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Abstract: This paper presents an exploratory analysis of deep learning techniques for intrusion detection in IoT networks.
Specifically, we investigate three innovative intrusion detection systems based on transformer, 1D-CNN and
GrowNet architectures, comparing their performance against random forest and three-layer perceptron models
as baselines. For each model, we study the multiclass classification performance using the publicly available
IoT network traffic dataset Bot-IoT. We use the most important performance indicators, namely, accuracy,
F1-score, and ROC, but also training and inference time to gauge the utility and efficacy of the models. In
contrast to earlier studies where random forests were the dominant method for ML-based intrusion detection,
our findings indicate that the transformer architecture outperforms all other methods in our approach.

1 INTRODUCTION

Internet of Things (IoT) refers to a group of intercon-
nected devices which exchange and collect data with-
out human intervention (Hounsell et al., 2009), e.g.
over the cloud or a blockchain infrastructure (Kullig
et al., 2020). As more IoT devices connect to the in-
ternet on a daily basis, the potential for the technology
to alter businesses and sectors grows rapidly. Among
the benefits of using so-called smart devices are valu-
able data insights, cost savings due to task and con-
trolling automation, and the ability to connect various
type of devices and data. In IoT’s strengths, however,
also lie its weaknesses. For example, data collected
by smart devices in the health and insurance industry
could be leaked, exposing large volumes of sensitive
medical and financial data (Shahid et al., 2022) (Chat-
terjee and Ahmed, 2022). The ability to carry out
tasks remotely means possibly exposing equipments
to bad actors that might try to tamper with IoT de-
vices, be it on a software or a hardware level (Stel-
lios et al., 2018). In addition, the vast amount of de-
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vices introduces heterogenous software and hardware
stacks, which means more attack surface (Stoyanova
et al., 2020). One way to detect possible vulnerabil-
ities or attacks is to use anomaly detection methods
for incoming traffic at various levels, from the IoT
network to the data center. Anomaly detection is a
data analysis process that looks for irregular patterns,
unexpected behavior, or deviations from the standard
mode of operation of a given system.

As mentioned previously, IoT devices are widely
used for collecting and transporting sensitive data in
a variety of sectors, including medical, manufactur-
ing, and finance. Therefore, anomaly detection in IoT
networks are crucial to obtain critical actionable in-
formation for e.g. fraud detection (Min et al., 2021)
or condition monitoring (Li et al., 2020).

Most IoT anomaly detection approaches require
extensive human involvement and optimizations, de-
spite initiatives for autonomic and automated network
resilience (Chaparadza et al., 2013) (Tcholtchev and
Chaparadza, 2010). Establishing an automated model
in an IoT setting presents various challenges. It is dif-
ficult and not always possible to appropriately char-
acterize and categorize various types of anomalous
data, especially when labeled training data is not ac-
cessible. The concept of normal behavior is continu-
ally changing and evolving in various domains (Ryu
et al., 2021). Furthermore, noise is always present
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in observed data, and when the signal-to-noise ratio is
low, the size of noise resembles actual anomalies. The
quantity of interconnected systems and data types fur-
ther enhance the complexity (Chatterjee and Ahmed,
2022).

To address some of these challenges, researchers
often rely on AI-based mechanisms due to AI’s abil-
ity not just to process and analyze large amounts of
data in real time, but also adapt to new incoming data.
Deep learning (DL) algorithms have evolved into the
most extensively used and viable intrusion detection
technology in networks. Deep learning is in general
widely employed in cybersecurity because it can de-
tect previously unknown patterns in raw data (Khan
et al., 2022). Due to the large body of work in the DL
domain, it would be of interest to compare the differ-
ent approaches implementing the concept of DL using
different architectures.

1.1 Objective and Scope of the Paper

With this study we aim to provide a performance
comparison of different DL architectures for detecting
IoT-traffic anomalies. To this end, we present the re-
sults of experiments utilizing three novel DL architec-
tures based on transformer, 1D-CNN, and GrowNet
models, as well as a simple random forest classifier
and a multilayer perceptron for baseline benchmark-
ing. The experiments are run on Bot-IoT - a pub-
licly available dataset containing malign as well as
benign network traffic observations from IoT-devices.
We then present the empirical results of the individual
performances based on previously defined metrics.
While previous research identified random forests as
the top-performing method for ML-based intrusion
detection, we will reveal that the transformer architec-
ture exceeds the performance of all other techniques
in our approach.

1.2 Structure of the Paper

Having explained the background and scope of this
paper, in the following sections we will proceed with
reviewing the related work in anomaly detection, the
role of DL algorithms for intrusion detection, and
publicly available datasets for network intrusion de-
tection. Then we describe in brief the different DL
architectures up for comparison, as well as the rele-
vant methodology we use to compare them, including
the metrics used to evaluate the models’ performances
and the dataset on which we run our experiments. Us-
ing the aforementioned metrics we will then discuss
the experiment results and examine its implications.
Finally, we conclude with a summary of the experi-

ments and discuss possible future opportunities based
on our empirical findings.

2 RELATED WORK &
TECHNOLOGICAL CONTEXT

2.1 Anomaly Detection in IoT Networks

At present, most techniques for identifying anoma-
lies in IoT networks use a considerable amount of
human intervention to set up the systems and ana-
lyze the data produced. As the number of intercon-
nected devices grows, effectively analyzing and inter-
preting data becomes increasingly complex, even for
experts. In the following paragraphs, existing auto-
mated methods that enable experts to focus only on
the most significant observed events are briefly de-
scribed. However, a detailed comparison of related
approaches with our presented approach and results
is discussed in Section 4.3.

Statistical and probabilistic methods use previ-
ously recorded data to model expected network be-
havior. New observations are then compared against
the statistical model. If an observation fails to fit the
model, it is classified as an anomaly (Markou and
Singh, 2003). Examples for probabilistic methods
are Hidden Markov Models (Görnitz et al., 2015) and
Bayesian Networks (Hill et al., 2007).

Using long-term traffic trends, it is also possi-
ble to create regression models that predict expected
network traffic behavior. New observations are then
compared to the previously generated expected be-
havior. If the observed and expected values vary
greatly, the observed incident is marked as anomalous
(Giannoni et al., 2018). The complexity of the pre-
diction model depends on the choice of architecture.
Simple Support Vector Machines (SVMs) (Shahid
et al., 2015) could already yield useful results, but
more complex models using Deep Neural Networks
(DNNs) and Long-Short-Term Memory (LSTM) are
also viable, if not more widely used nowadays (Mal-
hotra et al., 2015).

2.2 Deep Learning Algorithms for
Anomaly Detection

A large number of deep anomaly detection meth-
ods have been introduced, demonstrating significantly
better performance than conventional anomaly detec-
tion on addressing network intrusion. Major chal-
lenges in anomaly detection, which deep learning
tackles, include class imbalances (anomalies are by
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definition much rarer than the standard case) and sen-
sitivity to noise (Pang et al., 2020). For example,
Meidan et al. train deep autoencoders to learn nor-
mal behavior in IoT network traffic and try to re-
construct new, unseen traffic (Meidan et al., 2018).
If the autoencoder fails to reconstruct the input data
accurately, then it is a strong indication that the ob-
served behavior is anomalous. Benefits of using au-
toencoders to detect anomalous behavior are hetero-
genity tolerance and the ability to flag a previously
unseen behavior.

Another deep learning architecture recently used
for anomaly detection is Generative Adversarial Net-
work (GAN). The model is composed of two neural
networks, a generator and a discriminator, which are
trained in adversarial manner. Iliyasu et al. (Iliyasu
and Deng, 2022) use GAN in a semi-supervised man-
ner, in that the discriminator trains on a few mali-
cious examples in addition to the normal ones to learn
adequate representations. The generator then recon-
structs from the latent features in the network traffic
feature space to compute the anomaly score.

Architectures based on Long short-term memory
(LSTM) are also commonly used for anomaly detec-
tion, especially to detect anomalous behaviors over
time. This is because LSTM models use so-called
gates which choose what to keep or discard in the
memory as well as incorporate changes over time.
This gives LSTM the ability to capture long-term de-
pendencies thereby leading to LSTM being used as
a basis algorithm for anomaly detection. For exam-
ple, Imrana et al. extend the LSTM architecture by
building a bidirectional LSTM network (Imrana et al.,
2021). The solution the authors propose is making use
of two LSTM networks. The first LSTM trains us-
ing the normal training data and the second uses a re-
versed version of the data, thus providing more time-
related context to the algorithm and solving the van-
ishing gradient problem. When compared with other
machine learning methods like SVM, Multilayer Per-
ceptron, and Recurrent Neural Network, LSTM per-
formed better by 6-20 percent (Imrana et al., 2021).

2.3 Publicly Available IoT Datasets for
Anomaly Detection

Several datasets for anomaly detection in IoT net-
works have been made publicly available for develop-
ing machine learning algorithms to detect and prevent
IoT malware infections.

IoT-23 (Garcia et al., 2020) belongs to the most
used publicly available dataset for network intrusion
detection. It has twenty malware as well as three nor-
mal IoT-traffic captures containing more than 50 mil-

lion records ranging from 2018 to 2019. The malware
traffic are generated by executing the respective mal-
ware on a Raspberry Pi. Among the executed attacks
are Mirai and Okiru botnets as well as DDoS and
C&C. The benign traffic records are recorded from
three different IoT devices.

Another widely used dataset is Bot-IoT (Koroni-
otis et al., 2019), which was collected in a virtual
environment and also contains normal and malware
IoT traffic. The attack launched for generating traffic
data include data exfiltration, keylogging, and DDoS.
The entire dataset consists of more than 72 million
records. We will provide a more detailed description
including a feature and class analysis of the BoT-IoT
dataset in Section 3.2.

The N BaIoT dataset (Meidan et al., 2018) gath-
ered malware traffic data by injecting commercial IoT
devices with Mirai and BASHLITE botnets. The bot-
nets carry in sum ten different attacks, including net-
work flooding, scanning for vulnerable connection,
and sending spam data. N BaIoT also contains nor-
mal IoT traffic data. More than seven million records
comprise the dataset in total.

3 METHODOLOGY

This section explains the details of the approach we
use in this study, from the choice of DL algorithms
to the datasets and metrics we chose to evaluate said
algorithms.

3.1 Selection of DL Algorithms

The algorithm selection process employed during our
research efforts was guided by two main criteria: in-
novation and performance. More specifically, we se-
lected relatively recent and novel deep learning ar-
chitectures, examined their practical applications in
the field of intrusion detection and compared them
to more traditional methods. By focusing on these
novel algorithms/architectures, we aim at contribut-
ing to the current body of research and achieving pos-
sible improvements over the existing anomaly detec-
tion methods. Furthermore, performance is a criti-
cal factor in assessing the efficiency and reliability of
deep learning algorithms, so the selected algorithms
were evaluated based on their accuracy in network
intrusion detection. In our evaluation, we compare
the novel DL algorithms with baseline algorithms,
namely random forest classifiers (RFC) and deep neu-
ral networks (DNN).

RFC are a type of machine learning algorithm that
predict the outcome of a certain event by combining
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multiple decision trees (Breiman, 2001). A decision
tree in a classification context is a graph that decides
which class a sample belongs to. The algorithm starts
from a root node and traverses through the next nodes
conditionally, evaluating a specific criterion at each
node. It then arrives at a leaf node representing a
class. An RFC is made up of many decision trees,
each trained on a different subset of the data and us-
ing a random selection of features. This makes the
model less prone to overfitting than a single decision
tree. To make a prediction, the random forest clas-
sifier combines the output of all the decision trees to
come up with a final decision.

In contrast, DNNs are made up of multiple lay-
ers of connected nodes or artificial neurons (see Fig.
1). Each layer takes input from the previous layer and
performs calculations, which are then passed on to the
next layer. The idea is that each layer extracts more
abstract information from the input, allowing the net-
work to perform complex tasks.

As a baseline model, we opt for a simple multi-
layer perceptron (MLP). MLPs can be seen as a spe-
cific type of DNN with a simpler architecture; our
MLP has only one hidden layer (see Figure 1a). The
first layer of the neural network receives the input
data. Each node in this layer represents a feature or
attribute of the input data. The values of each neuron
are then multiplied by their respective weights and
added up to compute the weighted sum of neurons.
Each connection between nodes in the neural network
has an associated weight that controls the strength of
the connection. The network learns to adjust these
weights during training in order to minimize the error
between the predicted output and the actual output.

The weighted sum of neurons is then forwarded to
the activation function that decides whether the neu-
ron should be activated or not. An activation func-
tion is a non-linear function applied to the output of
each node in a layer. The activation function intro-
duces non-linearities into the model and enables it to
capture complex relationships between the input and
output data. The output of the activation function is
then forwarded to the hidden layer. After computing
the weighted sum of neurons and passing it through

Input layer
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Output layer
x1

x2

x3

y2

y1

(a) Example of a simple
neural network
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Figure 1: Structure of a neural network.
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Figure 2: Example structure of a CNN.

an activation function, the result is then forwarded to
the final output layer.

Since our problem is that of a multiclass classifica-
tion, we use softmax as the activation function for the
output layer. The softmax function outputs the prob-
ability of the input belonging to a certain class (Bri-
dle, 1989). To assess the model’s accuracy, we com-
pute the loss function, which calculates the difference
between the predicted and the original class or label
of the input data. To decrease prediction error, the
gradient of the cost function with respect to the net-
work weights is computed using the chain rule. This
process is commonly known as backpropagation. We
then use the gradient to update the network’s param-
eters by moving in the direction of steepest descent,
which is why this process is called gradient descent.
With θi denoting network parameters at iteration i, η

denoting the learning rate, and ∇J(θi) denoting the
gradient of the cost function regarding θi, the gradi-
ent descent is defined as follows:

θi+1 = θi −η∇J(θi)

Moving towards the direction of steepest descent
minimizes the cost function, and the rate of the move-
ment is denoted by the aforementioned learning rate
η. If the learning rate for a deep neural network is set
too high, the training process of the model might be-
come unstable and fail to converge to an optimal solu-
tion. This might cause strong oscillations or spikes in
the loss function, preventing the network from learn-
ing successfully. The optimization method may over-
shoot the ideal solution, causing the loss function to
increase rather than decrease. This phenomenon is
often referred to as ”exploding gradients”. Further-
more, the model will have low accuracy with unseen
data, resulting in high generalization error.

Most of the DL algorithms we are comparing in
this paper are based on Convolutional Neural Net-
work (CNN). CNNs were introduced to solve im-
age recognition problems and are similar to regu-
lar DNNs in that they are made up of neurons that
optimize themselves through learning (LeCun et al.,
1995). The basic components of a CNN include con-
volution layers, pooling layers, and fully connected
layers. The convolution layer is the core component
of a CNN, where the input image is convolved with
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a set of filters, each of which captures different fea-
tures of the image. The filters move across the image
and perform dot products at each position, generat-
ing a feature map that represents the presence or ab-
sence of various features in the input image. The fil-
ters are learned during training, meaning the network
will learn to automatically identify features that are
useful for the classification task.

Pooling layers are used to reduce the spatial di-
mensions of the feature maps generated by the con-
volution layers. Pooling typically involves summa-
rizing a group of neighboring pixels by taking their
maximum or average value. This helps to reduce the
dimensions of the feature maps while preserving im-
portant information.

Finally, fully connected layers are used to clas-
sify the features learned by the convolution layers
into specific classes or categories. These final lay-
ers take in the output of the convolution and pooling
layers, and apply traditional deep learning concepts of
weights and biases to classify objects.

Standard DNNs were not effective in recognizing
patterns in images because they did not take into ac-
count the spatial relationships between the pixels in
an image. CNNs solve this problem by using convo-
lutional layers to filter the image and extract features
at different scales. This allows the network to identify
patterns and features in the image regardless of its lo-
cation in the image. Additionally, pooling layers are
used to downsample the image and reduce the dimen-
sionality of the convolved feature map, which helps
to reduce overfitting.

With this in mind, the DL architectures examined
throughout our work are defined as follows:

• SoftOrdering1DCNN uses one-dimensional
CNNs to classify tabular data. CNNs are a widely
used NN architecture for solving computer vision
problem. That is because convolutional kernels
extract both the local connectivity and the spa-
tial locality of the input image. Because tabu-
lar features are often not spatially connected, we
cannot input a tabular dataset directly to a convo-
lutional layer. SoftOrdering1DCNN uses a fully
connected layer to expand the size of the input
(tabular data), apply non-linear combination, and
sort the original features as to create spatial cor-
relation. Following the reshaping, features are re-
trieved in numerous 1-dimensional convolutional
layers connected by a skip-like network. After
flattening, the collected features are used to pre-
dict targets via a fully linked layer. This algo-
rithm won second place in the Mechanisms of
Action (MoA) Prediction Research Code Compe-
tition to develop accurate and efficient computa-

tional models for predicting the mechanism of ac-
tion of new drugs (noa, ).

• The FT-Transformer (Feature Tokenizer +
Transformer) algorithm (Gorishniy et al., 2021)
modifies the transformer architecture (Vaswani
et al., 2017) for the use on tabular data. FT-
Transformer first tokenizes the input features into
embeddings, which are then processed by the
transformer. In comparison to eight other deep
learning methods for tabular data classification
over eleven datasets, FT-Transformer outperforms
the other methods in six cases, including real es-
tate (Pace and Barry, 1997), income prediction
(Kohavi et al., 1996), and simulated physical par-
ticles (Baldi et al., 2014).

• GrowNet is a novel neural network model that
combines the strengths of neural networks and
boosted trees (Badirli et al., 2020). The model
trains using boosted trees that have a shared fea-
ture map. In a boosted tree model, individual
decision trees are trained sequentially on subsets
of the data, with each subsequent tree attempt-
ing to correct the errors made by the previous
trees. Each decision tree is built using a split-
ting criterion that optimizes the reduction in the
error of the current model. The final prediction is
made by combining the predictions of all the indi-
vidual trees, weighted by their accuracy (Hastie
et al., 2009). The trees are built by simultane-
ously predicting the gradient of the loss function
and the output at each iteration. The authors of
the GrowNet paper compare it with other boost-
ing methods, and GrowNet achieves better perfor-
mance in regression, classification and learning to
rank on multiple datasets.

3.2 Datasets

We choose the Bot-IoT dataset (Koroniotis et al.,
2019) as the benchmark dataset to evaluate the per-
formance of the deep learning algorithms for network
intrusion detection. Bot-IoT is a publicly available
dataset emulating the real-world network traffic of
IoT devices. The dataset has been used in several pre-
vious research studies to assess the performance of
various intrusion detection algorithms (Bovenzi et al.,
) (Saba et al., 2022) (Ibitoye et al., 2019), providing a
sound basis for comparison.

3.2.1 Description of the Dataset

Koroniotis et. al (Koroniotis et al., 2019) constructed
the BoT-IoT dataset by emulating a normal and botnet
network traffic scenario. The dataset includes DDoS,
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DoS, OS and Service Scan, Keylogging and Data ex-
filtration attacks. They then sampled 5% of the origi-
nal dataset. The sample consists of about three mil-
lion records. Using statistical measures of correla-
tion coefficient (Sedgwick, 2012) and entropy (Lesne,
2014), the authors selected the most important fea-
tures of the data, which are described in Table 1.
The labels in the dataset describe different attack sce-
narios:

• Denial of Service (DoS): attacks aim to flood a
network, server, or website with traffic and re-
quests, resulting in system failure or slowdown.
The attacker’s purpose is to disrupt the target sys-
tem’s regular operation, denying legitimate users
access to its services or information. The dataset
contains DoS as well as Distributed DoS (DDoS),
each on TCP, UDP, and HTTP based networks
(Koroniotis et al., 2019). While DoS attacks are
carried out by a single device, DDoS involves
many devices, usually through networks of con-
trolled computers that have been compromised
with malwares, also known as botnets (Kolias
et al., 2017).

• Information Theft: refers to a class of attacks
in which an adversary attempts to steal sensitive
data. Two types of information theft attacks are
included in the dataset, namely data exfiltration
and keylogging. As the name suggests, data ex-
filtration attacks target a remote machine and at-
tempt to obtain unauthorized access to data (Sabir
et al., 2021). Keylogging, on the other hand, at-
tempts to compromise a remote machine in order
to capture a user’s keystrokes and potentially steal
user credentials (Singh et al., 2021).

• Scanning: or fingerprinting attacks are malicious
operations that search remote machines for user
information based on the specifications of said
machines. Based on the type of information
scanned, there are two key subcategories scanning
attacks, namely OS and service scanning (Hoque
et al., 2014). In a OS scanning attack, an adver-
sary acquires information on the remote operat-
ing system by comparing its replies to pre-existing
ones or based on OS differences in TCP/IP stack
implementations. In a service scan attack, an ad-
versary sends request packets to identify the ser-
vices that run behind the system ports (0-65535)
(Hoque et al., 2014).

3.2.2 Data Preprocessing

Before training and evaluating the investigated ML
models using the Bot-IoT dataset, we first prepro-
cess the data by imputing missing values, standard-

Table 1: Description of the features in Bot-IoT dataset.

Feature Description
proto Transaction protocol
sport Source port number
dport Destination port number
seq Argus sequence number
stddev Standard deviation of aggregated records
N IN Conn P SrcIP Num. of inbound conn. per source IP
min Minimum duration of aggregated records
state Feature state
mean Average duration of aggregated records
N IN Conn P DstIP Num. of inbound conn. per dest IP
drate Destination-to-source packets per second
srate Source-to-destination packets per second
category Traffic category
subcategory Traffic subcategory

izing the numerical features, and one-hot-encoding
string-formatted features. We also combined the la-
bels category and ”subcategory”, resulting in ten pos-
sible classes network flows fall into. Table 2 de-
picts the distribution of labels. As we can see, the
dataset exhibits a strong class imbalance, which can
cause the ML models to overfit on the higher repre-
sented classes and perform poorly in recognising the
underrepresented classes. To avoid this, we oversam-
ple the data using the SMOTE (Synthetic Minority
Over-sampling Technique) algorithm (Chawla et al.,
2002). SMOTE detects minority class instances that
have majority class nearest neighbors. After discov-
ering the minority-class cases, the algorithm chooses
one of them and determines its k nearest neighbors.
Then, at random, it selects one of the nearest neigh-
bors and constructs a new synthetic instance between
them based on the difference between the features of
the two selected instances. This process is repeated
until a specified number of synthetic instances are
produced. This approach reduces the class imbalance
by balancing the number of instances in the minority
and majority classes.

Table 2: Distribution of labels in the Bot-IoT dataset, from
most to least amount of records.

Label Count
DoS (UDP) 1032975
DDoS (TCP) 977380
DDoS (UDP) 948255
DoS (TCP) 615800
Service Scan 73168
OS Scan 17914
DDoS (HTTP) 1485
DoS (HTTP) 989
Normal 477
Keylogging 73
Data exfiltration 6
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3.3 Evaluation Metrics

To measure the performance of the above-mentioned
algorithms, we evaluate not only the correctness of
the result, but also the efficacy. The correctness met-
rics (accuracy, F1-score, and AUC) are based on the
components of the confusion matrix. The confusion
matrix compares the actual and predicted classes and
partition the data as follows:

• True Positive (TP): is the number of samples cor-
rectly classified as belonging to a certain class.

• False Positive (FP): is the number of samples in-
correctly classified as belonging to a certain class.

• False Negative (FN): is the number of samples
incorrectly classified as not belonging to a certain
class.

• True Negative (TN): is the number of samples
correctly classified as not belonging to a certain
class.

Following are the metrics we use in evaluating the DL
algorithms.

• Accuracy: is one of the most widely used met-
rics for multi-class classification problems. It is
the ratio of correctly classified samples to the to-
tal amount of samples.

Accuracy =
T P+T N

T P+T N +FP+FN

• To calculate the F1-score, we need to first calcu-
late precision and recall, which are defined as fol-
lows:

Precision =
T P

T P+FP

Recall =
T P

T P+FN
The F1-score is consequently given as the har-
monic mean of precision and recall.

F1-score = 2× Precision×Recall
Precision+Recall

In our analysis, we employed micro-averaging for
multiclass classification to compute precision and
recall, ensuring that all instances across classes
are considered equally, which helps provide a
more comprehensive measure of model perfor-
mance across imbalanced datasets.

• A receiver operating characteristic curve (ROC
curve) is a graph that depicts the performance of
a classification model over all classification lev-
els by comparing True Positive Rate (TPR) and
False Positive Rate (FPR). The area under the
ROC curve, mostly just called Area Under Curve

(AUC), indicates how well the model can discrim-
inate between classes. AUC may be interpreted as
the likelihood that the model rates a random posi-
tive case higher than a random negative example.

• Training time measures the time it takes to train
a DL model. In its training phase, a DL model
learns to recognize relationships and patterns by
being exposed to a large amount of data to be able
to precisely classify similar data in the future. The
training process can be time-consuming and in-
tensive in terms of computing resources.

• Inference time, on the other hand, measures the
time it takes for a previously trained model to
perform classification on previously unseen data.
Because the model can depend on pre-learned
weights and doesn’t need to perform as many cal-
culations as during the training phase, inference
time is typically much quicker than training time.

4 EXPERIMENTS AND RESULTS

4.1 Experimental Setup

We use the complete Bot-IoT dataset (Koroniotis
et al., 2019) with over three million traffic records
to evaluate the performance of the deep learning al-
gorithms. We repeat the experiments using the cross
validation method. We perform the experiments on
a JupyterHub server running CUDA 11.8 with 4x
12GB-NVIDIA GPUs.

4.2 Results and Discussion

The experiment results are illustrated in Figures 3a,
3b, 3c, 3d, and the ROC-AUC is plotted in Figure
3e. As seen in Figure 3a, for the performed multiclass
classification task, FT-Transformer achieved the high-
est accuracy and F1-Score of 0.991, followed by RFC
with 0.974, SoftOrdering1DCNN, MLP, and lastly
GrowNet with 0.904. In Figure 3c, FT-Transformer
takes the least amount of time to train at 226 seconds,
followed by MLP with 256 seconds. GrowNet took
the longest time to train at 3088 seconds. RFC has
the shortest inference time of 2.663 seconds, followed
by MLP with 7.64 seconds. GrowNet has the longest
inference time of 15 seconds. In Figure 3e, we see
FT-Transformer with the highest AUC of 0.99, fol-
lowed by MLP and SoftOrdering1DCNN with 0.95,
RFC with 0.90, and GrowNet with 0.88.

In the previous subsection, particularly in Figures
3a and 3b, we see very similar values of accuracy and
F1-Score. This is because we oversampled the dataset
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Figure 3: Experiment Results.

to become balanced across all classes. Had we not
done so, the model would over-predict the majority
class, resulting in an F1-score that was significantly
lower than the accuracy.

In our experiments, FT-Transformer shows the
best training time. This comes down to the
self-attention mechanism and parallelization in FT-
Transformer. Transformers’ self-attention mecha-
nism allows the model to learn dependencies be-
tween distinct segments in the input sequence. During
training, this attention mechanism allows the model
to focus on key sections of the input, which can
lead to faster convergence and improved performance
(Vaswani et al., 2017). Moreover, transformers pro-
cess input sequences in parallel. This paralleliza-
tion is accomplished by self-attention mechanisms,
in which each token in the input sequence may con-
currently attend to all other tokens. By lowering the
sequential computation required in classic recurrent
neural networks, this parallel processing capabilities
speeds up training (Schlag et al., 2021). However,
RFC shows the fastest inference time by far, followed
by MLP. This is because RFC and MLP have the sim-
plest model structures in comparison to the other al-
gorithms we use.

Additionally, the RFC is a collection of deci-
sion trees that can be processed in parallel with
the proper setup in terms of software and hardware.
This also speeds up inference. The RFC all-in-all
achieves very good results, even besting MLP, Soft-
Ordering1DCNN, and GrowNet in terms of accuracy

and F1-score, all of which are more powerful neural-
network-based models. An explanation for this could
be its robustness against noise in the training data
(Ishii and Ljunggren, 2021) (Xu et al., 2023).

The MLP shows high AUC with somewhat lower
accuracy. This could be explained when looking at
the confusion matrix: There is an entire class which is
misclassified, namely data exfiltration. The same case
can be made with the SoftOrdering1DCNN. Most
likely the extracted data exfiltration patterns aren’t
sufficient during the training process. The MLP
is a simple three-layer-perceptron with one hidden
layer, while SoftOrdering1DCNN has multiple fully-
connected and convolutional layers, which possibly
explain SoftOrdering1DCNN’s higher accuracy. This
would also explain the shorter training and inference
time taken by MLP.

GrowNet shows the poorest performance in all as-
pects in our experiments. The slow training time, for
one, can be explained by the architecture. The model
is first initialized with a single neural network, then it
adds new neural network to the ensemble iteratively.
Each iteration goes through forward propagation, loss
calculation, backward propagation, and the addition
of the new neural network, with virtually no paral-
lelization (Badirli et al., 2020). Moreover, with each
iteration there are more neural networks already in the
ensemble, meaning each iteration takes longer than
the last. This training strategy might also explain the
suboptimal accuracy, F1-Score, and AUC: GrowNet
relies on its weak neural networks, and its sequential
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training technique may be less successful in captur-
ing complex dependencies in the data than other deep
learning algorithms’ end-to-end training approach.

In contrast, we see FT-Transformer showing the
best performance across the board. This comes down
largely to its attention mechanism, as explained pre-
viously. Transformers’ self-attention mechanism en-
ables the model to properly represent complex rela-
tionships between features in the dataset. By paying
attention to key features and learning how they inter-
act, the Transformer can get a greater understanding
of the connections between distinct features, result-
ing in higher classification accuracy (Vaswani et al.,
2017).

4.3 Comparison with State of the Art

We compare our experiment results with other works
which also use the Bot-IoT as their baseline dataset.
Ferrag et al. (Ferrag et al., 2020) compared among
others the performance of CNN, Recurrent Neural
Network (RNN), and DNN. The authors showed that
a CNN achieves the highest accuracy of 98.371%,
followed by RNN (98.331%), then DNN (98.221%),
though DNN has the fastest training time of 991.6
seconds. This is consistent with our results (Figure
3a), which show that a CNN (SoftOrdering1DCNN)
achieves higher accuracy (93%) than a DNN/MLP
(91%). We also show that the MLP has faster training
time than the SoftOrdering1DCNN (256 and 376 sec-
onds respectively). The difference in accuracy as well
as training time in our results in comparison to Ferrag
et. al can be explained by the difference in model
complexity: Our MLP has only one hidden layer
while Ferrag’s et. al’s DNN has at least two, and our
SoftOrdering1DCNN has one-dimensional convolu-
tional layers, while Ferrag et. al use two-dimensional
convolutional layers.

A comparison between a simple neural network
and a random forest classifier was done by Churcher
et. al (Churcher et al., 2021), which shows higher
accuracy and F1-score of the neural network (97%)
than the random forest classifier (95%). This differs
from our results, which shows higher accuracy and
F1-score for RFC in Figures 3a and 3b in compari-
son to MLP. This might be again be explained by the
low complexity of our MLP, which only has one hid-
den layer. Our RFC scores higher than Churcher’s,
because we use a balanced version of RFC, which in
addition to oversampling the dataset adds more stabil-
ity to the model.

In another work by Özer et. al (Özer et al.,
2021) RFC has slightly higher accuracy and F1-Score
(99.9%) than a neural network (99.7%), which in gen-

eral matches our results of our experiments. A similar
result is also achieved by Alkadi et al (Alkadi et al.,
2023), who use ANOVA F-Score for feature selection,
with RFC scoring 99.9% and MLP 98% accuracy.
ANOVA F-Score calculates variation between sample
means or variation within the samples, which might
explain the performance improvement in comparison
to our results. Usoh et al. (Usoh et al., 2023) also
show RFC and neural network achieving very similar
accuracy of 99.8%, but RFC has F1-Score of 99.9%
and neural network 96.33%, possibly because of re-
maining class imbalance due to lack of resampling of
the dataset.

5 CONCLUSION AND FUTURE
WORK

In this study, we evaluated various deep learning
algorithms for intrusion detection using the Bot-
IoT dataset, employing a comprehensive experimen-
tal setup to assess their multiclass classification per-
formance. Precisely, we analyzed three intrusion
detection systems based on deep learning methods,
namely SoftOrdering1DCNN, FT-Transformer, and
GrowNet, while benchmarking their results against
random forest and MLP baselines.

Differing from recent studies, our findings indi-
cate that the FT-Transformer outperforms all other
methods, achieving an accuracy and F1-Score of
0.991, while also demonstrating the fastest inference
time. This superior performance is likely due to
the transformer’s self-attention mechanism and par-
allelization. In contrast, GrowNet shows the weakest
performance across all metrics, with the lowest accu-
racy, F1-Score, and AUC, as well as the longest train-
ing and inference times, likely due to its reliance on
weak neural networks and an iterative training pro-
cess. The RFC performs better than the MLP and
SoftOrdering1DCNN in accuracy and F1-Score, al-
though it scores lower in AUC. RFC and MLP benefit
from simpler architectures, resulting in faster training
times, with RFC achieving the lowest inference time
overall. In summary, our research positions the FT-
Transformer as a promising alternative for ML-based
intrusion detection, highlighting a paradigm shift in
the effectiveness of deep learning approaches.

However, our study presents opportunities for fur-
ther exploration, particularly regarding the number of
models and datasets utilized. While our findings offer
valuable insights from evaluating deep learning algo-
rithms on the Bot-IoT dataset, incorporating a broader
range of datasets and models in future studies could
enhance the generalizability and depth of our find-
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ings. Hence, our future research will address this
by incorporating additional IoT anomaly detection
datasets, such as IoT-23 and N-BaIoT. By validating
our models across multiple datasets, we hope to en-
hance the robustness and applicability of our conclu-
sions, thereby providing a more comprehensive un-
derstanding of the performance of deep learning tech-
niques in diverse IoT environments.
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