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Abstract: People with hearing loss face many challenges when it comes to communication since they frequently lack 
the tools needed to interact with others in a meaningful way. Although sign language is an essential tool for 
communication, its automated recognition is challenging since motions are dynamic in nature. This paper 
presents a Sign Language Recognition model that uses networks of Long Short-Term Memory (LSTM) and 
Gated Recurrent Units (GRU) to recognize hand gestures for the American Sign Language (ASL) Alphabet. 
Because GRU and LSTM effectively capture both the temporal and spatial aspects of hand gestures, the model 
is well-suited to handle the sequential nature of ASL movements. Critical features are extracted by the model 
after preprocessing input data, such as video frames or skeletal hand tracking data. The GRU and LSTM 
networks receive these features and use them to learn the time-dependent patterns of hand movements in order 
to correctly classify the corresponding ASL letters. The accuracy of the system is evaluated in real-time 
scenarios after it has been trained on a labeled dataset. This method facilitates smoother interactions and 
improves communication for people with hearing loss by offering real-time ASL identification. The model 
does a good job of identifying hand movements, but it has problems with computational complexity, 
especially when used on devices with little processing power. But compared to conventional models, the 
recognition process is more effective with the combination of GRU and LSTM networks, which makes this 
system a potential step toward helping people with hearing loss communicate. 

1 INTRODUCTION 

People with hearing loss have communication 
obstacles because of insufficient accessible options 
for meaningful engagement. ASL functions as a 
crucial visual communication moderate and 
nevertheless, its automatic recognition poses 
difficulties owing to the fluidity of hand motions. 
Advancements in machine learning, especially in 
sequential data modeling, present viable solutions. By 
identifying and interpreting ASL instantaneously, 
technology can facilitate the closure of the 
communication divide. These methods emphasize the 
acquisition of distinctive patterns in ASL gestures, 
facilitating more fluid communication. Automated 
technologies can improve accessibility for those with 
hearing impairment in diverse settings (Bantupalli,  
and Xie,  2018). 

This research is inspired by the necessity to tackle 
the communication difficulties encountered by 
individuals with hearing loss, especially in settings 

devoid of ASL interpreters or other assistive services. 
Existing systems for real-time ASL recognition 
exhibit limitations in both accuracy and efficiency, 
frequently neglecting to capture the dynamic and 
sequential characteristics of gestures. This project 
seeks to create a more efficient and accessible system 
for identifying ASL by utilizing advanced machine 
learning techniques such as Gated Recurrent Units 
(GRU) and Long Short-Term Memory (LSTM) 
networks. The objective is to close the 
communication divide, foster inclusivity, and 
enhance the independence of individuals with hearing 
loss in social, educational, and professional contexts 
(Shirbhate, Shinde, et al.  2020).  

The existing  methodology for ASL detection 
employs Convolutional Neural Networks (CNN) to 
categorize static hand motions through the extraction 
of spatial characteristics from images. Although 
proficient for discrete gestures, it falters with 
continuous or dynamic motions. Another approach 
utilizes Hidden Markov Models (HMM) to depict the 
temporal sequence of ASL gestures by modeling 
transitions between hand positions. Hidden Markov 
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Models (HMM) are appropriate for continuous 
gesture detection; nevertheless, they depend on 
manually constructed features and exhibit reduced 
capacity for capturing long-term dependencies, hence 
constraining their scalability and efficiency. 

The proposed approach employs Gated Recurrent 
Units (GRU) and Long Short-Term Memory (LSTM) 
networks to address the problems inherent in existing 
approaches for ASL Recognition. Previous 
methodologies, including Convolutional Neural 
Networks (CNNs), are proficient at identifying static 
motions but frequently encounter difficulties with 
dynamic movements. The proposed model mitigates 
this problem by capturing the temporal dependencies 
and sequential patterns of hand movements intrinsic 
to ASL. Moreover, in contrast to Hidden Markov 
Models (HMM), which depend on manually 
constructed features and exhibit diminished efficacy 
with extensive gesture vocabularies, GRU and LSTM 
networks autonomously extract pertinent features 
from the data. This amalgamation augments the 
model's precision and resilience, rendering it a more 
efficacious solution for real-time ASL recognition 
and enhancing communication for those with hearing 
impairment (Halder, and Tayade, 2021), (Sahoo,   
2021), (Chong, and  Lee, 2018). 

The proposed model for ASL Recognition utilizes 
Gated Recurrent Units (GRU) and Long Short-Term 
Memory (LSTM) networks to improve the 
identification of ASL movements. It analyzes video 
or skeletal tracking data of hand movements, 
extracting spatial and temporal information to 
represent gesture dynamics. The architecture 
comprises stacked GRU and LSTM layers that 
proficiently model long-term dependencies, 
succeeded by a fully linked layer for gesture 
classification. The model, trained on a labeled 
dataset, can identify ASL movements in real-time, 
offering instantaneous feedback. This methodology 
addresses the shortcomings of current techniques, 
providing enhanced precision and efficacy in the 
identification of both static and dynamic motions. 

The major contributions of the proposed model 
for ASL Recognition include: 

• The model improves recognition 
accuracy for static and continuous ASL 
gestures by merging Gated Recurrent 
Units (GRU) and Long Short-Term 
Memory (LSTM) networks to capture 
temporal dependencies and dynamic 
motions. 

• The model uses deep learning to 
automatically extract relevant features 
from raw input data, improving 

scalability and adaptability to different 
gesture vocabularies. 

• The suggested system offers real-time 
detection and feedback, enabling 
successful communication for hearing-
impaired individuals in daily scenarios. 

• The model combines spatial and 
temporal hand movement analysis, 
overcoming limitations of current 
approaches and enabling more reliable 
ASL recognition systems. 

The remaining part of the paper is organized as 
section 2 shows the literature survey. Proposed model 
is explained in section 3. Section 4 shows the result 
and discussion part and final part is about conclusion 
and future work. 

2 LITERATURE SURVEY 

Ankita Wadhawan et al. (2020) developed deep 
learning-based convolutional neural networks to 
identify static signs in Indian Sign Language, 
utilizing a dataset including 35,000 images of 100 
signs. The system was assessed using around 50 CNN 
models and many optimizers. The maximum training 
accuracy attained is 99.72% for colored images and 
99.90% for grayscale images. The results indicate 
superior performance in precision, recall, and F-
score, showcasing the model's efficacy compared to 
previous studies that concentrated on a limited 
number of indicators. It exclusively addresses static 
signs and neglects dynamic sign recognition 
(Wadhawan, and Kumar, 2020). 

Feng Wen et al. (2021) utilized sensing gloves, a 
deep learning module, and a virtual reality interface 
to facilitate sign language sentence detection. It 
utilizes non-segmentation and segmentation-assisted 
deep learning to identify 50 words and 20 phrases, 
dividing sentence signals into word units for precise 
recognition. The algorithm attains an average 
accuracy of 86.67% for newly constructed phrases 
using word recombination. Results encompass 
instantaneous translation of sign language into text 
and voice, enabling remote conversation. The model's 
accuracy diminishes with more intricate sentences 
(Wen, Zhang, et al.  2021). 

Sakshi Sharma et al. (2021) introduced a deep 
learning-based convolutional neural network (CNN) 
tailored for the recognition of gesture-based sign 
language, with a compact representation and reduced 
parameters relative to current CNN designs. It attains 
an accuracy of 99.96% for the Indian Sign Language 

INCOFT 2025 - International Conference on Futuristic Technology

660



(ISL) dataset and 100% for the ASL dataset, 
surpassing VGG-11 and VGG-16. The system's 
robustness is confirmed through supplemented data, 
demonstrating invariance to rotational and scaling 
changes. The methodology predominantly 
emphasizes static motions, neglecting dynamic 
gestures and continuous sign language recognition 
(Sharma, Singh, et al.  2021). 

Romala Sri Lakshmi Murali et al. (2022) 
presented HSV color detection and computer vision 
methodologies to segment hand motions for the 
recognition of 10 ASL alphabets. The system 
acquires hand gesture images through a camera, 
processes them through grayscale conversion, 
dilation, and masking procedures, and extracts binary 
pixel features for classification purposes. A CNN is 
employed for training, attaining an accuracy 
exceeding 90%. Results encompass proficient gesture 
recognition with negligible ambiguity. The device 
identifies only 10 static ASL alphabets, missing the 
capability for dynamic gestures or comprehensive 
alphabet recognition (Murali, Ramayya, et al.  2020). 

Muneer Al-Hammadi et al. (2020) introduced 
various deep learning architectures to tackle dynamic 
hand gesture detection through the management of 
hand segmentation, local shape representation, global 
body configuration, and gesture sequence modeling. 
The evaluation is conducted on a demanding dataset 
of 40 dynamic hand gestures executed by 40 
individuals in uncontrolled environments. The model 
surpasses leading methodologies, demonstrating 
enhanced recognition accuracy. Results encompass 
proficient gesture recognition in unregulated settings. 
The model's efficacy may diminish in highly cluttered 
or dimly lit settings, where hand segmentation is 
more difficult (Al-Hammadi,  Muhammad, et al.  
2020). 

Ghulam Muhammad et al. (2020) created a deep 
CNN utilizing transfer learning for hand gesture 
identification, tackling the issue of spatiotemporal 
feature extraction in sign language research. It was 
evaluated on three datasets comprising 40, 23, and 10 
gesture categories. The system attained recognition 
rates of 98.12%, 100%, and 76.67% in signer-
dependent mode, and 84.38%, 34.9%, and 70% in 
signer-independent mode. Results demonstrate 
significant precision in signer-dependent scenarios. A 
constraint is the diminished efficacy in signer-
independent mode, particularly for datasets with a 
limited number of gesture types (Al-Hammadi,  
Muhammad, et al.  2020). 

Abul Abbas Barbhuiya et al. (2020) introduced a 
deep learning-based CNN for resilient hand gesture 
recognition (HGR) of alphabets and numerals in 

ASL, utilizing modified AlexNet and VGG16 for 
feature extraction and a support vector machine 
(SVM) classifier for final classification. It employs 
both leave-one-subject-out and 70–30 cross-
validation methodologies. The system attains a 
recognition accuracy of 99.82%, above contemporary 
approaches. Results encompass elevated precision, 
economic efficiency, and character-level 
identification. The system exclusively accommodates 
static motions, hence constraining its capability to 
recognize dynamic sequences or continuous gestures 
(Barbhuiya, Karsh, et al.  2021). 

Razieh Rastgoo et al. (2020) proposed a deep 
learning pipeline that integrates SSD, 2DCNN, 
3DCNN, and LSTM for the automatic recognition of 
hand sign language from RGB videos. It estimates 
three-dimensional hand keypoints, constructs a hand 
skeleton, and extracts spatiotemporal characteristics 
utilizing multi-view hand skeletons and heatmaps. 
The aggregated features are analyzed using 3DCNNs 
and LSTM to capture long-term gesture dynamics. 
Assessment of the NYU, First-Person, and RKS-
PERSIANSIGN datasets indicates that the model 
surpasses leading methodologies. The computational 
complexity of the multi-modal technique may impede 
real-time applications in resource-constrained 
contexts (Rastgoo, Kiani, et al.  2020). 

Eman K. Elsayed et al. (2020) developed a 
semantic translation system for dynamic sign 
language recognition employing deep learning and 
Multi Sign Language Ontology (MSLO). It utilizes 
3D Convolutional Neural Networks (CNN) 
succeeded by Convolutional LSTM to enhance 
recognition accuracy and enables user customization 
of the system. Evaluated on three dynamic gesture 
datasets, it attained an average recognition accuracy 
of 97.4%. Utilizing Google Colab for training 
decreased runtime by 87.9%. Results encompass 
improved recognition via semantic translation and 
customisation features. The dependence on Google 
Colab for performance enhancement, which may not 
be available in all settings (Elsayed,  and Fathy, 
2021). 

Ahmed Kasapbasi et al. (2022) created a CNN-
based sign language interface to translate ASL 
motions into normal English, utilizing a newly 
established dataset with diverse lighting and distance 
conditions. The model attained an accuracy of 
99.38% and a minimal loss of 0.0250 on the new 
dataset, surpassing performance on prior datasets 
with consistent conditions. The results demonstrate 
great accuracy across many datasets, indicating 
robustness under multiple settings. A shortcoming is 
the emphasis on the alphabet instead of complete 
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sentence identification, constraining its applicability 
in real-world conversational contexts (Kasapbaşi,  
Elbushra, et al.  2022). 

3 PROPOSED METHODOLOGY 

The proposed model for Sign Language Recognition 
employs GRU and LSTM networks to effectively 
recognize ASL motions. It analyzes video sequences 
or skeletal data, extracting spatial and temporal 
elements to capture the dynamics of hand 
movements. The design comprises stacked GRU and 
LSTM layers that capture temporal patterns, 
succeeded by a fully linked layer for gesture 
classification. The algorithm, trained on a labeled 
dataset, facilitates real-time recognition, delivering 
instantaneous feedback to users. This method 
improves communication for those with hearing loss 
by providing a dependable and effective ASL 
recognition system. 

 
Figure 1: American Sign Language 

3.1 Data Input and Preprocessings 

The Data Input and Preprocessing phase of the 
proposed Sign Language Recognition model is 
crucial for preparing raw data for efficient analysis. 
The process commences with the acquisition of video 
records or skeletal tracking data of hand movements 
that signify ASL gestures. The raw input is 
normalized to achieve uniformity in scale and 
representation, minimizing discrepancies due to 
varying lighting conditions or hand sizes. Individual 
frames are retrieved from video footage at a preset 

frame rate to document the sequence of hand 
movements. Crucial joint positions, including the 
wrist and fingers, are recognized and collected by 
skeletal monitoring, transforming intricate 
movements into a systematic manner. The collected 
characteristics are systematically arranged into 
sequences or tensors appropriate for input into the 
GRU and LSTM networks, hence improving the 
accuracy and robustness of the ensuing recognition 
procedures (Kothadiya, Bhatt, et al.  2022). 

3.2 Feature Extraction 

The Feature Extraction phase is essential for 
identifying the fundamental attributes of ASL 
gestures. The process commences with spatial feature 
extraction, wherein the model discerns essential 
spatial attributes from each frame, including the 
shape, position, and orientation of the hands and 
fingers. Methods such as image processing and bone 
tracking algorithms are employed to quantify hand 
landmarks, encompassing joint locations and angles, 
which are essential for differentiating between 
various actions. The model subsequently collects 
temporal information by examining the sequence of 
spatial features from successive frames, utilizing 
GRU and LSTM networks specifically developed for 
time-dependent data modeling. These networks 
discern the patterns and transitions in gesture 
sequences, enabling the model to identify the fluidity 
and continuity of movements. The integration of 
spatial and temporal data into a unified representation 
markedly improves the model's capacity to reliably 
identify ASL gestures, thus enhancing real-time 
communication for individuals with hearing 
impairments (Lee, Ng, et al.  2021). 

The architecture of the proposed Sign Language 
Recognition system is engineered to efficiently 
process and categorize ASL movements utilizing 
GRU and LSTM networks. The method commences 
with an input layer that accepts preprocessed data 
organized as sequences of spatial and temporal 
features extracted from video frames or skeletal 
tracking information. Optional convolutional layers 
may be incorporated immediately to extract spatial 
characteristics from the frames, thereby catching 
critical visual patterns. The architecture's foundation 
comprises stacked GRU and LSTM layers, with GRU 
layers adeptly managing short-term dependencies and 
LSTM layers addressing long-term dependencies, 
hence facilitating the model's ability to discern 
patterns in the temporal dynamics of hand 
movements. Dropout layers are integrated between 
the recurrent layers to improve generalization and 
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mitigate overfitting. Subsequently, the output is 
processed by a fully connected layer that consolidates 
the acquired characteristics into a singular vector. The 
final output layer employs a softmax activation 
function to categorize the gestures into respective 
ASL letters or signs, producing a probability 
distribution across the gesture classes. The model 
utilizes categorical cross-entropy as the loss function 
for multi-class classification and employs optimizers 
such as Adam or RMSprop to modify parameters 
during training. This design adeptly encapsulates the 
intricacies of ASL motions, resulting in precise and 
instantaneous recognition while maintaining 
resilience in identifying both static and dynamic 
signs. 

3.3 Classification  

The Classification phase is essential for converting 
the retrieved information into identifiable ASL 
movements. Upon acquiring the spatial and temporal 
characteristics via the GRU and LSTM networks, the 
model inputs these features into a fully linked layer 
intended for gesture classification. This layer 
analyzes the integrated feature representation, 
correlating it with the appropriate ASL letters or 
gestures. The model utilizes a softmax activation 
function to generate probability distributions across 
the gesture categories, enabling it to ascertain the 
most probable gesture being executed. Throughout 
training, the model refines its parameters by reducing 
the discrepancy between anticipated and real gesture 
labels, hence improving its accuracy and 
dependability. The classification phase utilizes 
learned patterns and temporal dynamics to convert 
intricate hand movement sequences into precise ASL 
gesture recognitions, enhancing communication for 
those with hearing loss. 

3.4 Training and Evaluation 

The Training and Evaluation phase is essential for 
creating and confirming the system's efficacy in 
recognizing ASL motions. The training process 
commences with the assembly of a labeled dataset 
comprising a varied assortment of ASL gestures, each 
gesture linked to appropriate labels to enhance the 
learning experience. During training, the model 
processes input data in batches across numerous 
iterations (epochs), utilizing forward propagation to 
provide predictions and backward propagation to 
adjust weights according to the loss determined by 
categorical cross-entropy. Optimizers such as Adam 
or RMSprop modify the learning rate to reduce the 

loss function and improve accuracy progressively. 
Hyperparameter tuning is conducted to optimize 
variables like as learning rate, batch size, and dropout 
rates, frequently employing methods like grid search 
or random search. During training, the model's 
performance is evaluated on a validation set, with 
early stopping employed to avert overfitting if 
validation performance stagnates. Upon completion 
of training, the model undergoes evaluation using a 
test set comprising unknown data, wherein metrics 
such as accuracy, precision, recall, and F1-score are 
computed to gauge effectiveness. Confusion matrices 
can be utilized to illustrate categorization 
performance among several gesture categories. This 
thorough training and assessment methodology 
guarantees that the proposed model learns efficiently 
and generalizes successfully to novel inputs, enabling 
precise and dependable recognition of ASL gestures 
for real-time communication (Gurbuz, Gurbuz, et al.  
2020). 

3.5 Real-Time Recognition 

The Real-Time Recognition phase of the proposed 
ASL Recognition model allows for prompt and 
effective detection of ASL movements during live 
encounters, hence enhancing communication 
between individuals with hearing loss and others. The 
process initiates by acquiring live video feed or 
skeletal tracking data via cameras or depth sensors, 
persistently observing the input stream to identify 
hand movements as users execute ASL gestures. The 
incoming data is subjected to preprocessing 
procedures akin to those in the training phase, 
encompassing normalization, frame extraction, and 
keypoint extraction, thereby guaranteeing uniform 
input for precise gesture identification. The model 
extracts spatial and temporal information in real time 
as gestures are executed, employing the trained GRU 
and LSTM layers to capture the dynamics of hand 
movements. The extracted characteristics are further 
classified utilizing the model's learnt weights, with 
the softmax activation function producing a 
probability distribution that determines the most 
probable gesture being executed. Upon recognition of 
a gesture, the system delivers instantaneous feedback 
to the user, which can be visual (showing the 
identified sign) or aural (translating the sign into 
voice), thereby facilitating real-time communication. 
The system can integrate user feedback to enhance 
performance by recording erroneous predictions and 
collecting user corrections for regular retraining. This 
phase aims to facilitate rapid and precise 
identification of ASL gestures, hence improving 
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inclusion and communication for those with hearing 
impairments in daily contexts (Abdulhussein, 
Raheem, et al.  2020). 

The suggested ASL Recognition model has a 
distinctive integration of GRU and LSTM networks, 
both proficient at managing sequential data. This 
model transcends existing approaches that emphasize 
either static motions or rudimentary temporal 
recognition by capturing both spatial and temporal 
connections, hence facilitating the effective 
recognition of intricate, dynamic ASL movements. 
The model has real-time processing capabilities, 
enabling quick detection and feedback, hence 
improving practical usability in live communication 
contexts. An further revolutionary element is its 
continuous learning capability, enabling the model to 
enhance its precision by adjusting to new movements 
and changes based on user feedback. The model's 
adaptability and precision distinguish it in the domain 
of ASL recognition systems (Sharma,  Kumar, et al.  
2021). 

4 RESULT AND DISCUSSION  

The proposed ASL Recognition model demonstrates 
its efficacy in accurately recognizing ASL motions. 
The model underwent evaluation on a test set and 
attained remarkable classification performance, with 
accuracy rates exceeding those of numerous existing 
methods. The implementation of GRU and LSTM 
networks enabled the model to effectively capture 
spatial and temporal data, enhancing its capacity to 
recognize dynamic hand movements. This model 
demonstrated enhanced effectiveness in managing 
continuous and fluid motions compared to typical 
models that concentrate exclusively on static 
gestures. Furthermore, real-time recognition was 
accomplished with negligible delay, rendering the 
system viable for live interactions. A significant 
discovery is the model's flexibility to various signing 
styles and contexts, attributed to its feedback-driven 
learning mechanism. Nonetheless, enhancements 
could be achieved by augmenting the dataset to 
encompass more intricate indicators or by integrating 
more sophisticated preprocessing methodologies. 
The results validate the model's efficacy and 
feasibility for real-time ASL recognition, offering a 
substantial solution to mitigate the communication 
barrier for those with hearing impairment. Figures 2 
and 3 display the sample result screenshots. Tables I-
III and Figures 4-6 illustrate the comparative analysis 
of parameters with existing models. 

 
Figure 2: Sample result 1 

 
Figure 3: Sample result 2 

Table 1: Accuracy comparison 

Algorithm Accuracy 
CNN 96.58 
DNN 97.65 
SVM 98.09 
RNN 98.72 

GRU-LSTM 99.39 

 
Figure 4:Accuracy comparison graph 

Table 2: Precision comparison 

Algorithm Precision 
CNN 95.86 
DNN 96.64 
SVM 97.79 
RNN 98.53 
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Algorithm Precision 
GRU-LSTM 99.02 

 
Figure 5: Precision comparison graph 

Table 3: recall comparison 

Algorithm Recall 
CNN 95 
DNN 96.07 
SVM 97.36 
RNN 98 

GRU-LSTM 98.63 

 

 
Figure 5: Recall comparison graph 
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