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Abstract: Federated Learning (FL) is a crucial approach for training large-scale AI models while preserving data local-
ity, eliminating the need for centralised data storage. In collaborative learning settings, ensuring data quality is
essential, and in FL, maintaining privacy requires limiting the knowledge accessible to the central orchestrator,
which evaluates and manages client contributions. Accurately measuring and regulating the marginal impact
of each client’s contribution needs specialised techniques. This work examines the relationship between one
such technique—Shapley Values—and a client’s vulnerability to Membership inference attacks (MIAs). Such
a correlation would suggest that the contribution index could reveal high-risk participants, potentially allowing
a malicious orchestrator to identify and exploit the most vulnerable clients. Conversely, if no such relation-
ship is found, it would indicate that contribution metrics do not inherently expose information exploitable for
powerful privacy attacks. Our empirical analysis in a cross-silo FL setting demonstrates that leveraging con-
tribution metrics in federated environments does not substantially amplify privacy risks.

1 INTRODUCTION

Federated Learning (FL)1 is a leading privacy-
preserving technology for training large models
(McMahan and Moore, 2017) (Thakkar et al., 2021)
(Li et al., 2020a). Clients train local models and send
updates to a central orchestrator, which aggregates
them into a global model. This decentralised process
enhances privacy by keeping data local, aligning with
GDPR principles of data minimisation and purpose
limitation 2.

a https://orcid.org/0000-0002-1399-605X
b https://orcid.org/0000-0003-4297-4973
c https://orcid.org/0000-0001-8229-3270
d https://orcid.org/0000-0003-4404-4147
∗Both authors contributed equally in this paper.
1In this paper, FL refers specifically to horizontal FL

architectures, where each client holds data with the same
feature space but different samples (Yang et al., 2019).

2Regulation (EU 2016/679 of the European Parliament
and Council of the 27 April 2016 on the protection of nat-
ural persons with regard to the processing of personal data
and on the free movement of such data, and repealing Di-
rective 95/46/EC (General Data Protection Regulation).

Beyond legal compliance, in FL it is critical to en-
sure a good quality of client data, because machine
learning models are effective only when trained on
high-quality data (Hestness et al., 2017) (Jain et al.,
2020). Client data sources must be assessed for qual-
ity and low-quality data should be sieved out (Wang
et al., 2019a). However, protecting client privacy
is challenging, and even if FL has been lauded for
its ability to reduce unintended memorisation of ma-
chine learning models (Thakkar et al., 2021), it re-
mains a weak privacy-enhancing technology vulner-
able to Membership inference attacks (MIAs) (Gu
et al., 2022) (Zhang et al., 2020).

MIA is a significant privacy threat that reveals
model’s predisposition to leak sensitive information
about its training data. MIAs summon federated
settings, where client data is inherently private and
diverse. Our study focuses on horizontal FL, in-
vestigating the privacy risks arising from MIAs and
their relationship with client contribution metrics.
Furthermore, we also inspect this relationship when
Differential Privacy (DP) (Abadi et al., 2016) is em-
ployed as a privacy-enhancing technique.
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Novelty. Although the literature has explored incen-
tive mechanisms of security in FL, the intersection of
privacy threats and contribution metrics remains un-
derexplored. To the best of our knowledge, no prior
study has examined the correlation between client
contribution metrics, such as Shapley Values (SVs),
and MIA vulnerability. If such a correlation would
be empirically proven, adversaries could use contri-
bution metrics to identify and target vulnerable clients
(i.e., by creating a shortlist of the most vulnerable
candidates or exploiting a local model at its weakest
iteration). In contrast, the absence of such a correla-
tion would validate the safety of these metrics without
additional security layers. 3.

This work gives insights into whether client con-
tributions impact privacy risks in cross-silo FL scenar-
ios where a limited number of participants collaborate
on critical infrastructure systems, such as hospital net-
works or industry consortia.

Contribution. We empirically assess the relation-
ship between client contributions to the global model
and their vulnerability to MIAs in horizontal FL.

We focus on cross-silo scenarios, where the num-
ber of participants is strictly limited, instead of a
multi-device scenario (Wang et al., 2021) where the
number of participants can be very large. This set-
ting is crucial for building large-scale decentralised
AI systems where a number of participants can cre-
ate a model that serves as a part of critical infrastruc-
ture.4 Our evaluation focuses on two main scenar-
ios: one that is clear of any DP mechanism and a sec-
ond where a subset of clients use a DP mechanism lo-
cally. We expand our analysis using different hetero-
geneity levels of data among clients. And finally, we
test the relationship using different correlation tests,
cross-correlation, and stationarity tests.

2 RELATED WORKS

Federated Learning. It was proposed in (McMa-
han and Moore, 2017) as an efficient method of

3From the compliance perspective, Art. 32 of GDPR
provides basic provisions on the security of processing,
while Art. 35 mandates the data protection impact assess-
ment under the circumstances described therein. We believe
that in the case of FL (and any other collaborative learning
method), such an impact assessment could benefit from a
better understanding of the relationship between marginal
contribution and privacy-related risks the participants face.

4The most common example provided in the literature
is perhaps either the consortium of hospitals cooperating for
training a common model or the number of industry partners
training together a model for commercial use

learning from decentralised data by aggregating the
weights of local models in an iterative manner. It
gained wide traction from academia and industry
alike, resulting in numerous papers and surveys on
the subject (Kairouz et al., 2021; Wang et al., 2021;
Li et al., 2023; Li et al., 2020b), also because it of-
fers some privacy guarantees (El Mestari et al., 2024).
While the aggregation methods in FL, such as Fed-
erated Averaging (FedAvg) (McMahan and Moore,
2017) aim to prevent data leakage, the shared weights
can still pose privacy risks. Studies have shown that
even aggregated model updates can leak sensitive
information, especially when the updates are from
clients with highly informative or unique data distri-
butions (Song et al., 2020).

Client Contribution Evaluation for FL. Client
contribution in FL can be categorized into two main
classes, namely, individual approaches and coopera-
tive approaches. Individual contribution assessment
methods rely on computing the similarity of the lo-
cal client model to the global model after aggregation
(Guo et al., 2023). Cooperative approaches are based
on Game Theory, in which the FL is modeled as a co-
operative game, where each client’s marginal contri-
bution can be assessed in relation to the collaboration
reward (a final learning outcome). Among these ap-
proaches is Shapley Values (Ghorbani and Zou, 2019;
Wang et al., 2019b; Song et al., 2019; Wang et al.,
2020; Jia et al., 2019; Liu et al., 2021; Wei et al.,
2020). In this setting, the FL process is defined by
a pair (N,v) where N is the set of all players and
the v : 2|N| −→ R is the utility function (accuracy,
F1 score or other performance metric). The marginal
value of node i with respect to performance metric v
is then calculated using the equation originally intro-
duced by L.S. Shapley in the context of transferable
utility games (Shapley,1952), i.e.:

si = ∑
S⊆N\{i}

(
|N|−1
|S|

)−1

× [v(S∪{i})− v(S))] (1)

The value can be calculated in each round only for
a subset of sampled clients if the sample size is not
equal to the whole population (Wang et al., 2020).
Normally, calculating the marginal difference [v(S∪
{i})− v(S))] would involve training a separate model
for each subset.

However, since the orchestrator possesses all
pseudogradients of local nodes, it can freely assem-
ble each coalition without additional communication
burden. Calculating the marginal contribution of the
client is often used to detect backdoor attacks (Wang
et al., 2020), allocate models’ profit (Song et al.,
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2019), or filter out free-riders (Liu et al., 2021). More-
over, up to this date, research about the security of
this approach is limited. Both (Wei et al., 2020) and
(Zheng et al., 2023) proposed a complex schema to
protect the privacy of the FL process while simul-
taneously calculating the client’s marginal contribu-
tion. However, we are posing a more fundamental
question by inspecting the relationship between the
client’s contribution index and its susceptibility to cer-
tain types of attacks.

Membership Inference Attacks. They were first
introduced in a black-box setting(Shokri et al., 2017)
(Long et al., 2018). Shokri et al. (Shokri et al., 2017)
designed the attack using only a query-based access
to the targeted model, their design included the con-
cept of shadow models that are trained on a dataset
that is similar to the target model training set. The
attack of Shokri et al. is modelled as a binary classifi-
cation task trained on the confidence vectors obtained
as outputs of the shadow models. The black box set-
ting of the MIA exploits the fact that the models are
more confident about their training data compared to
the other data. The poor generalisation of models is
a main factor that forces models to memorise training
data points rather than learning the underlying distri-
bution; this memorisation can be used to push mod-
els to reveal the data points (Long et al., 2018). In
FL settings, MIAs can also be in white-box settings
(Melis et al., 2018), with the adversary being a system
observer, a client, or even an aggregator(Nasr et al.,
2019).

3 METHODOLOGY

The core intuition behind this study is that higher
Shapley Values indicate more influential data points,
meaning that the model relies heavily on those sam-
ples for learning. The stronger dependence on par-
ticular samples may make them susceptible to MIAs
because adversaries can exploit this reliance to dis-
tinguish member from non-member samples. Thus,
it is expected that clients with high Shapley Values
will exhibit a higher risk of successful MIAs, reveal-
ing potential privacy vulnerabilities in FL settings.

Shapley Values, derived from cooperative game
theory, serve as a main contribution metric in FL
due to their unique properties such as fairness, effi-
ciency, symmetry, marginality, and additivity (Shap-
ley, 1952). These properties ensure an equitable eval-
uation of each client’s influence on the global model.
Though they are not the only contribution metrics
that exist, such as gradient norms, influence func-

tions, and leave-one-out (LOO) analysis, Shapley Val-
ues are more robust. Gradient norms capture sensi-
tivity but fail to reflect long-term contribution, while
influence functions rely on second-order derivatives,
making them computationally impractical (Koh and
Liang, 2017). While leave-one-out remains the most
basic form of quantifying the marginal contribution
(as it takes the form of a simple ablation study), it fails
to account for all possible combinations of clients that
may influence the average impact of the particular
client on a whole cohort - something that Shapley
Values take into account (Ghorbani and Zou, 2019).
In the context of MIAs, Shapley Values quantify the
extent to which a client’s data impacts the trained
model, potentially correlating with the model’s ten-
dency to memorize high-contribution samples. This
aligns with the hypothesis that clients with higher
Shapley Values are more vulnerable to MIAs, as their
data are more deeply embedded in the model’s deci-
sion boundary.

3.1 Threat Model

The adversary has black-box access, querying the
model and receiving only the prediction vector. Thus,
our adversary may be any user of the final model
and/or the intermediate models 5, a given curious
client, or the central orchestrator. The adversary is
expected to be able to train a set of models that mimic
the behaviour of the target model (i.e., shadow mod-
els (Shokri et al., 2017)) which are trained on a similar
dataset to the one used to train the target model.

We follow the same strategy as that of the shadow
models by Shokri et al. (Shokri et al., 2017): the
datasets used to train the shadow models do not nec-
essarily come from the same distribution of the target
model training set; however, they are similar. This is
a black-box attack that relies on the fact that models
tend to be more confident in their predictions on train-
ing data compared to testing data. We use multiple at-
tack models, with one model per class. This approach
was chosen because our target model is trained under
varying data partitioning strategies, where client data
is distributed either uniformly, moderately skewed,
or highly skewed (details about the splitting strate-
gies can be found in section 5.1). We also perform
our attack against a regime where only a subset of
clients used DP for the local rounds to study how
these clients using DP can be distinguished based on
their contribution index. We applied DP to only a sub-
set of clients to reflect realistic FL scenarios where

5By intermediate models, we mean the models obtained
during the different aggregation steps done by the the or-
chestrator server
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privacy requirements, computational resources, and
organisational policies vary among clients. This set-
ting allows us to evaluate the impact of DP in a mixed
environment assessing the effect on the global model
performance and leakage risks. Furthermore, with
this setup we can analyse the privacy-utility trade-
off. Importantly, we acknowledge that DP in this set-
ting is applied only at the local client level, meaning
that privacy guarantees are enforced before model up-
dates are dispatched, without modifying the aggrega-
tion process.

4 ASSESMENT FRAMEWORK

To assess the relationship between the success rate of
MIAs and Shapley Values across training iterations,
we analyse whether these two variables exhibit any
meaningful correlation, particularly in the presence
of DP. Understanding this relationship is crucial to
evaluate whether Shapley Values can serve as a reli-
able indicator of MIA vulnerability in FL systems. To
quantify MIA success, we use the True Positive Rate
(TPR), as it directly reflects the attacker’s ability to
correctly identify members. For Shapley Values, we
use the accuracy as a value function. Both variables,
the TPR of MIA and Shapley Values evolve over
training rounds; thus we treat them as time series and
apply a structured methodology to assess their rela-
tionship. We begin with visual exploration to identify
potential trends. Then, we conduct the Augmented
Dickey-Fuller (ADF) (Dickey and Fuller, 1979) test
to determine stationarity, which informs the choice of
further statistical tests. After that, we apply Pearson
(Pearson, 1895) and Spearman (Spearman, 1904) cor-
relation tests to quantify linear and rank-based rela-
tionships, acknowledging their limitations in detect-
ing false positives due to convergence effects that are
discussed later. Finally, to explore dynamic depen-
dencies, we employ cross-correlation analysis to de-
termine whether variations in Shapley Values can pre-
dict MIA success. This multi-step approach allows us
to rigorously assess whether Shapley Values provide
meaningful insights into membership inference risk.

4.1 Visual Inspection of the
Relationship

Although not a formal test, the visual inspection is
the first step to identify the preliminary insights about
the behaviour of the two variables—MIA’s True Pos-
itive Rate (TPR) and Shapley Values based on accu-
racy. It helps spot early trends between the two vari-
ables, along with the variations between DP and non-

DP clients in the mixed-DP setting. Let us denote
φi = (φ1

i ,φ
2
i , · · ·φT

i ) to be all recorded Shapley Values
for client i in range (0,T ), where T is the final round
of the training. Similarily, ωi = (ω1

i ,ω
2
i , · · ·ω

|T |
i ) is

the recorded value of MIA TPR for a client i in a cor-
responding range. Since we have all the value of φ

and ω for all the clients i ∈ P and t ∈ T , where P and
T is the set of clients and T is the set of rounds, we
are able to visually inspect the behaviours of those
time-series as unfolded during the training.

4.2 Augmented Dickey-Fuller Test

We use the Augmented Dickey-Fuller (ADF) (Dickey
and Fuller, 1979) test across all dataset splits with
and without DP settings to check whether the time se-
ries for MIA’s TPR and Shapley Values are stationary.
Observing the stationarity of time series would allow
us to use the Granger Causality Test (Granger, 1969).
The lack of stationarity would imply that the time se-
ries are either characterised by a non-constant mean (a
visible trend), a non-constant variance (heteroscedas-
ticity) or a non-constant autocorrelation (dependency
on past values remains stable). The test is formulated
as a null (h0) and an alternative (h1) hypothesis:

• h0: The time series is non-stationary (i.e., it has a
unit root).

• h1: The time series is stationary (i.e., it does not
have a unit root).

We use a significance level of p < 0.05 and consider
h0 rejected if at least 95% of the tests meet this thresh-
old. Given our experimental setup, this results in 156
tests per metric (MIA’s TPR and Shapley Values).

4.3 Correlation Assesment

To formally evaluate the relationship between MIA’s
TPR and Shapley Values, we use both Pearson and
Spearman correlation tests. Setting a significance
threshold of p < 0.05 to reject the null hypothesis h0.
Due to the multiple tests - as described above - we
will be able to (globally) reject h0 only if the p thresh-
old is met for at least 95 % of the carried tests. We fix
the hypothesis for each test as follows:

• For Pearson Correlation:
– h0: There is no linear relationship between the

two variables.
– h1: There is a linear relationship between the

two variables.

• For Spearman Correlation:
– h0: There is no monotonic relationship between

the two variables.
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– h1: There is a monotonic relationship between
the two variables.

Given the nature of MIA’s TPR and Shapley Values,
we acknowledge the potential false positives, as both
metrics tend to stabilise towards the end of training.
If a correlation is detected, further validation is re-
quired. However, failure to reject h0 strongly suggests
that Shapley Values provide limited additional infor-
mation for improving MIAs.

4.4 Additional Tests

Correlation tests capture relationships but fail to es-
tablish causality or temporal dependencies. Thus, for
a deeper understanding of the interaction over time
between MIA TPR and Shapley Values, we conduct
additional tests that assess lagged relationships, pre-
dictive capabilities, and underlying statistical proper-
ties. Namely, we use the Cross Correlation test.

4.4.1 Cross-Correlation Test

Cross-Correlation Function (CCF) measures the tem-
poral relationship between MIA success rates (TPR)
and Shapley Values (based on accuracy) across vary-
ing time lags. A peak at positive lags suggests
that Shapley Values respond to changes in MIA
TPR, while a peak at negative lags indicates that
Shapley accuracy precedes changes in MIA TPR. A
strong correlation at lag 0 implies a synchronous re-
lationship. For discrete series φ and ω, the Cross-
Correlation of client i at lag τ can be defined as:

(φi ∗ωi)[τ] =
|T |−τ−1

∑
t=0

φ
t
iω

(t+τ)
i (2)

In practice, by plotting the variation in value of
(φi ∗ωi)[τ] dependent on the parameter τ we can visu-
ally inspect temporal dependencies between two time
series. In this paper, we make auxiliary use of that
method, placing it at the end of our analysis.

5 EXPERIMENTS

We investigate the relationship between the contri-
bution index and vulnerability to MIA across four
datasets under three different data splits. For each
dataset, we conduct training both with and without
DP. In the first scenario (training without DP), all
clients are trained without any additional privacy-
enhancing techniques. In the second scenario, only
a subset of clients undergoes training with DP, while
the remaining clients are trained without it. We

used four datasets for the target models, including
handwritten digits (MNIST), fashion items (Fashion-
MNIST), natural images (CIFAR-10), and medical
imaging (TissueMNIST). The following section pro-
vides a detailed overview of the simulation setup.

5.1 Data Splits

We present three distinctive types of data splits for
testing purposes to assess the impact of data hetero-
geneity on model performance and privacy. The uni-
form split ensures a fair comparison, while the Dirich-
let distribution (moderate skew) represents real-world
client variability, and the exclusive classes (high
skew) split tests model robustness under extreme non-
IID conditions.

Uniform Distribution. Uniform distribution en-
sures that samples from all classes are evenly dis-
tributed across the clients. This distribution is pre-
sented in the left-most column of the figure 1. The
sampled datasets are entirely disjoint.

Dirichlet Distribution. This split models the case
of extreme heterogeneity by assigning class dis-
tributions to clients using a Dirichlet distribution
parametrised by α = 0.3 for MNIST and Fashion-
MNIST, Cifar10 and α = 0.1 for TissueMNIST, i.e.,
vi ∼ Dir(α). The vector vi is then used for sampling
data points from the original dataset. Each client re-
ceives the same total number of data points; how-
ever, the class proportions between clients vary. The
datasets remain disjoint, as shown in the middle col-
umn of Figure 1.

Exclusive Classes This split divides classes into
shared and exclusive groups. For MNIST, FMNIST,
and CIFAR-10, classes 0 and 1 are shared, while oth-
ers are exclusive to specific clients. In TissueMNIST,
classes 0 and 6 are shared, with the rest assigned ex-
clusively. Unlike the other splits, shared classes allow
some overlap between clients. This distribution is vi-
sualized in the right-most column of Figure 1, with a
full class-to-client mapping detailed in Table 1.

5.2 Experimental Set-up

This section outlines the experiment design, including
datasets, model hyperparameters, FL setup, MIA, and
correlation evaluation.
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Figure 1: Experiment split types: Columns show distribution types (uniform, Dirichlet, exclusive classes from right to left (see
sectionsection 5), and rows show datasets (MNIST, FMNIST, CIFAR-10, TissueMNIST from top to bottom). Each client is a
separate bar (x-axis), with sample count on the y-axis. Colours represent labels, and segment length indicates label proportion
per client.

Table 1: Classes in each client training set according to the
”exclusive classes” split. Common classes may be shared.
The second type of class is disjoint and reserved only for a
particular client.

ID MNIST, FMNIST, CIFAR10 TissueMNIST
0 0, 1, 2 0, 1, 6
1 1, 2, 3 0, 2, 6
2 1, 2, 4 0, 3, 6
3 1, 2, 5 0, 4, 6
4 1, 2, 6 0, 5, 6
5 1, 2, 7 0, 6, 7
6 1, 2, 8 NA
7 1, 2, 9 NA

5.2.1 Models and Hyperparameters

We trained target models on four datasets: MNIST,
FashionMNIST, CIFAR-10, and TissueMNIST.
These datasets were selected to analyse MIAs across
different domains.

To match the complexity of each dataset, we used
the following architectures for the target models:

ResNet-18 for MNIST and FashionMNIST,
ResNet-34 for CIFAR-10, to effectively capture com-
plex visual features. ResNet-50 for TissueMNIST,
leveraging its deeper architecture for medical image
analysis.

The model training settings were as follows:

For the MNIST dataset, we used FedOpt as the
global aggregation method with a global learning rate
of 1. The local optimizer was SGD with a learning
rate of 0.001 and a batch size of 32. The training con-
sisted of 40 global iterations, each followed by 2 local
epochs.

For the FashionMNIST dataset, the same FedOpt
aggregation method and learning rates were used.
However, the training continued for 50 global itera-
tions instead of 40. Local epochs remained the same,
set at 2.

For CIFAR-10, we continued using the FedOpt
aggregation method and the same global learning rate
of 1, with SGD as the local optimizer and a learning
rate of 0.001. However, due to resource constraints,
we reduced the batch size to 16. The training con-
sisted of 50 global iterations, with 3 local epochs per
iteration. This change was made to accommodate the
simultaneous training of multiple clients using a DP
mechanism.

For TissueMNIST, the same global aggregation
method (FedOpt) and learning rates were applied.
The batch size was set to 16, with 50 global itera-
tions and 3 local epochs per iteration, similar to the
CIFAR-10 setup.

This configuration of models and hyperparameters
was selected to ensure consistent and comparable per-
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Figure 2: MIA TPR (left column) and Shapley Values (right column) for five clients from round 0 to 50 (black vertical lines
mark start and end). The plot shows TissueMNIST without DP. Rows represent uniform (top), lightly skewed (middle), and
highly skewed (bottom) data splits. Clients 0 and 4 (DP in a separate run) are in red for comparison. The grey line marks TPR
= 0.5 (left) and SV = 0.0 (right).

formance across the datasets while accounting for the
varying complexities of the tasks.

In the DP setting, the model architectures were
modified to accommodate DP, with BatchNorm re-
placed by GroupNorm (using Opacus library to im-
plement that (Yousefpour et al., 2021)), the training
hyperparameters remained the same.

For shadow models, we opted for simpler archi-
tectures to approximate the target models while re-
ducing computational overhead. Specifically, smaller
CNNs of 3 convolutional layers followed by three
fully connected layers 6. This design choice ensures
that the attack models learn from shadow models that
reasonably approximate the target models without re-
quiring excessive computational resources.

Since the target models were trained in a FL set-
ting, we needed to train five shadow models to repli-
cate the training conditions. However, using the same
dataset for all shadow models was not feasible due
to data limitations. To address this, for MNIST,
we trained shadow models using EMNIST(Cohen
et al., 2017) Digits, as it provides a similar distri-

6Implementation deteails can be found in our
Github repository: https://github.com/MKZuziak/
SECRYPT 2025 MIA SHAP.git This is an anonymised
repository for the sake of the submission

bution while ensuring non-overlapping samples. For
FashionMNIST, we used the Fashion Product Images
dataset, selecting subcategories that closely resemble
FashionMNIST classes. For CIFAR-10, we used Tiny
ImageNet(Le and Yang, 2015) sampling classes that
are similar to CIFAR-10 categories. Finally, for Tis-
sueMNIST we had sufficient that allowed us to use
the validation test sets for shadow models. This ap-
proach trains shadow models on distributions that ap-
proximate, but do not overlap with, target datasets.

5.3 Correlation Analysis

5.3.1 Visual Inspection

Figure 2 shows the evolution of the MIA TPR along
with the Shapley Values across the iterations on the
example of the TissueMNIST dataset without any DP
interference. The line graphs indicate no clear cor-
relation between Shapley Values (SV) and the MIA
True Positive Rate (TPR) when clients do not use
DP. In this setting, variations in model influence arise
solely from factors like data partitioning, initializa-
tion, and convergence, making Shapley Values inef-
fective for enhancing MIA. When some clients adopt
DP (Figure 3), a weak correlation between SV and
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Figure 3: MIA TPR (left) and Shapley Value (right) for five clients from round 0 to 50 in TissueMNIST. Clients 0 and 4
(DP-enabled) are in red. Rows represent uniform (top), lightly skewed (middle), and highly skewed (bottom) data splits. The
grey line marks TPR = 0.5 (left) and SV = 0.0 (right).

TPR appears but is short-lived and conditional. It
is only noticeable in the early training rounds, after
which DP clients act as regularizers and may even
receive positive SVs. Additionally, this correlation
holds only when the dataset used for SV evaluation
aligns with local data distributions—otherwise, the
pattern disappears. Although the results are reported
for the TissueMNIST dataset, similar patterns are no-
ticeable also for other datasets, with similar figures
rendered in the notebook attached to this paper. 7

5.3.2 Stationarity Analysis

The stationarity analysis is conducted before for-
mal correlation and cross-correlation analysis to de-
termine whether methods like the Granger Causal-
ity Test (Granger, 1969) are appropriate for assess-
ing causality. It also provides insights into the time
series properties of the functions, such as trends,
heteroscedasticity, and autocorrelation patterns. If
proven, this will decrease the informativeness of the
Shapley Value as an indicator of susceptibility for

7The rest of the available figures can be found in
the pre-generated notebook within the hosted reposi-
tory: https://github.com/Shapley-Mia/Shapley MIA/blob/
main/visualizations.ipynb

the MIA, as a series characterized by heteroscedas-
ticity or a non-constant autocorrelation may be more
difficult to interpret and predict. Relying solely on
the visual inspection and intuition behind a Shapley
Value (SV), we strongly suggest that the provided se-
ries will be non-stationary. To formally assess that,
we employ the Augmented Dickey-Fuller (ADF) Test
(Dickey and Fuller, 1979). As stated in the previous
section, the rejection of h0 would be possible only if
at least 95% of the tests would exhibit a p-value lower
than 0.05.

However, according to the obtained data, this is
not the case - with many clients exhibiting values
above the set threshold in both versions - with and
without the usage of DP. Based on those results, we
fail to reject h0 that both the MIA TPR and SV inter-
preted as a time series are non-stationary. Hence, we
have to accept their non-stationarity due to a lack of
better evidence for rejecting h0.8

8All the tables in the tex format can be found in the
repository hosted for this submission: https://github.com/
Shapley-Mia/Shapley MIA/tree/main/tables/stationarity
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Table 2: Spearman Correlation registered between the Membership Inference Attack True Positive Rate and Shapley Value
for each of the clients across all four datasets, three data splits and two versions (with and without the usage of DP for selected
clients). The STAT column contains the Spearmann rank correlation coefficient, while the P-VALUE column contains the
corresponding p-value. The left part of the table shows a simulation where none of the clients use DP, while the right
part shows a corresponding simulation where selected clients (those with ID numbers 0,1 and 4 in case of the MNIST and
FMNIST and 0 and 4 in case of the CIFAR10 and TISSUEMNIST) use the DP mechanism. P-values below the 0.05 threshold
are displayed in bold, together with the corresponding coefficients. Number are rounded to two last decimal points.

NON-DP version DP version

UNIFORM LS HS UNIFORM LS HS
Dataset CLIENT ID STAT P-VALUE STAT P-VALUE STAT P-VALUE STAT P-VALUE STAT P-VALUE STAT P-VALUE

MNIST

0 -0.65 0.00 -0.39 0.01 -0.51 0.00 0.49 0.00 -0.71 0.00 0.97 0.00
1 -0.07 0.65 -0.15 0.37 0.68 0.00 0.65 0.00 -0.74 0.00 0.92 0.00
2 -0.27 0.09 -0.27 0.10 0.56 0.00 -0.90 0.00 -0.96 0.00 0.36 0.02
3 0.32 0.04 0.25 0.12 -0.12 0.47 -0.69 0.00 -0.89 0.00 0.05 0.78
4 0.48 0.00 0.48 0.00 0.40 0.01 -0.66 0.00 -0.90 0.00 0.52 0.00
5 -0.36 0.02 -0.40 0.01 0.06 0.71 -0.15 0.37 0.53 0.00 0.66 0.00
6 -0.25 0.11 -0.22 0.17 -0.65 0.00 0.54 0.00 -0.67 0.00 0.99 0.00
7 0.08 0.61 0.16 0.33 0.29 0.07 -0.92 0.00 -0.92 0.00 0.76 0.00

FMNIST

0 0.29 0.04 -0.02 0.90 0.09 0.54 0.49 0.00 -0.32 0.03 0.80 0.00
1 0.31 0.03 -0.09 0.54 0.72 0.00 0.38 0.01 0.87 0.00 0.25 0.08
2 0.23 0.10 -0.14 0.32 -0.44 0.00 -0.32 0.02 -0.86 0.00 0.69 0.00
3 0.70 0.00 0.58 0.00 0.83 0.00 -0.49 0.00 -0.66 0.00 -0.66 0.00
4 -0.05 0.70 -0.20 0.17 -0.20 0.17 -0.37 0.01 -0.82 0.00 0.94 0.00
5 -0.04 0.80 -0.03 0.84 -0.12 0.41 -0.32 0.02 -0.85 0.00 -0.07 0.61
6 0.42 0.00 0.42 0.00 -0.40 0.00 0.44 0.00 0.47 0.00 0.82 0.00
7 0.14 0.32 0.14 0.33 0.69 0.00 -0.35 0.01 -0.32 0.02 -0.34 0.02

CIFAR10

0 0.34 0.02 0.54 0.00 0.16 0.27 0.34 0.02 0.54 0.00 0.16 0.27
1 -0.50 0.00 -0.58 0.00 0.38 0.01 -0.50 0.00 -0.58 0.00 0.38 0.01
2 -0.25 0.08 -0.68 0.00 0.40 0.00 -0.25 0.08 -0.68 0.00 0.40 0.00
3 -0.48 0.00 0.05 0.76 0.36 0.01 -0.48 0.00 0.05 0.76 0.36 0.01
4 0.24 0.10 0.52 0.00 0.33 0.02 0.24 0.10 0.52 0.00 0.33 0.02

TISSUEMNIST

0 0.61 0.00 0.69 0.00 0.26 0.07 0.03 0.84 -0.40 0.00 0.10 0.50
1 0.69 0.00 0.10 0.48 -0.33 0.02 -0.58 0.00 -0.60 0.00 0.28 0.05
2 0.08 0.58 -0.88 0.00 -0.32 0.02 -0.21 0.14 -0.68 0.00 0.35 0.01
3 0.54 0.00 0.63 0.00 0.89 0.00 -0.31 0.03 -0.18 0.21 0.37 0.01
4 0.28 0.05 -0.56 0.00 0.68 0.00 0.10 0.50 0.27 0.06 0.12 0.41

5.3.3 Correlation Analysis

We assess formal correlation using Spearman (Spear-
man, 1904) and Pearson (Pearson, 1895) Correla-
tion Tests to determine whether a meaningful rela-
tionship exists beyond visual inspection. Due to the
nature of both series they may tend to give false posi-
tives, as Shapley Values tend to oscillate around the 0
threshold once the model converges (local models no
longer contribute to the general model) and MIA may
not reach a higher performance after a certain stage.
Since those two series would fully stabilize and only
oscillate slightly around a given constant, both tests
may just capture this behavior, returning false posi-
tives. Hence, given a detected correlation, some addi-
tional tests would be required. However, this problem
should not concern false negatives - if the test returned
negative results even though this specific time series’
behavior is mentioned here, it would be a strong argu-
ment against the possibility of a correlation between
those two variables.

The Spearman Correlation Test is reported in Ta-
ble 2 for all four datasets across all three splits - with
and without the usage of DP. Given the formulated
null hypothesis and a threshold of p < 0.05, we report
that 45 out of 78 individual tests on the non-DP ver-
sion of the simulations have a significance threshold

p below the value of 0.05 (57.69%), thus rendering
this split useful as a control group. For the second
scenario (where a selected number of clients uses a
DP mechanism), 62 out of 78 individual tests have
a significance threshold p below the value of 0.05
(79.49%). While this still falls short of the aforemen-
tioned criterion (fewer than 95% of individual tests
meet the significance threshold), a closer inspection
of the results is required.

For the uniform data split, 20 out of 26 marginal
tests are characterised by p value below 0.05
(76.92%). For the lightly skewed split, this number
raises up to 21 out of 26 (80.77%). However, for
the highly skewed split, only 19 out of 26 individual
tests are of desired significance level (73.08%). Those
numbers are higher than in the control group, where
it is 15 out of 26 (57.69%) for uniform, 13 out of 26
(50%) for lightly skewed, and 18 out of 26 (69.23%)
for highly skewed respectively. Even more interesting
observations can be made regarding the correlation
coefficient, irrespective of the associated p-value. In
the uniform case, there is a clear distinguishable pat-
tern, where the DP-clients are characterised by a pos-
itive correlation coefficient, while the regular (non-
DP) clients are characterised by a negative correlation
coefficient. However, this pattern does not fully hold
for the lightly skewed and heavily skewed split - sig-
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Figure 4: Cross-Correlation Function (CCF) plot for the CIFAR10 dataset for all three possible data splits. The y-axis contains
lag varying from -10 to +10 iterations, with lag equal to zero corresponding to the correlation between two variables. The
CCF for DP clients is placed in the first row, and the corresponding values for non-DP clients are placed in the second row.

naling that the informativeness of the Shapley Values
in this context highly depends on the heterogeneity of
the system.

Given the experimental results, we clearly fail to
reject h0. The threshold is not met for 95% of the
test cases, with large p-values being evidenced across
all three types of data splits in the case of selected
datasets. However, some mildly informative patterns
could be observed, and we suggest how those patterns
could be utilized in the subsequent studies in the Con-
clusions of this work.

Regarding the formal hypothesis formulation, we
conclude that for the Spearman Correlation Test, we
fail to reject the null hypothesis h0, i.e.,, there is
no monotonic relationship between the two variables.
Similarly, we fail to reject h0 for the linear relation-
ship between the variables using the Pearson Correla-
tion Test.9

9All tables in the tex format can be found
in the repository hosted for this submission:
https://github.com/Shapley-Mia/Shapley MIA/tree/main/
tables/correlations/pearson

5.3.4 Cross Correlation Test

The final test performed for an assessment of the
be- haviour between those two variables is the vi-
sual in- spection of the Cross Correlation Function
(CCF). This test should allow us to answer the ques-
tion of whether there exists some meaningful relation-
ship between those two time series, where one series
is shifted in time by a lag τ.

Despite the lack of stationarity, absence of visi-
ble correlation, and failure to reject both hypotheses,
cross-correlation analysis provides an additional em-
pirical check. This ensures that a dishonest orches-
trator cannot extract meaningful information directly
from Shapley Values. The Cross Correlation Function
(CCF) - similar to the correlation analysis - shows
no clear patterns when it comes to how the Shapley
Value (SV) could possibly be used to detect the most
susceptible clients. We employ lags in the range of
values (−10,10) to assess both the negative and posi-
tive lags. Figure 4 presents the value of correlation as-
sessed with lag τ ranging from −10 to 10 on a CIFAR-
10 dataset. Similar patterns are noticeable on other
datasets reported in our GitHub repository.10

10The rest of the available figures can be found in the
pre-generated notebook within the hosted repository: https:
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Figure 4 shows the cross-correlation function
(CCF) plot for each dataset across different data
splits. The first row represents clients without a DP
mechanism, and the second row represents clients
with DP.

6 CONCLUSION

This work examined the relationship between client
contribution metrics, specifically Shapley Values, and
vulnerability to MIAs in a cross-silo FL setting. Our
results show that while Shapley Values offer insights
into client contributions, they do not inherently in-
crease the risk to MIA. Contrary to concerns, no con-
sistent correlation was found between Shapley Values
and the stages at which clients are most vulnerable to
MIAs.

We also report on a partial positive correlation that
sporadically emerged in our analysis with FashionM-
NIST and CIFAR-10. Here, higher SV were some-
times correlated with higher vulnerability to MIA
TPR. There is no statistical significance here, but it
happened particularly for data splits of lesser hetero-
geneity. This suggests situations where clients are
characterised by similar local distributions, while the
orchestrator possesses an informative test set that ac-
curately reflects those distributions. One would like
to investigate further and propose hypotheses to test
because of these observations.

Future work will investigate whether the correla-
tion can appear under specific levels of data hetero-
geneity. We also aim to extend the analysis to other
privacy attacks, such as white-box MIAs, property in-
ference, and gradient leakage attacks, and to study the
effects of extreme data skew (e.g., Dirichlet α = 0.1).
Finally, formal proofs will be sought to validate the
underlying intuition linking Shapley Values and MIA
vulnerability.
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