Enhancing Access Control in Distributed Systems Through Intelligent

Keywords:

Abstract:

ABAC Policy Mining

Sudhir Kumar Bai, Jason Aaron Goveas and Barsha Mitra

Dept. of Computer Science & Information Systems, Birla Institute of Technology and Science,
Pilani, Hyderabad Campus, India

ABAC, Policy Creation, Distributed Learning, Intelligent Algorithm, Supervised Learning.

Distributed systems require secure, flexible, and efficient access control mechanisms to protect their resources
and data. Attribute-Based Access Control (ABAC) has been found to be suitable for dynamic and cooperative
settings of distributed environments. The successful implementation of ABAC in any system requires the for-
mulation of a complete and correct ABAC policy. Creating a policy for ABAC adoption requires a substantial
amount of computation and administrative effort. The scale of computational requirements and administra-
tive efforts is further magnified if the target system of deployment is distributed in nature. Several heuristic
methods have been proposed for ABAC policy generation. The amount of resources and efforts that need to
be invested in policy formulation can be substantially reduced by leveraging machine learning techniques. In
this paper, we propose an intelligent framework for mining ABAC policies from access logs for distributed
systems. The task of policy generation is carried out in two phases. In the first phase, an initial policy is
created by each of the individual entities of the distributed system. In the second phase, all the individually
created policies are combined together to create the final ABAC policy. The proposed framework ensures
data privacy by preventing the need for an entity to share its access log with any other entity by leveraging
Federated Learning (FL) to create the ABAC policy. Experimental results on three access control datasets
show that our proposed strategy creates ABAC policies which can efficiently and effectively evaluate access
requests and perform access decision inferencing.

1 INTRODUCTION

Distributed systems have become the backbone of
modern computing, offering scalability, flexibility,
and efficiency. Such systems often span multiple lo-
cations, data centers, cloud platforms, and intercon-
nected services and allow remote access to resources.
In a distributed environment, it is extremely essen-
tial that only authorized users are allowed access to
resources and information in legitimate ways, while
prohibiting all types of unauthorized accesses. Due
to the dynamic and collaborative nature of distributed
systems, ensuring secure access to resources poses
significant challenges. Over the years, several ac-
cess control models have been proposed, like Role-
Based Access Control (RBAC) (Sandhu et al., 1996),
Temporal RBAC (Bertino et al., 2001), Spatial RBAC
(Damiani et al., 2007), and Rule-Based Access Con-
trol (Carminati et al., 2006). However, these access
control models cannot effectively meet the flexible
and diverse access requirements of distributed sys-
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tems. Moreover, the dynamic nature of distributed
systems makes the problem of access management
and access administration a non-trivial one. In re-
cent years, Attribute-Based Access Control (ABAC)
model (Hu et al., 2013) has emerged as the de facto
standard for access control provisioning. ABAC pos-
sesses the capability to address the unique challenges
pertaining to access control and administration of dis-
tributed environments by bringing adaptability, con-
text awareness, and granular control into access man-
agement, thereby making it quite suitable for dis-
tributed, collaborative and dynamic environments.

In ABAC, a user or subject is granted access to
a resource or object based on the attributes of the
user, the resource and several environmental condi-
tions. An attribute of an entity is a specific property
associated with that entity. Attributes are associated
with subjects, objects and environmental context. Ac-
cordingly, they are referred to as subject attributes,
object attributes and environmental attributes, respec-
tively. Each attribute is either assigned a single value
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or multiple values from a predefined set of values.
For ABAC model implementation, a set of rules is re-
quired. Each rule defines the required set of subject,
object and optionally environmental attributes and the
corresponding values in order to grant a subject ac-
cess to an object. The set of all such rules constitutes
an ABAC policy. To determine whether an access re-
quest is to be granted or denied, the attributes of the
requesting subject, the requested object and option-
ally the environmental attributes and their values are
taken into account. If each of the attributes has been
assigned a specific value as per some rule, then the ac-
cess request is granted. Otherwise, it is denied. Creat-
ing an ABAC policy ab initio is often done by consid-
ering the existing system access logs as inputs. For-
mulating an ABAC policy for a distributed environ-
ment requires taking into account the access logs of
the individual entities/nodes of the environment. The
final ABAC policy should reflect the access patterns
generated for each of these entities/nodes. However,
nodes may not be willing to share their access logs
with any other node due to privacy concerns. There-
fore, the primary challenge of policy creation in a dis-
tributed setup is to ensure the enumeration of a correct
policy without sharing any information regarding the
access patterns associated with the individual nodes.

In this paper, we propose an ABAC policy cre-
ation framework for distributed systems. Our frame-
work generates a correct ABAC policy from the ac-
cess logs of the different nodes of the distributed sys-
tem without requiring any of the nodes to share their
logs with any other node. We employ an intelligent
technique to generate the ABAC policy using ma-
chine learning. The use of machine learning reduces
the policy creation time as well as the time required to
evaluate and make a decision for each access request.
To ensure privacy of individual nodes, our framework
uses Federated Learning (FL), a distributed machine
learning paradigm, to create the final ABAC policy.
Each node of the distributed system has access to this
policy. To the best of our knowledge, this is the first
effort to develop an intelligent and distributed ABAC
policy learning framework.

The main contributions of the paper are summa-
rized as follows:

* We propose a novel, intelligent ABAC policy gen-
eration framework for distributed systems. In this
work, we have focused on a client-server like ar-
chitecture.

* In our proposed framework, each client node acts
as a local policy creator. A local policy creator
generates an ABAC policy using a supervised ma-
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chine learning algorithm by considering only its
own access log. Such a policy is termed as a local
policy. This is the first phase of our approach.

¢ The server node acts as the global policy aggre-
gator. Once all the local policies are created, each
local policy creator shares its local policy with the
global policy aggregator. The global policy ag-
gregator intelligently combines all the local poli-
cies to create the final, consolidated ABAC pol-
icy. This ABAC policy is shared with all the local
policy creators. Each local policy creator evalu-
ates the access requests based on this consolidated
ABAC policy.

* Our proposed framework is privacy-preserving in
nature since none of the local policy creators share
their access logs with the global policy aggrega-
tor. Ensuring this privacy-preserving aspect of
our framework as well as the integration of intel-
ligence is done through the use of federated learn-
ing.

 Performance evaluation on three ABAC access
request datasets show that our intelligent pol-
icy generation framework effectively creates an
ABAC policy using which access decisions are
made with a high degree of accuracy.

The rest of the paper is organized as follows.
Section 2 reviews the existing literature on heuris-
tic and intelligent techniques for ABAC policy min-
ing and access control in distributed systems. Sec-
tion 3 presents some preliminary concepts related to
the ABAC model, distributed systems and federated
learning. In Section 4, we describe our proposed
distributed and intelligent policy creation framework.
Section 5 presents the dataset description, experimen-
tal setup and the experimental results. We conclude
the paper in Section 6 along with some insights about
future research directions.

2 RELATED WORK

Policy mining aims to extract access control policies
from existing data sources such as logs, access pat-
terns, or configuration files. Automating policy cre-
ation significantly reduces the burden of system ad-
ministrators, especially in large and complex systems.
Several studies have investigated the generation and
refinement of ABAC policies. Xu and Stoller in (Xu
and Stoller, 2014) and (Xu and Stoller, 2015) present
an algorithm for mining ABAC policies from logs
and attribute data, highlighting the potential for au-
tomation in this domain. Talukdar et al. (Talukdar
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etal., 2017) develop ABAC-SRM, a bottom-up policy
mining technique that can create generalized ABAC
rules. Alternative methodologies, such as Rhapsody
by Cotrini et al. (Cotrini et al., 2018), handle sparse
inputs using rule reliability metrics. A top-down ap-
proach for automatic policy generation is proposed
by the authors in (Anna Bamberger, 2024). This ap-
proach derives structured ABAC policies based on
principal, resource, and environment attributes. In
(Iyer and Masoumzadeh, 2018), the authors focus on
the extraction of positive and negative authorization
rules from access control information. Chaturvedi
and Shirole (Chaturvedi and Shirole, 2024) discuss
the privacy preservation of the attributes for an anony-
mous access. It introduces homomorphic attribute-
based signature (HABS) module in the ABAC model.
Nature inspired framework for policy mining is pro-
posed in (Narouei and Takabi, 2019) where the au-
thors present a methodology based on the particle
swarm optimization algorithm.

Constrained policy mining can be used to spec-
ify additional conditions that must be met to grant or
deny access. In (Gautam et al., 2017), a constrained
policy mining algorithm is proposed, where the min-
imal set of ABAC rules is generated using the access
control matrix as input and minimizing the weight of
each rule and the sum of weights of all rules. Alohaly
et al. (Alohaly et al., 2019) propose an automated
framework for inferring ABAC constraints from nat-
ural language policies. The authors design an an-
notation scheme to capture ABAC constraint expres-
sions within natural language access control policies
(NLACPs) and a framework to extract the constraints
from NLACPs.

Access control in distributed systems is a criti-
cal aspect of ensuring the security and integrity of
data and resources in a network environment. Ac-
cess control has many forms and mechanisms in a
distributed environment, examples of which include
Activity-Centric Access Control (ACAC) (Gupta and
Sandhu, 2021), Extended Generalized Role-Based
Access Control (EGRBAC) (Ameer et al., 2020), etc.
Apart from these, Zhong et al. (Zhong et al., 2021)
propose a distributed scheme for access control based
on attribute-based encryption (ABE). In (Sikder et al.,
2022), the authors propose a multi-user and multi-
device-aware access control mechanism for shared
smart home environments. Dynamic RBAC for de-
centralized applications (dApps) is a crucial aspect of
a decentralized ecosystem. Chatterjee et al. (Chat-
terjee et al., 2020) present a framework for dynamic
RBAC for decentralized applications where dApp is
completely decoupled from the business applications.

The advancement of artificial intelligence and ma-
chine learning has greatly impacted the process of im-
plementing access control with a focus on develop-
ing intelligent techniques for policy generation and
administration. In ABAC systems, use of machine
learning for policy learning, evolution, and enforce-
ment enables adopting security mechanisms in dy-
namic environments as well as allowing adaptability.
Researchers have explored various machine learning
models for policy mining in access control systems.
Restricted Boltzmann Machines (RBMs) have been
employed for ABAC policy generation, as demon-
strated in (Mocanu et al., 2015), where the authors
propose an unsupervised learning approach to extract
meaningful access control rules. Similarly, Karimi
et al. (Karimi et al., 2022) introduce an automated
ABAC policy learning framework leveraging unsu-
pervised learning techniques to infer policies from ac-
cess logs. The PAMMELA framework developed by
Gumma et al. of (Gumma et al., 2022) employs super-
vised learning to deduce and augment ABAC rules.
Polisma, proposed by Jabal et al. (Jabal et al., 2020),
learns ABAC policies from access logs by using the
combination of statistics, data mining and machine
learning techniques. This work is extended by Jabal
et al. in (Abu Jabal et al., 2023) by introducing FLAP,
a collaborative policy learning approach designed for
distributed environments. FLAP enables organiza-
tions to share policy knowledge and adapt policies
based on insights derived from local logs, local poli-
cies, or hybrid learning techniques. In (Shan et al.,
2024), the authors propose a deep learning-based
method to generate ABAC policies from natural lan-
guage documents, addressing the challenges of man-
ual retrieval and analysis. The method uses the Chat
General Language Model (ChatGLM) to extract ac-
cess control-related statements from natural language
documents, and the Iterated Dilated-Convolutions-
Conditional Random Field (ID-CNN-CRF) model to
annotate these attributes. Nobi et al. (Nobi et al.,
2022b) propose Deep Learning Based Access Con-
trol (DLBAC). Reinforcement learning techniques, as
demonstrated by (Cao et al., 2021) provide a novel
way to address multi-user access control challenges
in dynamic environments. Additionally, (Nobi et al.,
2022a) explore machine learning-based access con-
trol methods that balance precision and scalability.
These methods emphasize the increasing tendency to
incorporate machine learning into access control sys-
tems to minimize administrative burden and improve
flexibility.

Though a number of attribute-based access con-
trol mechanisms have been proposed for distributed
systems, to the best of our knowledge, little effort
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has been made to develop an intelligent ABAC pol-
icy generation method for distributed systems. In this
work, we address the challenge of mining ABAC poli-
cies in distributed environments without requiring any
node of the distributed setup to disclose their individ-
ual access logs. We propose an intelligent, distributed
and privacy-preserving ABAC policy learning frame-
work by using federated learning.

3 PRELIMINARIES

In this section, we present the preliminary concepts
related to the ABAC model, distributed systems and
federated learning.

3.1 ABAC Model

The key components of the ABAC model (Hu et al.,
2013) are the following:

* Subjects (S): A set of subjects S where a subject
can be a human user or a system who/which re-
quests an access.

* Objects (0): A set of objects O where an object
refers to a system resource to which a subject re-
quests an access.

¢ Environmental Conditions (E): The environ-
ment is the broader context of each access re-
quest. A set of environmental conditions E where
each condition corresponds to a temporal, spatial
or some other context in which a resource access
occurs. Examples of such conditions are time, lo-
cation, etc.

o Attributes: Attributes are characteristics asso-
ciated with different entities in a system, such
as users, resources, actions, and environments.
These attributes can be both static and dynamic.
The access policy of an organization is based on
the attributes of the subject, object and environ-
ment involved in an access event. An attribute
assumes value(s) from a set of attribute values.
An attribute is said to be atomic/single valued if
it is assigned a single value for a specific entity. A
multi-valued attribute is assigned more than one
value for a specific entity. Attributes can be of the
following types.

— Subject Attributes (SA): A set SA of subject
attributes where each attribute defines a prop-
erty of the corresponding subject. Examples of
subject attributes include age, job role, team
membership, department, organization mem-
bership, management level, etc.
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— Object Attributes (OA): A set OA of object
attributes. Object attributes are the characteris-
tics of an object. For eg. For a file object, at-
tributes can be name, size, creation date, owner
and type.

— Environmental Attributes (EA): A set EA of
environmental attributes. All environmental at-
tributes depend on contextual factors such as
the time and location of the access attempt. An
environmental attribute can be time of job shift
and the possible values can be Morning Shift
and Evening Shift.

* Permissions: A set of permissions P that include
operations like read, write, update, etc.

* Policy: A set of rules R that constitute the pol-
icy. Each rule of R defines if a particular access
request involving certain subject, object and en-
vironmental attributes and the corresponding val-
ues is to be granted or denied. Rules can be of
two types - positive rules and negative rules. A
positive rule grants an access request and a nega-
tive rule denies an access request. An ABAC rule
can be of the form ({Department = CSE, Role =
Faculty, Course = DBMS}, {Type = Assignment,
Department = CSE, Course = DBMS}, evaluate).
This rule implies that a faculty of CSE department
and associated with the DBMS course can evalu-
ate the assignments of the same course offered by
the CSE department.

3.2 Distributed Systems

Distributed system is a group of connected systems
or computers that collaborate to deliver a service or
solve a problem cooperatively. The systems or com-
puters that are part of a distributed system are referred
to as nodes. The goal of these systems is to increase
performance by dividing processing responsibilities
among several nodes, frequently spread across vari-
ous physical locations and consequently optimizing
resource utilization and performing load balancing.
Moreover, distributed systems provide scalability, re-
liability and fault tolerance. Distributed Systems can
be of two types (Liu and Antonopoulos, 2010), (Ricci
and Carlini, 2012).

* Client-Server Systems: In such systems, multi-
ple client nodes are connected to a server node.
Each client sends a request for some service to the
server and the server provides the corresponding
service to the client. Usually, the clients commu-
nicate only with the server.

¢ Peer-to-peer Systems: These systems are decen-
tralized in nature. None of the nodes are desig-
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nated as a server or a client. Each node has equal
responsibility and can function both as a service
provider as well as a service requester.

In this work, we focus on client-server type dis-
tributed systems only. Distributed systems heavily
rely on network based communications via message
passing as well as data and resource sharing. These
pivotal elements of distributed systems are necessary
for their proper functioning, but they pose several se-
curity challenges by introducing various vulnerabili-
ties into these systems. Managing secure and autho-
rized access to data and resources in distributed en-
vironments is one such challenge which we have ad-
dressed in this work.

3.3 Federated Learning

Federated learning (McMahan et al., 2016) is a dis-
tributed approach to training machine learning mod-
els where the learning process occurs across multiple
participants/nodes/clients without requiring any client
to exchange or transmit any data. Each client (such as
a mobile device or a computer) trains a model locally
using only its own data. After the local model train-
ing is complete, each client shares only the model up-
dates with a server. The server aggregates the model
updates received from all the clients to create a global
model. The global model is then transmitted to the
clients. The clients again retrain the global model lo-
cally with their own data. This continues for a pre-
defined number of rounds after which the final global
model is obtained. Federated learning creates a model
by considering the data from all the clients while pre-
serving data privacy by eliminating the need for data
transfer, and utilizing distributed data sources effec-
tively. This is particularly useful in scenarios where
data availability is fragmented and sensitive, while
still allowing for collaborative learning and model im-
provement.

4 PROPOSED FRAMEWORK

We propose a distributed, learning-based policy min-
ing framework which will enable system adminis-
trators to formulate ABAC policies in an automated
manner. Our proposed framework will facilitate fast
policy generation and rapid decision making for ac-
cess requests in distributed systems. In this section,
we present the system architecture for our framework
and discuss the operation of our intelligent policy
learning method.

4.1 System Architecture

We consider a distributed system consisting of n client
nodes and a server node. Each client node commu-
nicates with the server node. However, the client
nodes do not communicate among themselves. A
client node is responsible for creating an ABAC pol-
icy based on its own individual access log. We re-
fer to each such policy as a local policy. Thus, each
client node acts as a local policy creator. The final,
consolidated ABAC policy is created by the server by
aggregating all the local policies. We refer to this fi-
nal policy as the global policy. Therefore, the server
acts as the global policy aggregator. In the rest of the
paper, we refer to each client node as a local policy
creator and the server node as the global policy ag-
gregator.

The same set of attributes is associated with all
the local policy creators. However, the set of val-
ues for each attribute may or may not be the same
across the n local policy creators. Suppose, A is
the set of all attributes (subject, object and environ-
mental) across all the local policy creators and A =
{attry,attry,... attry}. Let the set of values asso-
ciated with some attribute attr; (1 <i<k)be V =
{vi,v2,...,vp}. Now, let us consider two local policy
creators, LPC, and LPC, (1 < x,y < n). attr; will be
associated with both LPCy and LPC,. Let V; , and V; ,
denote the set of values for attr; associated with LPC,
and LPC, respectively. V;, CV and V;, C V. Also,
either of the following is possible - (i) V; ,NV;, = ¢,
or (ii) V;xNV;, # ¢. This implies that sets of values
for a particular attribute that is associated with differ-
ent local policy creators may or may not have some
common values. Our proposed framework is capable
of handling both the scenarios.

Figure 1 shows the overall architecture of the pro-
posed framework. In this figure, we have shown n
local policy creators. Each local policy creator is
equipped with the following.

e Access Log: Each local policy creator possesses
its own access log using which it creates the local
policy. In this work, we assume that the access log
of each local policy creator is correct and does not
contain any erroneous information (also termed as
noise). Moreover, the access logs of the different
local policy creators contain the same set of at-
tributes. However, the sets of attribute values may
be different.

* Local Policy Repository: Each local policy cre-
ator has a repository to store the locally generated
policy as well as the final global policy. A local
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Figure 1: System Architecture and Operation of the Proposed Framework.

policy creator may choose to store both the local
and the global policies in the repository or store
only the global policy once it is finally created.

Policy Decision Point: A policy decision point is
associated with each local policy creator. When a
subject requests to access an object, the request is
forwarded to the policy decision point. The policy
decision point evaluates the access request based
on the final global policy. The subject is granted
the access if it is permissible as per the global pol-
icy. Otherwise, the policy decision point denies
the access request. The following points are to be
noted in this context.

— For each access request, the requesting subject
and the requested object may be associated with
the same local policy creator or may be asso-
ciated with two distinct local policy creators.
Our proposed framework is capable of handling
both types of access requests.

— Each object is associated with exactly one local
policy creator. The same type of object may be
present with two or more local policy creators.
However, we consider these to be distinct and
different instances of the same object type.

— Access request for an object associated with a
local policy creator is forwarded to and evalu-
ated by the policy decision point of the local
policy creator possessing the object.

Policy Enforcement Point: After the policy deci-
sion point of a specific local policy creator has

taken a decision regarding an access request, the
policy enforcement point of that local policy cre-
ator makes sure that if the decision was to grant
the access, then the requesting subject is allowed
to access the requested object and if the decision
was to deny the access, then the subject is prohib-
ited from accessing the object.

4.2 Intelligent and Distributed ABAC
Policy Mining

Our proposed framework for intelligent and dis-
tributed ABAC policy mining operates in two phases.
We next discuss each of these phases in details.

Phase 1: The first phase is the Local Policy Creation.
In this phase, each local policy creator generates an
ABAC policy using a supervised machine learning al-
gorithm. Each local policy is derived from the access
log available with the corresponding local policy cre-
ator. We assume that such access logs are available
with each local policy creator and the logs have been
created as a result of past accesses. Each access log
contains a set of access requests. An access request
contains (i) the attributes and the corresponding val-
ues associated with the requesting subject, (ii) the at-
tributes and the corresponding values associated with
the requested object, (iii) the environmental attributes
and their corresponding values, and (iv) the access de-
cision, like grant or deny that was given for this access
request in the past. Thus, each access log can be con-
sidered as a labeled dataset. All the local policy cre-
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ators train a supervised machine learning model using
their access logs. The same supervised learning algo-
rithm is used by all the local policy creators. Phase 1
terminates when each of the local policy creators fin-
ish creating the local policies.

Phase 2: In phase 2, each local policy creator sends
the locally generated policy to the global policy ag-
gregator. The global policy aggregator combines the
individual local policies to create the global policy.
Once the global policy is created, the global pol-
icy aggregator shares it with all the local policy cre-
ators. This global policy is a trained machine learn-
ing model. Now, each local policy creator retrains
this model on its own local access log. Once the re-
training is complete, each local policy creator shares
the updated policy (i.e., the updated machine learn-
ing model) with the global policy aggregator. This
sequence of updating the policy locally by each local
policy creator and the global policy aggregation con-
tinues for a pre-defined number of rounds after which
the final, consolidated global policy is obtained. This
final global policy is shared with all the local policy
creators.

It is to be noted here that none of the local policy
creators share their access logs with the global policy
aggregator. Only the local policies are shared with
the aggregator in the form of model updates. This
becomes possible since our intelligent policy genera-
tion framework uses federated learning to derive the
global policy. Consequently, our technique ensures
the privacy of the individual local policy creators be-
cause the access patterns of the subjects are never
shared with the aggregator. Moreover, since the local
policies (initial or updated) are shared with the global
policy aggregator as model updates, it is not possible
for the aggregator to infer anything about the access
patterns of the subjects from the local policies.

Once the global ABAC policy is generated, it is
shared with the local policy creators. Additionally,
the global policy is also stored with the global pol-
icy aggregator. This global policy is in the form of
a trained machine learning model. Thus, the trained
model acts as the policy decision point at each local
policy creator. Consequently, the policy lookup time
and the time required to evaluate access requests are
substantially reduced when compared with heuristic
methods, while automating the entire process. More-
over, the use of heuristic methods of distributed pol-
icy generation would have required either sharing the
access logs with the aggregator or sharing the indi-
vidual local policies in a human-readable format with
the aggregator. Either of the scenarios would not have
preserved the privacy of the access patterns of the sub-

jects associated with the local policy creators. Our
proposed framework eliminates the need of sharing
the access logs or the local policies in human-readable
format, thereby ensuring privacy of the subjects.

One point is to be noted here that the local policy
creators do not share any model updates among them-
selves. Once the trained model is deployed as the pol-
icy decision point, the access requests are forwarded
to it at each local policy creator. Such an access re-
quest can originate from the same local policy creator
with which the requested object is associated or with
a different local policy creator. Our proposed policy
learning framework is capable of handling both types
of access requests even if the trained model encoun-
ters some unseen attribute values in these requests.
This is because the final ABAC policy is generated
in a manner that it considers the access patterns of
all the local policy creators and hence incorporates all
values across all the attributes.

S PERFORMANCE EVALUATION

In this section, we first present a description of the
datasets that we have used to evaluate the perfor-
mance of our proposed framework. We also describe
our experimental setup and present the experimental
results.

5.1 Dataset Description

For evaluating the performance of our intelligent and
distributed policy formulation framework, we have
used the three access control datasets presented in
(Gumma et al., 2022). These datasets are named as
University Dataset 1, University Dataset 2 and Com-
pany Dataset. We have considered each of these
datasets as access logs. The sizes of the Univer-
sity Dataset 1 and the Company Dataset were not
sufficient to be used in a distributed setup. Hence,
we have augmented these two datasets. We have
also augmented the University Dataset 2. The aug-
mentation is manifested in the form of more tu-
ples/access requests being added to the datasets. The
datasets have been augmented using the following
strategies - (i) introducing new values for some at-
tributes, and (ii) adding more access requests to
the dataset by inferring all possible valid combi-
nations of attribute values. The combinations that
we have considered in (ii) have been done for both
subject and object attributes. For eg., If we have
two subject attributes, Designation having a possi-
ble value as Accountant, and Department having
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Table 1: Details of Datasets used in Experiments.

[ Dataset | #Access Requests | Attribute-Name [ Attribute-Type [ # Attribute Values |

Designation Subject 3

Department Subject 5

Degree Subject 3

L Year Subject 4

University Dataset 1 8;;)13_ 1463 Resource-Type Oije o 7

;N _ 63 80)’ Department Object 5

Degree Object 3

Year Object 4

Designation Subject 5

Post Subject 6

Course Subject 120

Department Subject 5

Degree Subject 2

University Dataset 2 | 199835 Year Subject 4

(#P = 5858, Resource-Type Object 8

#N = 193977) Department Object 5

Course Object 120

Degree Object 2

Year Object 4

Designation Subject 28

Project-Name Subject 10

Department Subject 8

Company Dataset 41037 Resource-Type Oije ot 25
(#P = 3705, . !

N = 37332) Project-Name Obj.ect 10

Department Object 7

two possible values as Finance and Technical, then
(Designation = Accountant, Department = Finance)
is a valid combination of subject attribute val-
ues, but (Designation = Accountant,Department =
Technical) is not. It can be noted here that we have
ensured that the datasets do not contain any duplicate
tuples even after augmenttation. The details of the
three datasets are presented in Table 1 in terms of the
number of access requests (# Access Requests), the
names of the different attributes (Attribute-Name), the
type of each attribute (Attribute-Type), i.e, whether
the attribute is a subject attribute or an object attribute
and the number of values associated with each at-
tribute (# Attribute Values). The second column (#
Access Requests) also shows the number of positive
access requests, i.e., the access requests for which the
decision is grant (denoted by #P in the table column)
and the number of negative access requests, i.e., the
access requests for which the decision is deny (de-
noted by #N in the table column) for each dataset.
It can be observed from the table that the number of
negative access requests is much higher than the num-
ber of positive access requests in each dataset. This
reflects a real-world scenario where out of the large
number of access requests generated, only a handful
are permissible and consequently, granted based on a
pre-defined policy.
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5.2 Experimental Setup

For our experiments, we have considered a setup con-
sisting of four local policy creators and one global
policy aggregator. The attributes are treated as fea-
tures in our federated learning based setup. We use
categorical data to create the feature vector to be given
as input to the model. For each set of values associ-
ated with an attribute, the categorical encoding begins
from 1 and keeps increasing monotonically thereafter.
Each dataset is first split into the train set and test set
with train set including 80% of the dataset tuples and
the test set containing 20% of the tuples. The train set
is used for policy mining and the test set is used to
evaluate the performance of our framework. The train
set is further partitioned into four segments. Each of
these segments is assigned to a local policy creator
node. We have experimented with three strategies for
partitioning the train dataset. These are discussed are
as follows.

* Random Partitioning (RNP): The train dataset is
randomly partitioned into four parts and each part
is assigned to one local policy creator. In this
strategy, the dataset tuples (access requests) are
randomly distributed across the clients. We do not
attempt to explicitly keep track that how the val-
ues of the various attributes have been partitioned
across the different local polciy creators.
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* Perception Based Partitioning (PBP): We have
carefully inspected each dataset and analytically
inferred the attribute based on which the train data
can be partitioned. The selection of this attribute
is done across all the subject and object attributes.
This strategy is purely based on human percep-
tion. For example, a system administrator can de-
cide that the best way to partition the dataset is
based on the subject attribute Department. Once
the attribute is selected, the tuples present in the
train set are grouped based on the values of this
attribute. Thus, if attr; is selected and it has p val-
ues, then p partitions of the train data are created.
After this, each of the p parts is equally divided
among the n (n = 4 in our experiments) local pol-
icy creators.

* Scoring Based Partitioning (SBP): In this strat-
egy, we use the SelectKBest feature selection
technique available in the Scikit-learn library for
Python. This technique evaluates each feature of
the dataset using a scoring function and returns
the top k features based on their scores. Once
scoring is done, we select the best attribute/feature
for each of the access control datasets. After this,
a partitioning technique similar to the one fol-
lowed in PBP is used to partition the train data
across the local policy creators.

In a real-world setup, there will be no need to ex-
plicitly partition any dataset. Each local policy cre-
ator will be equipped with its own access request log.
However, the nature of these local/individual datasets
will vary from one distributed system to another in
terms of the distribution of the attribute values. All
the local policy creators will be aware of all the values
corresponding to each attribute. However, each local
policy creator’s access log may or may not contain ac-
cess request tuples for all the values of a particular at-
tribute. Thus, the attribute values may be randomly or
evenly distributed across the various local policy cre-
ators. To analyze the effect of the different distribu-
tions of the attribute values across the local nodes on
the performance of our proposed framework, we have
considered RNP, PBP and SBP. RNP corresponds to
the random distribution of attribute values whereas
PBP and SBP correspond to even distribution of at-
tribute values. To study the effects of even distribu-
tion of attribute values, we have considered two types
of partitioning strategies- one that is human percep-
tion driven and the other one that is model driven.

For University Dataset 1, 6674 access requests
have been used for policy generation and 1669 ac-
cess requests have been used for inferencing access
decisions. In case of University Dataset 2, we have

Table 2: Details of Training Data Partitioning for the three
Partitioning Strategies.

PS University Dataset 1
LPC, LPC, LPCs LPCy
1668 1668 1668 1670
RNP (#P=319, (#P=285, (#P=304, (#P=271,
#N=1349) #N=1383) #N=1364) (#N=1393)
1665 1665 1665 1679
PBP (#P=301, (#P=302, (#P=291, (#P=291,
#N=1364) #N=1363) #N=1374) #N=1388)
1667 1667 1667 1673
SBP (#P=294, (#P=307, (#P=289, (#P=295,
#N=1373) #N=1360) #N=1378) #N=1378)
PS University Dataset 2
LPC, LPC, LPC; LPC,
39967 39967 39967 39967
RNP | (#P=1160, (#P=1189, (#P=1203, (#P=1147,
#N=38807) | #N=38778) | #N=38764) | (#N=38820)
39964 39964 39964 39976
PBP (#P=1168, (#P=1163, (#P=1156, (#P=1204,
#N=38796) | #N=38801) | #N=38808) #N=38772)
39962 39962 39962 39982
SBP (#P=1193, (#P=1121, (#P=1199, (#P=1178,
#N=38769) | #N=38841) | #N=38763) #N=38804)
PS Company Dataset
LPC, LPC, LPC; LPCy
8207 8207 8207 8208
RNP (#P=704, #P=T771, (#P=749, (#P=715,
#N=7503) #N=7436) #N=7458) #N=7493)
8204 8204 8204 8217
PBP (#P=739, (#P=709, (#P=734, #P=757,
#N=7465) #N=7495) #N=7470) #N=7460)
8195 8195 8195 8244
SBP (#P=758, (#P=730, (#P=702, (#P=749,
#N=7437) #N=7465) #N=7493) #N=7495)

used 159868 tuples for policy creation and 39967 tu-
ples have been used for inferencing. For the Company
Dataset, policy creation has been carried using 32829
tuples and 8208 access requests are used for access
decision inferencing. It is to be noted in this regard
that policy creation constitutes the training phase of
the federated learning model and access decision in-
ferencing corresponds to the testing phase. Table 2
shows the details of partitioning each of the datasets
across the four local policy creators (denoted as LPC;
such that i = 1, 2, 3, 4 in the table) for each par-
titioning strategy. The table depicts the number of
training tuples used by each local policy creator for
each dataset partitioning technique. The column la-
beled as PS represents the specific partitioning strat-
egy. It can be observed from the table that the three
partitioning methods tend to partition the train data
almost similarly across the different local policy cre-
ators. The number of testing tuples is not affected by
the partitioning method. For each local policy cre-
ator, the table further shows the number of positive
access requests (#P) and the number of negative ac-
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cess requests (#N) in both the train and test sets. For
University Dataset 1, the testing data contains 278
positive access requests and 1391 negative access re-
quests. For University Dataset 2, the test data contains
1159 positive access requests and 38808 negative ac-
cess requests. The test data of Company Dataset con-
tains 766 positive access requests and 7442 negative
access requests.

We have implemented our proposed approach us-
ing Pytorch 2.5.1. We have used Artificial Neural
Network (ANN) as the supervised machine learning
model running at each local policy creator. We have
trained our model using a batch size of 32, hidden
layer size of 30, a learning rate of 0.001, Adam opti-
mizer and Binary Cross-Entropy Loss. For local pol-
icy creation, the model runs for 10 epochs and the
overall global policy creation takes place across 50
federation rounds. The global policy creator uses Fe-
dAvg to aggregate the local policies. FedAvg creates
the global policy by averaging the individual model
weights corresponding to the local policies. The ex-
perimentation was done on a desktop computer hav-
ing 2.10 GHz, 20 cores, Intel core i7 processor, 16 GB
RAM and Ubuntu 22.04 as the operating system.

5.3 Results

We evaluate the performance of our proposed frame-
work with respect to its ability to provide correct de-
cision for the incoming access requests in terms of the
following metrics - Accuracy, Precision, Recall, aF1-
score. We discuss these metrics as follows.

* True Positive Access Requests (TPAR): These are
the positive access requests (ones which should be
permitted) for which our framework granted the
access, thereby indicating accurate classification.

* True Negative Access Requests (TNAR): These are
the negative access requests (ones which should
be denied) for which our framework denied the
access, also representing accurate classification.

* False Positive Access Requests (FPAR): These are
the negative access requests for which our method
incorrectly granted the access, leading to a secu-
rity breach.

* False Negative Access Requests (FNAR): These
are the positive access requests which were denied
by our method, making the system overly restric-
tive.

Accuracy denotes the percentage of the access re-
quests (both positive and negative) for which correct
decisions are taken. Precision measures the percent-
age of the granted access requests that are actually
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correct. Recall is the percentage of the positive ac-
cess requests that are correctly classified. Fl-score is
the harmonic mean of precision and recall. These four
metrics are calculated as follows:

. o TPAR+TNAR
Accuracy = TpiRTFPARITNARTFNAR®
ion — —TPAR
Precision = 7530 rpag»
_ __TPAR _
Recall = 555 rrar-
F1 — score — 2xPrecisionRecall

Precision+Recall *

Table 3 shows the performance of our proposed
framework in terms of the four evaluation metrics
across the three train data partitioning strategies for
the three datasets. In this table, Acc, Pr, Rec and
F1 — s correspond to accuracy, precision, recall and
F1-score respectively. For University Dataset 1, SBP
gives the best performance for all the four metrics.
In case of University Dataset 2, PBP and SBP per-
form more or less similarly, with both outperform-
ing RNP. For the Company Dataset, RNP gives the
best results. However, the performance of the three
partitioning methods is within less than 2% margin
of each other. The results show that our proposed
framework is capable of accurately classifying the ac-
cess requests by achieving an accuracy of more than
90% for all the datasets. It can also be seen that
the precision is close to (or sometimes higher than)
95% for the University Datasets and is more than 85%
for the Company Dataset. This implies that our pol-
icy learning framework can effectively prevent secu-
rity breaches. Our proposed strategy gives somewhat
lower performance for the Company Dataset in com-
parison to the two University Datasets mostly because
of the large number of values present for the different
attributes. The small percentage of the access requests
for which our framework cannot prevent the security
breaches can be manually inspected and decided by
the system administrators associated with the local
policy creator nodes. The recall values for the three
datasets are lower than the corresponding precision
values, thereby implying that, in certain cases, our ap-
proach may be somewhat over-restrictive. Overall, it
can be concluded that our method can correctly eval-
uate access requests in an automated manner while
requiring a very small degree of manual intervention
to prevent certain security breaches.

Table 4 shows the total model training time over
50 federated rounds and the average access request
inferencing time for the test data for each of the par-
titioning strategies for the three datasets in millisec-
onds. The training time corresponds to the time re-
quired to create the final ABAC policy and the aver-
age access inference time denotes the time required,
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Table 3: Performance Evaluation of Our Proposed Framework.

PS University Dataset 1 University Dataset 2 Company Dataset
Acc Pr Rec Fl-s Acc Pr Rec Fl-s Acc Pr Rec Fl-s
RNP| 97.51 | 95.59 | 92.84 | 94.16 | 99.62 | 94.07 | 93.30 | 93.38 | 91.26 | 85.45 | 83.65 | 84.38
PBP | 97.11 | 94.68 | 91.81 | 93.19 | 99.82 | 96.22 | 97.92 | 97.03 | 90.25 | 84.03 | 81.22 | 82.47
SBP | 97.66 | 96.00 | 93.12 | 94.50 | 99.80 | 95.60 | 98.11 | 96.76 | 90.08 | 83.75 | 81.10 | 82.16
Table 4: Total Training and Average Access Inference Time (in milliseconds) of Our Proposed Framework.
PS University Dataset 1 University Dataset 2 Company Dataset
Train Time | Inference Time | Train Time | Inference Time | Inference Time | Inference Time
RNP 12590 0.026 343930 0.028 59879 0.025
PBP 12570 0.025 343000 0.024 61079 0.026
SBP 12580 0.026 342580 0.026 59079 0.028

on an average, to evaluate and provide decision for a
single access request. The results show that our pro-
posed framework derives the ABAC policy very less
time. This implies that in a real-world scenario, our
framework will formulate the policy in a reasonably
less amount of time thereby ensuring less amount of
system downtime. However, in a real-world setup, the
policy creation time will be higher due to the latency
of the communications occurring between the local
policy creator and the global policy aggregator.

The overall policy creation time is governed by
the size of the dataset. For this reason, the policy gen-
eration time for University Dataset 2 is the highest
followed by the Company Dataset and the University
Dataset 1 having the lowest policy formulation time.
Additionally, the time required to grant or deny an
access request is quite low. Thus, our model will pro-
vide extremely fast decisions for incoming access re-
quests even in a distributed setup. It can be seen from
the table that the manner of distribution of the access
tuples across the different local policy creators does
not affect the model execution time. Thus, the over-
all performance results show that our proposed intel-
ligent policy formulation framework is capable of ac-
curately making access decisions in a short span of

time in a distributed environment.

6 CONCLUSIONS

In this paper, we have proposed a distributed ABAC
policy generation framework that leverages federated
learning to intelligently create policies. Our frame-
work operates in two phases. In the first phase, indi-
vidual policies are created by the local policy creators
using their own access logs. In the second phase,
the local policies are aggregated by the global pol-
icy aggregator after which the global policy is shared
with the local policy creators who in turn finetune the

policy further. The second phase executes for a pre-
defined number of federated rounds. Experimental re-
sults show that our proposed framework provides a
high degree of performance in terms of providing de-
cision regarding access requests in a very short time
duration. Moreover, the policy creation time is quite
less and can be suitably deployed in a real-world sce-
nario.

In future, we intend to use tree-based classifiers
to perform policy mining for distributed systems in
a privacy-preserving manner. We also plan to use
deep learning and reinforcement learning to create
ABAC policies for distributed environments. The ob-
jective will be to design and develop an accurate and
lightweight policy decision engine that can be de-
ployed even in resource-constrained distributed sys-
tems. It will also be interesting to analyze to what ex-
tent intelligent policy mining techniques are resilient
to the presence of noise in the input access logs. An-
other future direction of research that we plan to un-
dertake is to analyze the extent to which communi-
cation latencies in a distributed setup affects the time
required to make access control decisions.
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