
SONNI: Secure Oblivious Neural Network Inference

Luke Sperling and Sandeep S. Kulkarni
Department of Computer Science and Engineering,

Michigan State University, U.S.A.

Keywords: Fully Homomorphic Encryption, MLaaS, Privacy.

Abstract: In the standard privacy-preserving Machine learning as-a-service (MLaaS) model, the client encrypts data
using homomorphic encryption and uploads it to a server for computation. The result is then sent back to the
client for decryption. It has become more and more common for the computation to be outsourced to third-
party servers. In this paper we identify a weakness in this protocol that enables a completely undetectable novel
model-stealing attack that we call the Silver Platter attack. This attack works even under multikey encryption
that prevents a simple collusion attack to steal model parameters. We also propose a mitigation that protects
privacy even in the presence of a malicious server and malicious client or model provider (majority dishonest).
When compared to a state-of-the-art but small encrypted model with 32k parameters, we preserve privacy with
a failure chance of 1.51×10−28 while batching capability is reduced by 0.2%.
Our approach uses a novel results-checking protocol that ensures the computation was performed correctly
without violating honest clients’ data privacy. Even with collusion between the client and the server, they are
unable to steal model parameters. Additionally, the model provider cannot learn any client data if maliciously
working with the server.

1 INTRODUCTION

Training large machine learning models is very time
consuming and expensive. One way for a provider
to recuperate the cost of generating machine learning
models is to provide machine learning as-a-service
(MLaaS) where the provider permits a client to com-
pare their data with the model. For example, a hos-
pital could pay to have automated screenings for skin
cancer.

The use of MLaaS generates an issue of privacy
for the client, as the data it is using is private and the
client is concerned about possible leak of this private
data to provider. The issue of privacy is especially im-
portant to client as the data is often one-of-a-kind and
cannot be replaced/regenerated, such as in the case of
medical or biometric data. For this reason, for several
years, MLaaS systems have been designed with client
data privacy in mind.

However, as MLaaS becomes more widespread
and the models become more complex, the provider
lacks the computational power needed to provide
MLaaS on its own. Especially in the context of avail-
ability of third-party servers to provide computational
capability, it is in the interest of the provider to out-
source the MLaaS service to a server that will only

provide the computational capability. Here, in addi-
tion to client privacy, privacy of the provider is criti-
cal. Specifically, since the development of the model
requires significant computational and financial in-
vestment, it is critical that the model remain a secret
and not be revealed to anyone.

Our work focuses on using oblivious neural net-
works with mulitikey encryption. The protocol in
(Chen et al., 2019b) provides privacy only for the
honest-but-curious and collusion models. In other
words, if the server, model provider or client is only
going to try to infer from the data it has learned, the
privacy property is satisfied. However, if the server
is malicious and violates the protocol even slightly,
it can leak model parameters without being detected.
One way to do this is to encrypt the model parameters
as the return value and send them to the client instead
of sending the actual result of the model. In this case,
the server will not be able to detect this as the data
it sees is encrypted with the client’s key. It follows
that this attack would go completely undetected by
the model provider 100% of the time.

A simple solution would be to have the model
provider check the result before returning it to the
client. However, in this case, the provider learns the
output of the model when applied to the private data.

Sperling, L. and Kulkarni, S. S.
SONNI: Secure Oblivious Neural Network Inference.
DOI: 10.5220/0013638100003979
In Proceedings of the 22nd International Conference on Security and Cryptography (SECRYPT 2025), pages 515-522
ISBN: 978-989-758-760-3; ISSN: 2184-7711
Copyright © 2025 by Paper published under CC license (CC BY-NC-ND 4.0)

515

Figure 1: Standard Outsourced Oblivious Neural Network
Inference Model.

Moreover, this output can be used to learn the private
data itself (Mai et al., 2018) .

In this paper, we identify a novel attack against
oblivious neural network inference and propose a se-
cure protocol that we call Secure Oblivious Neural
Network Inference, or SONNI, to combat it and en-
sure security in the presence of a dishonest server and
dishonest client/provider (majority dishonest).
Contributions of the Paper. We introduce a novel
attack, called the Silver Platter attack, to enable model
stealing in the oblivious neural network inference set-
ting. We propose a novel protocol for oblivious neural
network inference that mitigates this novel attack and
does not violate the client’s data privacy. We evaluate
our protocol in terms of the level of privacy it provides
and the overhead of providing that privacy.
Organization of the Paper. In Section 2 we provide
background of the encryption schemes employed in
this work. In Section 3 we detail the vulnerability of
the existing outsourced neural network inference pro-
tocol and the novel attack we construct. We propose
a solution and prove its security in Section 4. We pro-
vide related work in Section 5 and closing remarks in
Section 6.

2 BACKGROUND

2.1 Fully Homomorphic Encryption

Traditional encryption schemes require decryption
before any data processing can occur. Homomorphic
encryption (HE) allows arithmetic directly over ci-
phertexts without requiring access to the secret key
needed for decryption, enabling data oblivious proto-
cols. Fully homomorphic encryption (FHE) schemes
support an unlimited number of multiple types of op-
erations. The Cheon-Kim-Kim-Song (CKKS) (Cheon
et al., 2017) cryptosystem supports additions as well
as multiplications of ciphertexts. The message space
of CKKS is vectors of complex numbers.

A small amount of error is injected into each ci-
phertext at the time of encryption to guarantee the
security of the scheme. This error grows each arith-
metic operation performed. Therefore, once a certain
threshold of multiplications are performed the error
grows too large to decrypt correctly. Although the
bootstrap operation reduces this error to allow cir-
cuits of unlimited depth, for the purposes of this work
no such operations are needed. The following opera-
tions are supported: Encode: Given a complex vec-
tor, return an encoded polynomial. Decode: Given a
polynomial, return the encoded complex vector. En-
crypt: Given a plaintext polynomial and public key,
return a ciphertext. Decrypt: Given a ciphertext and
the corresponding secret key, return the underlying
polynomial. Ciphertext Addition: Given two ci-
phertexts, or a ciphertext and a plaintext, return a ci-
phertext containing an approximate element-wise ad-
dition of the underlying vectors. Ciphertext Multi-
plication: Given two ciphertexts, or a ciphertext and
a plaintext, return a ciphertext containing an approx-
imate element-wise multiplication of the underlying
vectors. Relinearization: Performed after every mul-
tiplication to prevent exponential growth of ciphertext
size. This function is assumed to be executed after
every homomorphic multiplication in this work for
simplicity. Ciphertext Rotation: Given a ciphertext,
an integer, and an optionally-generated set of rotation
keys, rotate the underlying vector a specified number
of times. For instance, Rotate(Enc([1,2,3,4]),1,kr)
returns Enc([2,3,4,1]).

2.2 Multikey Encryption

Chen et al. (Chen et al., 2019b) extended existing
FHE schemes to operate on multiple sets of secret
key, public key pairs. Consider the case where there
are two key pairs owned by two parties (such as the
Client and Provider). Each party encrypts a value us-
ing their respective public keys. These ciphertexts,
denoted by encc(X) and encp(Y) can be multiplied
together homomorphically, resulting in encc,p(XY).
Note that this notation means the ciphertext is now
multikey encrypted by the keys of both the Client and
the Provider and that enck1,k2(V) = enck2,k1(V). The
following additional operations are supported:

• PartialDec(ciphertext,secret key) - given a mul-
tikey encrypted ciphertext and one of the secret
keys corresponding to a public key encrypting the
ciphertext, return a partial decryption of the ci-
phertext. This partial decryption does not yield
any additional information.

• Combine(partial decryptions) - given an array of
partial decryptions, return the underlying plain-

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

516

text value. This combine function only works if
there is a partial decryption corresponding to each
public key used in the multikey encryption.

3 PROPOSED MODEL STEALING
ATTACK

In this section, we demonstrate that the existing ap-
proach for using multiparty encryption to provide pri-
vacy in outsourced MLaaS systems suffers from a se-
rious violation of privacy for the provider if the server
behaves maliciously and tries to leak parameters to
the client. We call this attack the Silver Platter attack,
as the adversary is delivered the exact model parame-
ters with little effort. Additionally, this attack will go
unnoticed by the provider.
Typical Execution for the Protocol in (Chen et al.,
2019b): The communication between client,
provider and server is as shown in Figure 1 where
we utilize the oblivious neural network inference pro-
tocol from (Chen et al., 2019b). The client en-
crypts their data using FHE and the provider encrypts
their function parameters using a different public key.
These encryptions (along with the corresponding pub-
lic keys) are sent to the server. The server then com-
putes encc,p(f (x)) which is returned to both the client
and the provider. Partial decryptions are obtained
with each party’s secret key and are combined by the
client to obtain the full decryption of f (x).

The approach in (Chen et al., 2019b) preserves the
privacy of the client as the provider and server only
sees the encrypted version of the data. It also pre-
serves the privacy of provider if the server is honest-
but-curious, as the server only sees the data in en-
crypted format. However, if server is dishonest, it
can collude with client to reveal the model parame-
ters. We discuss such attacks next.
Silver Platter Attack: In step 2 of Figure 1, a ma-
licious server sends an encryption of the parameters
encc,p(f) instead of the intended result encc,p(f (x)).
encc,p(f) can be trivially computed from encp(f)
which is obtained by the server during step 1. This
ciphertext is fully decrypted only by the client dur-
ing step 3, revealing private model parameters. This
attacks appears identical to normal operation to the
provider. In cases where there are multiple ciphertexts
with model parameters, the attack may be repeated to
obtain them all.

The reason we call this the Silver Platter attack
is that this can be repeated ad infinitum without the
provider learning anything about the fact that the
model is being compromised. This paper focuses on
addressing this attack.

Figure 2: SONNI sequence diagram.

4 ATTACK MITIGATION VIA
OBLIVIOUS RESULTS
CHECKING

In this section, we propose a protocol that mitigates
the Silver Platter attack and we prove its security.
First, in Section 4.1 we introduce the problem for-
mally. Next, in Section 4.2 we describe our approach
at a high level before going into details in Section 4.3.
We then describe the special steps needed to prepare
the ciphertext at the beginning of the computation as
well as the work needed to check that the result was
computed correctly. Lastly, in Section 4.4 we analyze
our protocol and prove its security.

4.1 Problem Statement

In this section, we define the problem statement for
dealing with Silver Platter attack. Here, a party
(client, server or provider) may be honest or dishon-
est. An honest party follows the prescribed protocol,
while a dishonest party could be byzantine and behave
arbitrarily. We assume that the dishonest party intends
to remain hidden. Therefore, it will send messages of
the required type (such as CKKS ciphertexts). How-
ever, the data inside may be incorrect.

Recall that in the multiparty communication, the
client starts with its own data, x, and desires to obtain
a value f (x) where f is a function known to provider.
The actual computation of f (x) is done by a server.

In the multiparty communication considered in
this paper, we follow a secure with abort approach
where security is guaranteed at all times, i.e., the
provider or server never learns the client data, x or the
computed value f (x) but if dishonest behavior is de-
tected, the computation may be aborted. This remains
true in all cases, i.e., even if the provider and server

SONNI: Secure Oblivious Neural Network Inference

517

send additional messages between them privacy will
not be violated. We also want to ensure that the model
parameters are never revealed to the client even if the
server and client collude and send additional mes-
sages between them. However, if everyone behaves
honestly then the client should receive the value of
f (x). Thus, the privacy requirements are as follows:

Liveness. Upon providing encc(x) to provider, the
client should eventually learn f (x) if the provider
and server behave honestly.

Provider Privacy The client should not learn the
model parameters even if the server is colluding
with the client.

Client Privacy. The provider should not learn x or
f (x) even if the server is colluding with the
provider.

Oblivious Inference. The server should not learn in-
put x, model parameters, or result f (x).

Secure with Abort. If any party violates the proto-
col then the computation is aborted and the client
does not learn anything.

4.2 Mitigation Approach

In this section, we propose our approach for providing
privacy to provider as well as the client. Specifically,
the approach in (Chen et al., 2019b) already provides
privacy for the client data. We ensure that the cor-
responding privacy is preserved while permitting the
provider to have control over the data being transmit-
ted to the client so that it can verify that the server is
not trying to leak the provider’s private data (namely
the model parameters) to the client.

Our approach is based on the observation that ma-
chine learning algorithms operate on vectors as op-
posed to scalars, making FHE well-suited to the task.
Ciphertexts in FHE encode and encrypt entire vectors
of real values. We take advantage of this fact for our
mitigation strategy. We dedicate some slots of the
ciphertext (and therefore some indices of the under-
lying vector) to verify the computation is performed
correctly. These slots will not contain f (x) values but
rather randomly-generated values for use in a results
checking step.

The basic idea of the protocol is to have the server
compute f (x) in most slots of the ciphertext and g(y)
in other slots, where g is a function that is of the same
form as f (e.g., if f is a linear/quadratic function then
g is also a linear/quadratic function with different pa-
rameters.). Here, g is a random function generated
at the start of the protocol by the provider and y is
a random secret input vector also generated by the
provider. Upon receiving the answer from the server,

the provider will get the decryption of g(y) by re-
questing it from the client. And, if the value of g(y)
matches then the provider will return the result to the
client. Since g and y are only known to the provider,
if g(y) is computed correctly then it provides a confi-
dence to the provider that the server is likely to have
performed honestly. If g(y) is not computed correctly,
then the provider would realize that either server or
client is being dishonest and can refuse to provide the
partial decryption of the encrypted value of f (x) nec-
essary to learn f (x) (the provider aborts).

4.3 Protocol Details

SONNI is built on top of the existing oblivious neu-
ral network inference protocol with added steps. The
protocol is detailed in Algorithm 1.

First in step 1, the client generates a ciphertext
containing the vector x in the first d slots of the ci-
phertext and sends it to the provider. The provider in-
serts the y values in slots d +1..d +m, where m slots
are used for y. Subsequently, provider permutes this
vector in step 3. It also permutes function f and g
in a similar fashion. As an illustration if the f was
x[1]+ 2x[2] and (x[1],x[2]) is permuted to (x[2],x[1])
then f would be changed to 2x[2]+ x[1].

Additionally, to permute the computation, the
provider can also change f to be 2x[2]+x[1]+0∗y[1],
where y[1] is one of the values used for the computa-
tion of g(y). Likewise, the computation of g can use
some of the values in the x vector with coefficient 0.
It could use any arithmetic operation that uses y (re-
spectively, x) while computing the value of f (x) (re-
spectively g(y)) in such a way that the final answer
will be independent of the y (respectively x) value.
This will prevent the server from performing data-
flow techniques to determine the slots used for f and
g.

Since the server is not aware of the placement of x
and y in the ciphertext and it uses the permuted input,
it computes permuted f (x) and g(y) in step 6. This
value is sent to both the client and the provider.

In step 10, the client uses the mask provided by
the provider to compute encc,p(g′(y)), where g′(y)
denotes g(y) masked by a random vector known to
the provider (similarly f ′(x) denotes f (x) masked by
that same random vector). This value and the partial
decryption provided by provider is used to compute
g′(y). If g′(y) is computed correctly, then the model
owner is convinced that the entire vector was com-
puted correctly.

Since the computation of g′(y) by the client may
have a small error due to the use of FHE whereas
the value computed by the provider is the exact value

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

518

of g′(y), we use g′c(y) to denote the value computed
by the client and g′p(y) to be value computed by the
provider. Each value is quantized such that q(g′c(y))
will be equal to q(g′p(y))

Then, in steps 11-14, the client and provider per-
form a privacy-preserving comparison protocol to en-
sure q(g′c(y)) was computed correctly. After this
passes, the client and provider jointly decrypt the re-
sult ciphertext containing f (x) and only the client
learns f (x). One of the concerns in this step is a
malicious provider that tries to compromise the pri-
vacy of the client. Specifically, in this step, if the
provider specifies the incorrect indices such that the
indices correspond to f ′(x) instead of g′(y), then the
provider could learn the value of f (x). To prevent
this, the proof that the client computes the value of
g′(y) correctly is achieved via a zero-knowledge ap-
proach discussed later in this section.

Algorithm 1: Secure Oblivious Neural Network Inference.

1: C sends to P : encc(x[1],x[2], ...x[d],0, ...0)

2: P computes encc,p(x[1],x[2], ...x[d],y[1],y[2],y[m])
3: P computes encc,p(perm(x,y))
4: P computes PermuteParameters(f ,g) using the same permu-

tation.
5: P sends to S : encc,p(perm(x,y)), PermutaParameters(f ,g)

6: S computes and sends to P and C : encc,p(perm(f (x),g(y)))
7: P computes rand = [−1,1]d+m

8: P computes encc,p(perm(f ′(x),g′(y))) =

mult(encc,p(perm(f (x),g(y))),rand)
9: P sends to C : decp(encc,p(perm(f ′(x),g′(y)))),encp(rand)

10: C computes g′(y)

11: C sends to P : hash1 = h(q(g′(y)))
12: P computes g′(y)
13: P computes hash2 = h(q(g′(y)))
14: If hash1 ̸= hash2, P aborts

15: P sends to C : rand
16: C computes f (x)

The above protocol has two important stages, ci-
phertext preparation (lines 2-5) and result checking
(11-14). Next, we provide additional details of these
steps. Ciphertext preparation refers to the manipu-
lation done by the provider before it sends the data
to server to compute f (x) and g(y) whereas the re-
sult checking refers the the computation between the
client and provider so that it can verify that g(y) was
computed correctly by the server.

4.3.1 Ciphertext Preparation

The security of our proposed protocol relies on the
client and server not knowing the indices of the y val-

ues. To achieve this, the client appends m zeroes to the
end of their data vector x before encryption. This ci-
phertext is sent to the provider. Then, through a series
of masking multiplications, rotations, and additions,
the ciphertext is shuffled. We note that we do not re-
quire arbitrary ciphertext shuffling for the security of
our protocol. Our security rests on the server not be-
ing able to guess which slots correspond to x values
and which slots correspond to y values. The vectors of
function parameters are shuffled in the same manner
prior to encryption. The provider finally adds random
y values to the zero indices in the ciphertext.

4.3.2 Result Checking

If the provider does not verify that the ciphertext they
are decrypting does not contain model parameters,
the Silver Platter attack will succeed. However, the
provider should not learn f (x) so it is not permissi-
ble to have the provider decrypt the result, examine
it, and return it to the client. Indeed, if this were al-
lowed, the protocol would be open to an attack where
the provider works with the server to learn x in a sim-
ilar manner. Our idea is to give the client access only
to the computed g(y). If the client is able to correctly
tell the provider the values of g(y), then the provider
will help the client decrypt the final result and gain
access to f (x).

The provider generates a random vector rand ∈
Rd+m that contains in each index a random nonzero
real value. This vector is sent to the client. Both the
provider and the client compute:

encc,p(perm(f ′(x),g′(y)))
= mult(encc,p(perm(f (x),g(y))),rand)

They also compute a partial decryption of this re-
sultant ciphertext. The provider sends their partial de-
cryption to the client that combines the partial decryp-
tions to recover g′(y) = g(y)× rand (and additionally
f ′(y) = f (y)× rand).

The provider computes g′(y), as they know g, y,
and rand due to having generated each in plaintext at
the start of the computation. Now, the provider needs
to be convinced that they have the same value of g′(y)
as the client without revealing these values to each
other. If the client were to send g′(y) to the provider,
the provider could take advantage of this by storing
f (x) or x in lieu of g′(y) (or an obfuscated version
thereof). Similarly, the provider cannot simply send
g′(y) to the client because the client could simply lie
and state that the values are the same.

A secure two-party computation protocol is
needed to prove to the provider that the values of
g′(y) are the same without revealing those values to

SONNI: Secure Oblivious Neural Network Inference

519

the other. This protocol can work on plaintext val-
ues because g′(y) exists in plaintext to both parties at
this point in the protocol (as decryption has already
occurred). Both parties compute h(g′(y)) for some
low-collision hash function h. The client sends their
result to the provider and the provider verifies that the
hashes are identical.

Due to the approximate nature of arithmetic un-
der FHE, the value of g′(y) decrypted by the client is
likely to be slightly different than the value computed
in plaintext by the provider. To mitigate this, we use
a simple uniform quantization scheme with intervals
large enough that the noise from homomorphic com-
putations will not affect the performance. Therefore,
the client and provider compute h(q(g′(y))) instead of
h(g′(y)) for a quantization scheme q.

Once the provider is convinced that g′(y) was
computed correctly, they share the random vector
rand with the client to for use in recovering f (x).

4.4 Security Analysis

In this subsection, we evaluate the theoretical prob-
abilities of attacks successfully working against the
proposed system. We refer to the probability of break-
ing the homomorphic encryption scheme as ε1 and the
probability of breaking the incorporated hash function
as ε2. These values are negligible, given proper selec-
tion of encryption security parameters and hash func-
tion.

Theorem 1. Let d be the dimensionality of the client’s
secret data x and m be the number of ciphertext slots
dedicated to containing y values. The probability
of successfully performing the Silver Platter attack
against SONNI to steal k scalar model parameters is
upper bounded by (d

d+m)
k
+ ε1 + ε2.

Theorem 2. The probability of the provider work-
ing with the server to successfully steal any amount
of client data x or f (x) is upper bounded by ε1 + ε2.

Due to reasons of space, we provide detailed
proofs in (Sperling and Kulkarni, 2025).

In Figure 3, we analyze Theorem 1 quantitatively.
We assume in this analysis that the attack will be per-
formed in one round, rather than stealing one param-
eter per transaction (as that becomes incredibly costly
from a financial perspective when the number of pa-
rameters reaches thousands or millions). In FHE ap-
plications it is a common practice to use 128-1024
size vectors (Jindal et al., 2020). We consider the case
where the ciphertext has 1024 slots, some of which
(d) are allocated to the client and some (m) are allo-
cated to the provider. When m = 1, i.e., only one slot
is allocated to the provider for verification of g(y),

Table 1: Probability of successful Silver Platter attack
against SONNI. Vector size of 1024 is used.

m Parameters Stolen P(Success)

4

10 0.952
128 0.513
256 0.237
512 0.0311

32

10 0.720
128 0.011
256 6.34×10−5

512 7.07×10−11

512

10 9.25×10−4

128 2.88×10−43

256 1.02×10−96

512 1.23×10−307

the probability of a successful Silver Platter is quite
high. However, even with a few slots for the provider,
the probability of a successful Silver Platter decreases
sharply. Table 1 demonstrates this. With m = 32, i.e.,
32 slots allocated to provider, the probability of steal-
ing 10 parameters is 0.720, the probability of stealing
128 parameters is 0.011, and so on. The probability of
stealing 512 parameters is 7.07×10−11. We note that
modern machine learning models often include thou-
sands or millions of parameters. The simple projec-
tion matrix model featured in (Sperling et al., 2022)
includes 32768 parameters. Even if the adversary
maximizes their chance of successfully performing
the attack by stealing a single model parameter at a
time over 32768 transactions and if only 2 ciphertext
slots dedicated to verification of g(y), the probabil-
ity of stealing all these parameters is 1.51 × 10−28.
Stealing just half of the parameters has a chance of
1.23 × 10−14 of success. Batching capability is re-
duced by only 0.2% while privacy is maintained with
only a negligible chance of being violated.

In the case where even a small number of model
parameters leaking is undesirable, using an m value of
512 ensures that Silver Platter attacks are extremely
unlikely to be successful. Even stealing 10 in this cir-
cumstance has only a 9.25×10−4 chance of succeed-
ing.

Also, our protocol preserves client privacy. This
is especially important for a client as its data, x or
f (x), is often impossible to replace, as the data cor-
responds to medical information, biometric informa-
tion, etc. By contrast, revealing a very small num-
ber of parameters does not significantly affect the
provider. As discussed in Section 3, the Silver Platter
is undetectable for the provider if one uses the exist-
ing approach (Chen et al., 2019b). With the level of
security provided to both the client and provider, we
can provide privacy guarantees to both of them with a
reasonable overhead.

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

520

Figure 3: Probability of performing a Silver Platter attack without being detected based on the number of ciphertext slots
dedicated to checked values.

5 RELATED WORK

Oblivious neural network inference aims to evaluate
machine learning models without learning anything
about the data and has seen much attention in recent
years (Mann et al., 2023). XONN achieves this with
a formulation similar to garbled circuits (Riazi et al.,
2019). There is a privacy concern related to outsourc-
ing these computations. Namely, that the model will
be learned by the server. FHE has been used for in-
ference that not only protects sensitive client data, but
also prevents learning the provider’s private data (i.e.
the model) (Chen et al., 2019b). As we discuss thor-
oughly in this work, this approach is open to the un-
detectable Silver Platter attack. Our work protects not
only client data, as is expected in the classical obliv-
ious neural network inference formulation, but also
that of the provider.

Model stealing attacks aim to learn models from
black-box access. Broadly speaking, this either at-
tempts to steal exact model values or general model
behavior. Our work examines the former scenario.
This falls into three categories: stealing training
hyperparameters (Wang and Gong, 2018), stealing
model parameters (Lowd and Meek, 2005; Reith
et al., 2019), and stealing model architecture (Oh
et al., 2019; Yan et al., 2020; Hu et al., 2019), often
using side-channel attacks.

Gentry’s seminal work constructing the first FHE
scheme (Gentry, 2009) paved the way for more
privacy-preserving applications on the cloud. Con-
cerns over data privacy led to the development of
multi-key encryption featuring multiple pairs of pub-
lic and private keys. The first use of multi-key FHE
was proposed by López et al. (López-Alt et al., 2012).
Work followed suit, improving speed as well as sup-
porting more modern schemes (Chen et al., 2019a;
Ananth et al., 2020). These schemes are developed
for secure cloud computation. Specific optimizations
have been proposed for federated learning (Ma et al.,

2022). Work in FHE has often assumed the honest-
but-curious threat model. Our work shows that this
opens the way for undetectable and 100% successful
attacks.

6 CONCLUSION

In this paper, we demonstrated that the current ap-
proach to oblivious neural network inference (Chen
et al., 2019b) suffers from a simple attack, namely the
Silver Platter attack. It permits the server to reveal all
model parameters to the client in a way that is com-
pletely undetected by the provider.

We also presented a protocol to deal with the Sil-
ver Platter attack. The protocol relied on the obser-
vation that FHE based techniques utilize vector-based
computation. We used a few slots in this vector to
compute a function g(y) that could be verified by the
provider so that it can gain confidence that the server
is not trying to steal the model parameters with the
help of the client. Our protocol provided a tradeoff
between the overhead (the number of slots used for
verification) and the probability of a successful attack.
We demonstrated that even with a small overhead in
terms of the number of slots used for verification, the
probability that a server can steal several parameters
remains very small. Modern machine learning models
often involve billions of parameters. We showed that
the probability of stealing even 1% of the parameters
is very small.

REFERENCES

Ananth, P., Jain, A., Jin, Z., and Malavolta, G. (2020).
Multi-key fully-homomorphic encryption in the plain
model. In Theory of Cryptography: 18th International
Conference, TCC 2020, Durham, NC, USA, Novem-

SONNI: Secure Oblivious Neural Network Inference

521

ber 16–19, 2020, Proceedings, Part I 18, pages 28–57.
Springer.

Chen, H., Chillotti, I., and Song, Y. (2019a). Multi-key
homomorphic encryption from tfhe. In Advances
in Cryptology–ASIACRYPT 2019: 25th International
Conference on the Theory and Application of Cryptol-
ogy and Information Security, Kobe, Japan, December
8–12, 2019, Proceedings, Part II 25, pages 446–472.
Springer.

Chen, H., Dai, W., Kim, M., and Song, Y. (2019b). Efficient
multi-key homomorphic encryption with packed ci-
phertexts with application to oblivious neural network
inference. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, pages 395–412.

Cheon, J. H., Kim, A., Kim, M., and Song, Y. (2017). Ho-
momorphic encryption for arithmetic of approximate
numbers. In Advances in Cryptology–ASIACRYPT
2017: 23rd International Conference on the Theory
and Applications of Cryptology and Information Se-
curity, Hong Kong, China, December 3-7, 2017, Pro-
ceedings, Part I 23, pages 409–437. Springer.

Gentry, C. (2009). Fully homomorphic encryption using
ideal lattices. In Proceedings of the forty-first annual
ACM symposium on Theory of computing, pages 169–
178.

Hu, X., Liang, L., Deng, L., Li, S., Xie, X., Ji, Y.,
Ding, Y., Liu, C., Sherwood, T., and Xie, Y. (2019).
Neural network model extraction attacks in edge de-
vices by hearing architectural hints. arXiv preprint
arXiv:1903.03916.

Jindal, A. K., Shaik, I., Vasudha, V., Chalamala, S. R., Ma,
R., and Lodha, S. (2020). Secure and privacy pre-
serving method for biometric template protection us-
ing fully homomorphic encryption. In 2020 IEEE 19th
international conference on trust, security and privacy
in computing and communications (TrustCom), pages
1127–1134. IEEE.

López-Alt, A., Tromer, E., and Vaikuntanathan, V. (2012).
On-the-fly multiparty computation on the cloud via
multikey fully homomorphic encryption. In Proceed-
ings of the forty-fourth annual ACM symposium on
Theory of computing, pages 1219–1234.

Lowd, D. and Meek, C. (2005). Adversarial learning. In
Proceedings of the eleventh ACM SIGKDD interna-
tional conference on Knowledge discovery in data
mining, pages 641–647.

Ma, J., Naas, S.-A., Sigg, S., and Lyu, X. (2022). Privacy-
preserving federated learning based on multi-key ho-
momorphic encryption. International Journal of In-
telligent Systems, 37(9):5880–5901.

Mai, G., Cao, K., Yuen, P. C., and Jain, A. K. (2018). On
the reconstruction of face images from deep face tem-
plates. IEEE transactions on pattern analysis and ma-
chine intelligence, 41(5):1188–1202.

Mann, Z. Á., Weinert, C., Chabal, D., and Bos, J. W. (2023).
Towards practical secure neural network inference:
the journey so far and the road ahead. ACM Com-
puting Surveys, 56(5):1–37.

Oh, S. J., Schiele, B., and Fritz, M. (2019). Towards
reverse-engineering black-box neural networks. Ex-

plainable AI: interpreting, explaining and visualizing
deep learning, pages 121–144.

Reith, R. N., Schneider, T., and Tkachenko, O. (2019). Ef-
ficiently stealing your machine learning models. In
Proceedings of the 18th ACM Workshop on Privacy in
the Electronic Society, pages 198–210.

Riazi, M. S., Samragh, M., Chen, H., Laine, K., Lauter,
K., and Koushanfar, F. (2019). {XONN}:{XNOR-
based} oblivious deep neural network inference. In
28th USENIX Security Symposium (USENIX Security
19), pages 1501–1518.

Sperling, L. and Kulkarni, S. S. (2025). Sonni: Secure
oblivious neural network inference.

Sperling, L., Ratha, N., Ross, A., and Boddeti, V. N. (2022).
Heft: Homomorphically encrypted fusion of biomet-
ric templates. In 2022 IEEE International Joint Con-
ference on Biometrics (IJCB), pages 1–10. IEEE.

Wang, B. and Gong, N. Z. (2018). Stealing hyperparame-
ters in machine learning. In 2018 IEEE symposium on
security and privacy (SP), pages 36–52. IEEE.

Yan, M., Fletcher, C. W., and Torrellas, J. (2020). Cache
telepathy: Leveraging shared resource attacks to learn
{DNN} architectures. In 29th USENIX Security Sym-
posium (USENIX Security 20), pages 2003–2020.

SECRYPT 2025 - 22nd International Conference on Security and Cryptography

522

