by Feature Classification and Training Site.

Training Site | Classification Feature Names Evaluation Site | R Score

. CHIMN 0.8345

Core Consistent Features PRECIP, TDT1_VWC GLENS 0.8564

CHIMN 0.8391

BICKL Enhanced Core Features PRECIP, TDT1_VWC, RH GLENS 0.8708

Union of Core Features LWIN, SWOUT, PRECIP, STP_TSOIL50, g]I:IIIEI\IfII; ggj?é
TDT1_VWC, TDT2_.VWC :

Extended Core Plus Secondary Features | LWIN, SWOUT, PRECIP, STP_TSOILS50, gﬁgﬁg 82;2;
TDT1_VWC, TDT2_VWC, RH '

Site-specific Features LWIN, SWOUT, PRECIP, TDT1_.VWC, EIE}IE%I; 82;?3
ALBEDO :

. i BICKL 0.9410

Core Consistent Features PRECIP, TDT1_.VWC GLENS 0.8655

BICKL 0.9404

CHIMN Enhanced Core Features PRECIP, TDT1_VWC, RH GLENS 0.8720

Union of Core Features LWIN, SWOUT, PRECIP, STP_TSOIL50, giCEKNLS 823(2)2
TDT1_VWC, TDT2_.VWC '

Extended Core Plus Secondary Features | LWIN, SWOUT, PRECIP, STP_TSOILS50, EEEIT\ILS ggigg
TDT1_.VWC, TDT2_.VWC, RH :

Site-specific Features LWIN, SWOUT, PRECIP, TDT1_.VWC, EILCEI;LS ggggg
ALBEDO :

. ] BICKL 0.9353

Core Consistent Features PRECIP, TDT1_VWC CHIMN 0.8236

BICKL 0.9474

GLENS Enhanced Core Features PRECIP, TDT1_VWC, RH CHIMN 0.8573

Union of Core Features LWIN, SWOUT, PRECIP, STP_TSOILS50, g_ﬁﬁ& 82232
TDT1_VWC, TDT2_.VWC '

Extended Core Plus Secondary Features | LWIN, SWOUT, PRECIP, STP_TSOILS50, 2}_%11\(/[1;\1 82252
TDT1_-VWC, TDT2_-VWC, RH :

Site-specific Features LWIN, SWOUT, PRECIP, TDT1_VWC, gilclll\(/lli\l ggggg
ALBEDO ’

the R”> score on GLENS to 0.8720. Although
core consistent features perform well, the slight
increase in performance from adding RH indicates
that RH is an important factor for enhanced gener-
alizability.

* Union of Core Features Shows Inconsistent Re-
sults: The union of core features subset, which
includes six features (LWIN, SWOUT, PRECIP,
STP_TSOIL50, TDT1.VWC, and TDT2_VWC), per-
forms inconsistently across sites.  While it
achieves relatively high scores, it sometimes falls
below the simpler enhanced core features subset.
For example, training on BICKL and evaluating .
GLENS with this subset results in an R? score of
0.8418, which is lower than the 0.8708 achieved
with the enhanced core features. This suggests
that adding more features does not necessarily im-
prove performance and may even introduce noise
or overfitting.

* Extended Core Plus Secondary Features Do
Not Consistently Improve Performance: The
extended core plus secondary features subset,
which adds RH to the union of core features, does
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not consistently outperform simpler feature sub-
sets. In some cases, it achieves similar or even
lower R? scores compared to the core consistent
or enhanced core features subsets. For instance,
training on GLENS and evaluating on BICKL
gives an R? score of 0.9223 with this subset,
which is lower than the 0.9474 obtained with en-
hanced core features. This indicates that the in-
clusion of all core and secondary features may
not provide additional predictive power and sug-
gests that smaller, well-selected feature sets can
be more effective.

Site-Specific Features Provide Comparable
Performance but Lack Generalizability: The
site-specific features subset achieves competi-
tive R? scores, sometimes matching or exceeding
those of other subsets. For example, when trained
on CHIMN and evaluated on GLENS, the site-
specific subset achieves an R? of 0.8673, close
to the enhanced core subset’s 0.8720. However,
models trained on site-specific features are less
generalizable, as they are tailored to particular site
characteristics that may not transfer well across
different environments. This indicates that while
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site-specific features may be useful for local pre-
dictions, they lack the consistency required for
cross-site applications.

Overall, the enhanced core features subset (PRECIP,
TDT1_VWC, and RH) consistently delivers strong per-
formance across all sites, providing an ideal mix of
simplicity and predictive accuracy. In most situations,
it outperforms or matches bigger feature sets, demon-
strating its ability to predict soil moisture across many
sites. This shows that a small collection of highly
predictive variables is desirable for generalizable soil
moisture models in a variety of situations. These find-
ings show that including site-specific variables might
reduce model generalizability, which is commonly
missed in studies that focus on single-site data. By se-
lecting universally relevant features, we improve the
model’s adaptability to a variety of environmental sit-
vations while maintaining high performance. As a
result, our research proposes an ideal feature subset
for soil moisture prediction that maximizes accuracy
while keeping model simplicity, thereby enabling the
development of robust, generalizable prediction mod-
els.

4 CONCLUSIONS

This study proposed a multisite feature selection
framework to address the limitations of single-site
feature selection methods in soil moisture prediction.
While single-site feature selection can effectively re-
duce data dimensionality and improve model perfor-
mance for a specific site or sites with similar soil char-
acteristics, its relevance is much reduced when ap-
plied to sites with varied soil properties. The current
literature has not adequately investigated the perfor-
mance of soil moisture prediction models across di-
verse soil types, resulting in a crucial gap in under-
standing their generalizability. To address this gap,
the present article examined three separate soil types
and identified the most relevant inputs specific to
each, as well as those that are universally significant
across all three types. The feature selection proce-
dure involves creating numerous probable subsets of
features and meticulously examining their relevance,
both within and between sites. Two advanced tech-
niques, RFE and the Boruta algorithm, were used to
systematically determine and validate these features.
The results of this research highlight a number of
major contributions. First, the identified site-specific
features provide a solid foundation for studies con-
centrating on specific soil types, allowing them to
quickly identify the most relevant indicators for en-
hanced model performance. Second, our study es-

tablishes a robust and generalizable feature selection
framework by validating the transferability of im-
portant predictive characteristics across diverse sites
(TDT1_VWC, PRECIP, and RN). This approach delivers
great predicted accuracy while keeping model com-
plexity low and assuring cross-site generalizability.
As a result, our findings demonstrate that models
trained on a core subset of globally significant char-
acteristics can effectively generalize across different
soil types, indicating the potential for multisite feature
selection to improve environmental modeling tasks.
This framework not only enhances prediction accu-
racy, but it also increases model efficiency and adapt-
ability under a variety of environmental situations.
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