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Abstract: Membership inference attacks (MIAs) present a serious risk to data privacy in machine learning (ML) models,
as they allow attackers to determine whether a given data point was included in the training set. Although
various defenses exist, they often struggle to effectively balance privacy and utility. To address this challenge,
we propose in this paper a novel defense mechanism based on Optimal Noise Injection during the training
phase. Our approach involves injecting a carefully designed and controlled noise vector into each training
sample. This optimization maximizes prediction entropy to obscure membership signals while leveraging
Shapley values to preserve data utility. Experiments on benchmark datasets show that our method reduces
MIA success rates significantly without sacrificing accuracy, offering a strong privacy-utility trade-off for
black-box scenarios.

1 INTRODUCTION

Deep learning has significantly transformed the field
of artificial intelligence, achieving remarkable per-
formance in tasks such as autonomous driving, natu-
ral language processing, and medical diagnostics. Its
ability to automatically extract complex features from
large datasets has made it essential for sensitive appli-
cations in areas such as edge computing, finance, and
healthcare. However, this success relies on access to
vast amounts of often sensitive or private data, expos-
ing these models to considerable privacy risks. In-
deed, many studies have shown that Machine Learn-
ing (ML) models can inadvertently memorize sensi-
tive information from training data, primarily due to
overfitting. This memorization makes models vulner-
able to sophisticated attacks aimed at extracting con-
fidential information. One of the most critical threats
is Membership Inference Attacks (MIAs), which en-
able adversaries to infer whether a specific data point
was included in a model’s training set by analyzing
subtle cues in its outputs, such as prediction vec-
tors. MIAs exploit the fact that models often pro-
duce overconfident predictions for training samples
compared to unseen data. This difference in confi-
dence creates a vulnerability that attackers can use to

distinguish between training set members and non-
members. Authors in (Shokri et al., 2017) were the
first to demonstrate the vulnerability of widely used
Machine Learning as a Service (MLaaS) platforms,
such as the Google Prediction API and Amazon ML,
to membership inference attacks (MIAs). Their work
highlighted how easily attackers could extract infor-
mation about training data using only model outputs.
Since then, more sophisticated variants of MIAs have
been proposed to target different model architectures
and data types. In response to these attacks, vari-
ous defense mechanisms have been developed, gener-
ally falling into two categories: provable defenses and
empirical defenses. Provable defenses are grounded
in formal privacy guarantees, most notably through
differential privacy (DP). Although such approaches
provide strong theoretical protection, they often lead
to significant accuracy degradation. Empirical de-
fenses, on the other hand, aim to protect privacy while
maintaining high model accuracy. These methods
focus on obfuscating the signals that MIAs exploit,
without providing formal privacy guarantees. Among
the commonly used strategies are regularization tech-
niques, masking of confidence scores, and knowledge
distillation. However, despite their apparent effec-
tiveness, these defenses have significant limitations
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against sophisticated attacks and do not always en-
sure an effective trade-off between privacy and utility.
This trade-off highlights the urgent need for new de-
fense mechanisms capable of balancing privacy and
utility effectively without degrading model perfor-
mance.

To achieve this goal, we propose a novel defense
mechanism based on optimal noise injection. The
main idea is to inject a carefully designed and con-
trolled noise vector into each training sample during
the training phase. This noise is optimized through
the following mechanisms:

• Maximizing prediction entropy to minimize
the confidence gap between member and non-
member samples.

• Leveraging Shapley values to guide feature-
adaptive noise injection.

• Enhancing local robustness to mitigate misclassi-
fications of inputs near the decision boundary.

In contrast to existing methods that apply noise
uniformly, our defense strategy adaptively perturbs
inputs according to feature influence, minimizing per-
turbations on salient features to preserve accuracy,
while amplifying them on less critical features to in-
troduce targeted uncertainty.

We evaluated our defense on the Purchase100 and
Texas100 datasets, demonstrating a notable reduction
in black-box MIA success rates and achieving a su-
perior privacy-utility trade-off. These results con-
firm the effectiveness of optimal noise injection for
robust and practical protection in privacy-preserving
machine learning, while effectively addressing the
limitations of existing approaches.

In summary, the key contributions of this paper are
as follows.

• We propose a new defense mechanism based on
optimal noise injection, which involves injecting
a carefully designed and optimized noise vec-
tor into each training sample during the training
phase.

• We show that our defense effectively mitigates
black-box MIAs by confounding the attacker’s in-
ference classifier into a state of uncertainty, while
still achieving a favorable trade-off between pri-
vacy and utility.

2 RELATED WORK

We provide a comprehensive overview of Member-
ship Inference Attacks and the corresponding defense
mechanisms.

2.1 Membership Inference Attacks

MIAs attacks can target all types of ML model de-
ployments, including black-box scenarios, where the
attacker has access only to the target model’s predic-
tion vectors, without any knowledge of its internal pa-
rameters. (Shokri et al., 2017) introduced one of the
first black-box MIAs against ML models. Their ap-
proach involves building multiple shadow models to
mimic the behavior of the target model, followed by
training an attack model using the prediction vectors
generated by these shadow models. The attack model
is then used to infer whether a given input sample is
a member of the target model’s training set. (Salem
et al., 2018) later relaxed many of the assumptions
of (Shokri et al., 2017) and demonstrated that even
a single shadow model can be sufficient to mount an
effective MIA. Subsequently, a new class of metric-
based membership inference attacks (MIAs) was pro-
posed. These attacks determine membership by com-
puting specific metrics (prediction correctness, pre-
diction entropy, prediction confidence, or loss) on the
model’s output for a given sample and comparing the
result to a predefined threshold. This approach was
first introduced by (Yeom et al., 2018) and further ex-
plored by (Salem et al., 2018) and (Song et al., 2019).
Later, (Song and Mittal, 2021) summarized and ex-
tended these works, and introduced a state-of-the-
art metric-based attack called the privacy risk score.
Other studies, such as (Choquette-Choo et al., 2021),
investigated variants of MIAs that rely solely on pre-
dicted labels, without access to confidence scores.
By leveraging input perturbation techniques, these at-
tacks exploit the observation that the predicted class
of a member instance is generally more resistant to
changes than that of a non-member, as member pre-
dictions tend to be more stable. Furthermore, Carlini
et al. (Carlini et al., 2022) introduced LiRA (Likeli-
hood Ratio Attack), which employs a likelihood ra-
tio test to compare a model’s outputs when a sample
is included in the training set versus when it is ex-
cluded. They also proposed evaluating attack effec-
tiveness using the True Positive Rate (TPR) at very
low False Positive Rates (FPR), a robust metric that
has since become a standard benchmark in member-
ship inference research.

2.2 Defenses Against MIAs

Several defense mechanisms have been proposed to
mitigate the risks of MIAs by obscuring statistical dif-
ferences between members and non-members. These
include differential privacy, confidence score mask-
ing, regularization, and knowledge distillation, each
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offering a distinct privacy-utility trade-off.
Differential Privacy: involves adding noise dur-
ing training to prevent disclosure of member-specific
information. Some approaches implement DP by
adding noise to the model’s objective function (Wang
et al., 2017), while others apply it directly to gradi-
ents during optimization (Abadi et al., 2016; Pichap-
ati et al., 2019). Despite offering strong privacy guar-
antees, it results in a significant degradation of model
accuracy,
Confidence Score Masking: is another technique
aimed at reducing the amount of information leaked
through a model’s predictions, thereby hindering
membership inference. One variant limits outputs to
the top-k predicted classes (Shokri et al., 2017) rather
than the complete confidence vector. Another strategy
perturbs the output probabilities by injecting noise to
mislead attackers. For instance, (Bouhaddi and Adi,
2023; Jia et al., 2019), adds carefully crafted adver-
sarial noise to the prediction vectors applied after the
model’s computation to preserve accuracy. However,
(Song and Mittal, 2021) showed that even with such
output perturbations, models can remain vulnerable to
label-only attacks and metric-based attacks.
Regularization Techniques: aim to mitigate model
overfitting and improve generalization capabilities.
Many works (Leino and Fredrikson, 2020; Salem
et al., 2018; Shokri et al., 2017) have demonstrated
that overfitting is a key factor contributing to the ef-
fectiveness of MIAs. In this context, (Shokri et al.,
2017) highlighted that regularization of L1 and L2
can effectively reduce the success rate of MIA. Sub-
sequently, various regularization methods have been
explored to counter these attacks, including dropout
(Srivastava et al., 2014), model stacking (Salem et al.,
2018), and early stopping (Song and Mittal, 2021).
(Nasr et al., 2018) introduced Adversarial Regular-
ization, a min-max optimization approach that incor-
porates an adversarial regularizer into the loss func-
tion to jointly minimize prediction loss and maximize
membership privacy. Furthermore, (Li et al., 2021)
introduced a regularization method that combines
Mixup with Maximum Mean Discrepancy (MMD).
This technique interpolates between pairs of training
samples and aligns the prediction output distributions
of members and non-members using MMD.
Knowledge Distillation: is a technique that leverages
the output of a teacher model to train a student model,
which is then made public. The objective is to enable
the student model to achieve accuracy close to that of
the teacher model, without directly exposing sensitive
data. (Shejwalkar and Houmansadr, 2021) proposed
distillation for membership privacy, which uses pub-
lic unlabeled datasets to train a student model with

soft labels generated by a teacher model. However,
its effectiveness is limited by the availability of suit-
able public datasets. To overcome this, complemen-
tary knowledge distillation and pseudo complemen-
tary knowledge distillation (Zheng et al., 2021), along
with knowledge cross-distillation (Chourasia et al.,
2021), perform knowledge distillation directly using
private data. Additionally, two variants based on self-
distillation have been introduced, namely SELENA
(Tang et al., 2022) and SEDMA (Nakai et al., 2024),
enable a single model to improve its performance by
reusing its own predictions as pseudo-labels during
training.

Despite the progress made, current defenses
against MIAs still have limitations, and the privacy-
utility trade-off remains a major challenge. It is
therefore essential to develop more adaptive and
lightweight defenses capable of ensuring an optimal
privacy-utility trade-off.

3 PRELIMINARIES AND
PROBLEM FORMULATION

In this section, we present the key concepts together
with their respective notations used in this paper, and
then describe the threat model adopted for our study.

3.1 Preliminaries and Notation

Supervised ML. In this paper, we study supervised
ML for classification tasks. We consider a classi-
fication model, denoted by f : Rd → Rk, where
x = (x1, . . . ,xd) ∈ Rd represents an input feature vec-
tor and f (x) ∈ Rk corresponds to a predicted prob-
ability distribution over the k possible classes. The
model, parameterized by θ, is trained on a dataset
Dtr = {(x(n),y(n))}|Dtr|

n=1 , where x(n) ∈ Rd denotes an
input feature vector and y(n) is the corresponding
ground truth label. The training objective is to mini-
mize the average prediction loss over Dtr:

min
θ

1
|Dtr|

|Dtr|

∑
n=1

L
(

fθ(x(n)),y(n)
)

(1)

Where |Dtr| denotes the size of the training set and
L is the prediction loss function (e.g., cross-entropy
loss) measuring the discrepancy between the model’s
output and the ground truth labels. The model’s out-
put f (x)∈Rk satisfies ∑

k
j=1 f (x) j = 1, meaning it rep-

resents a valid probability distribution over the k pos-
sible classes. The predicted label is then obtained as
ŷ = argmax j f (x) j.
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Prediction Entropy: measures the uncertainty of a
model with respect to its predictions. Low entropy in-
dicates that the model is highly confident, while high
entropy implies that the model is uncertain.

Let f (x) =
(
y1, . . . ,yk

)
be the model predic-

tion vector for a sample x. The prediction entropy
H
(

f (x)) is then calculated as:

H
(

f (x)
)
=−

k

∑
j=1

y j log
(

y j

)
(2)

Shapley Values: are used to assess the importance of
each feature xi in a model’s prediction by quantifying
its average marginal contribution across all possible
subsets of features. The Shapley value ϕi(x) of a fea-
ture xi is defined as:

ϕi(x)= ∑
S⊆N\{i}

|S|!(|N|− |S|−1)!
|N|!

[
f (xS∪{i})− f (xS)

]
(3)

Where N represents the set of all features in the
model, defined as N = {1,2, ...,d}. The subset S
is a selection of features that exclude xi, denoted
S ⊆ N \ {i}. The function f (xS) corresponds to the
prediction of the model using only the features of S,
while f (xS∪{i}) represents the prediction after includ-
ing the feature xi. The difference f (xS∪{i})− f (xS)
quantifies the marginal contribution of xi to the pre-
diction of the model. Finally, the weighting factor
|S|!(|N|−|S|−1)!

|N|! ensures a fair evaluation of the contri-
bution of each feature in all possible subsets.

A high Shapley value for xi indicates a strong in-
fluence on the prediction of the model, whereas a low
value suggests a minor contribution.

3.2 Threat Model

Adversarial Capabilities. We consider an adversary
with black-box access to the target model f , meaning
they can query the model via a prediction API and
receive the corresponding probability vectors. The
adversary’s objective is to carry out an MIA attack
(Salem et al., 2018; Shokri et al., 2017) to determine
whether a given sample x was part of the model’s
training dataset. By issuing multiple queries, the ad-
versary gathers sufficient information to train a bi-
nary classifier, referred to as the ”attack classifier” A ,
which predicts the membership status of a sample us-
ing confidence scores. Formally, the attack classifier
A is defined as follows:

A(x, f (x))→ [0,1] (4)

A takes as input a sample x and its prediction vec-
tor f (x), then outputs a probability indicating whether

x belongs to the training set. A value close to 0 sug-
gests that x is a non-member, whereas a value close to
1 indicates a high likelihood of membership.
Adversarial Knowledge. We assume that the adver-
sary does not have access to the internal details of the
target model, such as its parameters, weights, or the
full training dataset, except for a small subset of sam-
ples that can be leveraged to perform an MIA attack.
However, it is assumed that the adversary is aware
of the model architecture and the deployed defense
mechanism. These assumptions allow us to consider
powerful adversaries and evaluate the robustness of
our approach against advanced threats.

4 PROPOSED DEFENSE
MECHANISM

The proposed defense mechanism aims to mitigate
MIA by introducing a carefully controlled noise per-
turbation η into training samples during the training
phase. The goal is to obscure statistical patterns that
an attacker might exploit while ensuring that the mod-
ified samples remain useful for classification. This
requires balancing security and utility through well-
defined constraints that guide the noise injection pro-
cess. An overview of our defense mechanism is illus-
trated in Figure 1.

Figure 1: Overview of the Proposed Defense Mechanism
Against Black-Box Membership Inference Attacks.

The fundamental idea of our approach is to in-
troduce perturbations that increase the uncertainty in
the model’s predictions, thereby making it harder for
an attacker to infer membership information. At the
same time, the noise should be controlled so that it
does not significantly degrade the model’s classifica-
tion performance. To achieve this, we define two key
constraints: a security constraint, which ensures suf-
ficient uncertainty, and a utility constraint, which pre-
serves the correctness of the classification.

The security constraint ensures that noise in-
creases the entropy of the prediction of the model,
making it more difficult for an attacker to detect
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the membership status. The intuition behind this is
that low-entropy predictions provide clear confidence
scores that can be exploited by an attacker, whereas
higher entropy introduces uncertainty, masking the
membership signal. We formalize this constraint as
follows.

H
(

f (x+η)
)
≥ τ (5)

where τ is a predefined entropy threshold that ensures
a minimum level of uncertainty in the predictions of
the model.

Next, to preserve utility, we impose a constraint
that ensures that the perturbed sample remains classi-
fied in the same category as the original. The intuition
here is that, while we want to introduce uncertainty
for an attacker, we must ensure that the model still
recognizes the sample correctly. This leads to the fol-
lowing constraint:

argmax
j

f (x+η) j = argmax
j

f (x) j (6)

where argmax returns the argument that produces the
maximum value of a function. This guarantees that
the perturbation does not change the decision bound-
ary in a way that causes misclassification.

To refine this constraint, we incorporate Shapley
values to control how noise is applied to different
features. Since not all features contribute equally
to the model prediction, perturbing critical features
too much could lead to misclassification, while per-
turbing less important features can provide the neces-
sary uncertainty without affecting the accuracy. Let
η = (η1, . . . ,ηd) be the perturbation vector to be ap-
plied to x = (x1, . . . ,xd), we formulate the constraint
as follows:

|ηi| ≤ ε ·
(

1−β · ϕi(x)
max(ϕi(x))

)
(7)

where ε is a noise budget, β is a weighting pa-
rameter, and ϕi(x) represents the Shapley value of the
feature i. This ensures that highly influential features
receive minimal noise, preserving classification accu-
racy while still introducing controlled uncertainty.

However, for samples located near the decision
boundary, small perturbations may still flip the pre-
dicted class. To prevent this, we introduce an addi-
tional utility-preserving constraint based on the local
robustness of the model, which limits the overall mag-
nitude of the perturbation according to the local sen-
sitivity and confidence margin of the model. Thus, we
formulate the constraint as follows:

∥η∥2 ≤
fgap(x)

∥∇ f (x)∥2
(8)

where fgap(x) denotes the margin between the top
two predicted class scores, and ∥∇ f (x)∥2 is the norm
of the input gradient, indicating the model’s sensitiv-
ity to perturbations. This constraint ensures that if the
model is highly sensitive or if the decision margin is
small, the injected noise remains small to prevent al-
tering the prediction. Critical features are minimally
perturbed, and the total noise remains within a safe
margin, preventing misclassification.

Bringing everything together, our final objective is
to minimize the magnitude of the perturbation while
satisfying both the security and utility constraints.

min
η

∥η∥2

s.t. H
(

f (x+η)
)
≥ τ,

|ηi| ≤ ε ·
(

1−β · ϕi(x)
max(ϕi(x))

)
∀i = 1, ...,d,

∥η∥2 ≤
fgap(x)

∥∇ f (x)∥2
.

(9)
This formulation ensures that noise remains mini-

mal while satisfying security and utility constraints,
striking a trade-off between privacy protection and
model performance.

5 EXPERIMENTATION

In this section, we present an experimental evalua-
tion of our proposed defense mechanism. We first de-
scribe the experimental setup and the evaluation met-
rics used to assess the trade-off between privacy and
utility. Then, we analyze the experimental results to
demonstrate the effectiveness of our approach in mit-
igating MIAs.

5.1 Experimental Setup

Datasets. To evaluate the effectiveness of our pro-
posed defense mechanism, we conduct experiments
on two widely used benchmark datasets for MIAs:
Purchase100 and Texas100.

Purchase100. Consists of 197,324 customer pur-
chase records, each with 600 binary features indicat-
ing whether a specific item was purchased. The clas-
sification task is to predict customer shopping patterns
in 100 classes.

Texas100. Contains 67,330 hospital discharge
records, each with 6,170 binary features representing
the presence or absence of specific symptoms. The
goal is to predict the medical procedure assigned to
the patient among 100 classes.
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Target Model. We use a fully connected neural net-
work as the target model for the Purchase100 and
Texas100 datasets. The architecture includes four
hidden layers with sizes [1024, 512, 256, 128]. Each
hidden layer uses the ReLU activation function, while
the output layer applies a softmax function to predict
the probabilities of more than 100 classes. The mod-
els are trained using the Adam optimizer, with the
cross-entropy loss function, a learning rate of 0.001,
over 100 epochs. The datasets used in our experi-
ments are summarized in Table 1.

Table 1: Dataset splits used in our experiments: Train is
used to train the target model; Test, to evaluate its accu-
racy. Known denotes the subset of training data accessible
to the adversary for building the attack model. Target is
used to evaluate membership inference attacks and contains
an equal number of member and non-member samples.

Dataset Train Test Known Target
Purchase100 20,000 20,000 10,000 10,000
Texas100 10,000 10,000 5,000 5,000

Inference Attack Model. In our evaluation, we adopt
a black-box MIA setup where a shadow model is
trained on part of the target model’s training data and
non-member samples from the same distribution. The
purpose of this model is to generate outputs for train-
ing an attack model.

The attack model consists of three fully con-
nected subnets, each operating on the prediction vec-
tor, the one-hot encoded label, and their concatena-
tion. Each subnetwork uses a ReLU activation func-
tion, with weights initialized from a normal distribu-
tion N (0,0.01) and biases initialized to zero. The
model is trained using the Adam optimizer, learning
rate of 0.001 for 100 epochs, with the cross-entropy
loss function. The final output is a membership prob-
ability that indicates the likelihood that a given sam-
ple belongs to the target model’s training data.
Defense Model. Our defense model adopts the same
architecture as the target model. However, rather of
being trained directly on the original data, it is trained
on a noisy dataset, generated by applying our pro-
posed feature-adaptive noise injection mechanism to
each input sample. Specifically, for each training in-
stance x, a noise vector η is computed under security
and utility constraints, and added to generate a per-
turbed input x′ = x + η. Each perturbed input x′ is
associated with a soft label y′ = f (x′), representing
the probability distribution output by the target model
when evaluated on the noisy sample. Simultaneously,
the original hard label y is retained to ensure that clas-
sification performance is preserved.

To train the defense model, we use a combined
loss function, which includes two components: the

cross-entropy loss (CE) and the Kullback–Leibler
(KL) divergence. The loss function is defined as fol-
lows:

L(x′) = α ·KL
(

f ′(x′) ∥ y′
)
+(1−α) ·CE

(
f ′(x′),y

)
where α ∈ [0,1] is a hyperparameter that balances

the trade-off between privacy and utility. The defense
model is trained using the Adam optimizer, with a
learning rate of 0.001 for 100 epochs.
Evaluation Metrics. To evaluate our defense, we use
four key metrics: Inference Accuracy and attack AUC
(Area Under the ROC Curve) to evaluate privacy pro-
tection, where values near 0.5 indicate a strong de-
fense against MIAs, and Test Accuracy and General-
ization Gap to measure model utility and generaliza-
tion. These metrics together provide a comprehensive
understanding of the privacy-utility trade-off.

5.2 Experimental Results

In this section, we evaluate the effectiveness of our
proposed mechanism against black-box MIAs. To
this end, we conducted a comparative study involv-
ing three models under the same training and attack
configurations: an undefended model, trained with-
out any privacy mechanism and serving as a baseline;
a uniform noise defense model, in which a fixed per-
turbation is applied equally to all training samples re-
gardless of feature importance; and our adaptive noise
defense, which injects feature-wise optimized noise
guided by utility and security constraints.

To assess the utility of each model, we track their
classification performance on unseen data using test
accuracy over training epochs. As illustrated in Fig-
ure 2, the adaptive noise defense achieves test accu-
racy close to that of the undefended model and con-
sistently outperforms the uniform noise defense. This
indicates that our method preserves classification per-
formance by selectively perturbing features in a way
that minimizes the impact on critical decision compo-
nents.

Next, we examine the privacy protection offered
by each model using Attack AUC, which measures
the effectiveness of the MIA across all possible de-
cision thresholds. As shown in Figure 3, the unde-
fended model yields high AUC values, which con-
firms its vulnerability. The uniform noise defense
offers limited mitigation, whereas our adaptive noise
defense significantly reduces the AUC, approaching
the ideal baseline value of 0.5, which corresponds
to random guessing and thus provides strong privacy
protection.

Finally, to understand the privacy-utility trade-off,
we analyze the relationship between inference attack
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accuracy and the generalization gap. As presented in
Figure 4, the undefended model exhibits both a high
generalization gap and high inference accuracy, indi-
cating strong overfitting and exposure to MIAs. In
contrast, our adaptive noise defense reduces both the
gap and the success of the attack, suggesting that low-
ering the overfitting improves privacy while retaining
generalization. The uniform noise defense falls be-
tween the two, with moderate performance on both
fronts.

These results confirm that our adaptive noise in-
jection method provides a balanced defense by safe-
guarding sensitive membership information while
maintaining the classification utility of the model.

Figure 2: Test Accuracy over Epochs for Different Defense
Strategies.

Figure 3: Attack AUC Under Different Defenses.

Figure 4: Privacy-Utility Trade-off: Inference Accuracy Vs.
Generalization Gap.

6 CONCLUSION

In this work, we introduced a novel defensive ap-
proach against black-box MIAs, based on an opti-
mized and feature-adaptive noise injection mecha-
nism. The originality of our approach lies in its ability
to adjust the injected perturbation for each feature ac-
cording to its influence on the decision of the model,

as measured by the Shapley values.
Our method is built upon two key constraints. The

first is a utility constraint, guided by Shapley values
and local robustness, which aims to preserve the most
influential features and prevent misclassification. The
second is a security constraint that increases the pre-
diction entropy to introduce controlled uncertainty.
Together, these constraints strike a balance between
maintaining model accuracy and mitigating the risk
of membership inference, thereby enhancing privacy
protection.

Our experimental results demonstrate that the pro-
posed method achieves a favorable trade-off between
privacy and utility, effectively reducing the risk of
membership inference without substantially degrad-
ing classification performance. These findings high-
light the potential of combining utility-aware and
entropy-based constraints to enhance privacy in ma-
chine learning models.

Future work will focus on refining these con-
straints, particularly through the development of more
adaptive noise injection strategies. We also aim to ex-
tend our approach to other threat models, including
white-box attacks, and to evaluate its effectiveness on
more complex architectures and across diverse appli-
cation domains.
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