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Abstract: Federated Learning (FL) has emerged as a powerful approach for training machine learning (ML) models
on decentralized healthcare data while maintaining patient privacy. However, selecting the most suitable FL
model remains a challenge due to inherent trade-offs between accuracy and privacy. This study presents
a comparative analysis of multiple FL optimization strategies applied to two real-world tabular health
datasets. We evaluate the performance of FL models in terms of predictive accuracy, and resilience to
privacy threats.Our findings provide insights into the practical deployment of FL in healthcare, highlighting
key trade-offs and offering recommendations for selecting suitable FL models based on specific privacy and
accuracy requirements.

1 INTRODUCTION

The increasing digitization of healthcare data has
opened new opportunities for developing machine
learning (ML) models that improve diagnostics,
treatment planning, and patient care. However,
the sensitive nature of medical records, coupled
with stringent privacy regulations such as the
General Data Protection Regulation (GDPR) and the
Health Insurance Portability and Accountability Act
(HIPAA), restricts the direct sharing of health data
(Gaballah et al., 2024). Traditional centralized ML
approaches, where data from multiple sources is
aggregated into a single repository for model training,
pose significant privacy risks (Sheikhalishahi et al.,
2022). These concerns have fueled interest in
Federated Learning (FL) as a privacy-preserving
alternative (Nguyen et al., 2021), (Tasbaz et al.,
2024). FL enables multiple institutions or devices
to collaboratively train models without exposing raw
data, thereby maintaining data confidentiality while
leveraging distributed learning.

Despite its promise, FL introduces several
challenges, particularly in healthcare applications.
One of the primary concerns is the trade-off
between privacy and accuracy. Privacy-enhancing
techniques, such as differential privacy (DP) and
secure aggregation (SA) mitigate risks associated
with data exposure but often come at the cost

of reduced model performance. Additionally,
the decentralized and non-independently and
non-identically distributed (non-IID) nature of
healthcare data creates significant obstacles related
to model convergence, communication efficiency,
and susceptibility to adversarial threats such as
model poisoning attacks (Torki et al., 2025).
Addressing these challenges is crucial for enabling
the widespread adoption of FL in medical AI.

While previous studies have explored FL’s
applicability in healthcare (Ouadrhiri and Abdelhadi,
2022)(Zhang et al., 2023), existing works have
primarily focused on either privacy-preserving
mechanisms or performance optimization in
isolation (Coelho et al., 2023)(Hernandez et al.,
2022). To the best of our knowledge, there
is no comprehensive comparative analysis that
systematically evaluates multiple FL models across
different privacy-accuracy trade-offs in the context
of healthcare using tabular datasets. This study
fills that gap by empirically assessing various FL
optimization strategies on real-world health tabular
datasets, providing a multi-faceted evaluation of their
performance focusing on three key aspects:

• Model accuracy: Assessing the generalization
capability of each FL model to unseen data in a
decentralized healthcare setting.

• Privacy preservation: Evaluating the effectiveness
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of different privacy-enhancing mechanisms in
safeguarding patient data and resilience to attacks.

• Trade-off: Analyzing how different FL models
balance predictive performance with privacy
protection, offering insights into the inherent
compromises in federated healthcare applications.

By systematically analyzing these factors, this
paper provides empirical evidence on the strengths
and limitations of various FL models based on
healthcare-specific requirements.

2 PRELIMINARIES

Federated Learning (FL) involves training a global
model across multiple decentralized clients without
sharing raw data. Various FL optimization algorithms
have been proposed to enhance convergence speed,
robustness, and privacy. Below are the definitions of
the FL models in this study summarized in Table 1.

2.1 Federated Learning Models

FedAvg (Federated Averaging): FedAvg,
introduced by McMahan et al. (2016), aggregates
local model updates by computing a weighted
average of local model parameters. Given K clients,
each with a dataset partition Pk of size nk, the global
objective is formulated as:

min
w∈Rd

f (w) =
K

∑
k=1

nk

n
Fk(w), (1)

where w represents the model parameters, f (w) is
the loss function of the global model, and Fk(w) =
1
nk

∑i∈Pk
fi(w) is the local loss function for client k.

The total number of data samples across all clients is
given by n = ∑

K
k=1 nk. Each client trains a local model

and sends the updated parameters back to the server,
which performs averaging to update the global model.
FedOpt (Federated Optimization) (Reddi et al.,
2020): FedOpt extends FedAvg by allowing the
use of adaptive optimizers like Adam, Yogi, and
Adagrad at the server level. This flexibility helps
improve convergence and performance, especially
with non-IID data. Unlike FedAvg, which uses simple
averaging, FedOpt enables more update strategies that
adjust learning rates based on gradient history or
gradient magnitude:

∆w(t) =
K

∑
k=1

nk

N
(w(t)

k −w(t)), (2)

w(t+1) = w(t)−ηG(∆w(t)), (3)

where G(·) represents an adaptive optimization
function such as Adam or Adagrad. It is effective
in scenarios with noisy updates or uneven data
distributions.
FedAdagrad (Duchi et al., 2011): An adaptation of
FedAvg that incorporates the Adagrad optimization
technique to adjust learning rates based on the
accumulation of past squared gradients. In
FedAdagrad, local updates are computed similarly to
FedAvg, but each parameter’s learning rate is adjusted
dynamically during the training process, ensuring
that rare features are updated more aggressively
while frequently updated parameters are adjusted
more cautiously. This makes it effective in handling
heterogeneous or imbalanced data distributions in FL.

wt+1 = wt − η√
Gt + ε

·gt , (4)

where Gt = ∑
t
τ=1(g

τ)2 accumulates past squared
gradients, and ε prevents division by zero.
FedAdam (Kingma and Ba, 2017): FedAdam is
a variant of FedAvg that incorporates the Adam
optimizer, which adapts learning rates for each
parameter based on both first-order and second-order
moments of the gradient. In traditional Adam, the
first moment estimate tracks the average gradient
(momentum), while the second moment tracks the
uncentered variance (squared gradient). It provides
better convergence by taking into account the
gradient’s history, allowing for faster and more robust
convergence, especially with non-IID data:

mt+1 = β1mt +(1−β1)gt , (5)

vt+1 = β2vt +(1−β2)(gt)2, (6)

m̂t+1 =
mt+1

1−β
t+1
1

, v̂t+1 =
vt+1

1−β
t+1
2

, (7)

wt+1 = wt − η√
v̂t+1 + ε

m̂t+1. (8)

FedYogi (Zaheer et al., 2018): Similar to FedAdam,
FedYogi also adapts learning rates based on first-order
(momentum) and second-order (variance) gradient
estimates, but with a key difference in how updates
are performed. In Adam, large gradients can lead
to aggressive updates, which may cause instability,
especially in FL environments with non-IID data.
FedYogi mitigates this by using a Yogi-style update
rule, which reduces the risk of large, destabilizing
updates when gradients are large. Specifically,
FedYogi maintains more conservative updates by
modifying how the second moment is updated,
ensuring stability across varying gradient scales for
noisy or highly heterogeneous data.
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FedAvgM (FedAvg with Momentum) (Hsu et al.,
2019): An extension of FedAvg that incorporates
momentum into the update rule, inspired by the
traditional stochastic gradient descent (SGD) with
momentum. In FedAvgM, the server maintains a
velocity term that accumulates the gradients over
time, allowing it to smooth out fluctuations in the
updates. This is particularly useful in FL, where local
client updates may be noisy or vary due to non-IID
data. By using momentum, FedAvgM accelerates
convergence by moving faster in directions with
consistent gradients and damping oscillations in
directions with conflicting updates. This helps reduce
the number of communication rounds needed for the
global model to converge.
FedMedian (Yin et al., 2018): A robust version
of FedAvg that replaces the average of local model
updates with the median of updates. In FL, client
updates may contain outliers or even be malicious
(in the case of adversarial clients). FedMedian
mitigates this by taking the element-wise median
of the local model updates instead of the average,
which reduces the influence of extreme values. This
provides robustness against outlier updates, making
FedMedian well-suited for environments where some
clients may provide noisy or untrustworthy updates.
FedProx (Sahu et al., 2018): FedProx extends
FedAvg by introducing a proximal term in the local
optimization objective. In FL, client devices may
have differing datasets, leading to diversity in local
updates. This can destabilize the training process,
particularly when client models diverge significantly
from the global model. FedProx stabilizes training by
adding a proximal term that penalizes large deviations
between the client’s local model and the global model,
effectively regularizing the local updates:

Fprox
k (w) = Fk(w)+

µ
2
∥w−wt∥2, (9)

where µ is the regularization parameter that controls
the strength of the penalty. By tuning µ, FedProx
can handle client heterogeneity more effectively,
ensuring that local updates do not diverge too far
from the global model, which improves convergence
in non-IID settings.
FedTrimmedAvg (Yin et al., 2018): Similar to
FedMedian, this method enhances robustness by
performing a trimmed mean of the local updates,
excluding extreme values before averaging. In
FedTrimmedAvg, a portion of the smallest and largest
values of the client updates are discarded, and the
remaining updates are averaged. This is useful
in situations where outlier updates can disrupt the
training process, as it ensures that adversarial or noisy

Table 1: FL models summary.

Algorithm Key Feature Strength

FedAvg Averaging local updates Simple and efficient
FedOpt Adaptive optimizers Better convergence
FedAdagrad Learning rate adjustment Handles sparse data
FedAdam Momentum + adaptive rates Fast convergence
FedYogi Controlled variance More stable updates
FedAvgM Momentum-based averaging Smoother updates
FedMedian Median aggregation Robust to outliers
FedProx Proximal term Handles client heterogeneity
FedTrimmedAvg Trimmed mean aggregation Adversarial robustness

client contributions are removed from the aggregation
process, resulting in a more stable global model.

3 METHODOLOGY

To evaluate the performance of different FL
approaches in a healthcare setting, we experiment
with multiple FL optimization methods: FedAdagrad,
FedAdam, FedYogi, FedAvg, FedOpt, FedAvgM,
FedMedian, FedProx, and FedTrimmedAvg. These
models vary in their optimization strategies,
ranging from adaptive gradient-based methods
(FedAdagrad, FedAdam, FedYogi) to classical
aggregation techniques (FedAvg, FedAvgM) and
robust aggregation methods designed to mitigate the
impact of noisy or adversarial updates (FedMedian,
FedTrimmedAvg). Additionally, FedProx introduces
a regularization term to improve convergence in
heterogeneous data settings, while FedOpt provides a
generalized optimization framework for FL.

We conduct experiments on two tabular
health datasets, where features include patient
demographics, medical history, and clinical
outcomes. To simulate realistic FL scenarios,
data is distributed non-IID among agents, reflecting
variations in patient populations across institutions.
We evaluate the models under three different
settings: 5, 10, and 20 federated agents, representing
increasing levels of decentralization and data
fragmentation. To assess the effectiveness of each
FL model, we consider both accuracy and privacy
trade-offs (Sheikhalishahi and Martinelli, 2018).
Accuracy Metric: We use the F1-score, which
balances precision and recall, making it well-suited
for imbalanced medical datasets where false positives
and false negatives have significant implications.
Privacy Metric: We evaluate membership inference
attack (MIA) vulnerability, which quantifies how well
an adversary can determine whether a given sample
was part of the training set. A higher MI success rate
indicates a greater privacy risk.
A=

∣∣Pr[M̂ = 1 | M = 1]−Pr[M̂ = 1 | M = 0]
∣∣ (10)

where M = 1 means the sample was in the training
set, and M = 0 means it was not. M̂ is the attacker’s
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(a) Diabetes Health Dataset

(b) Covid19 Dataset

Figure 1: Accuracy (F1 score) results on Diabetes and
Covid19 datasets when data is distributed among 5, 10, and
20 parties.

(a) Diabetes Health Dataset

(b) Covid19 Dataset

Figure 2: Privacy (MIA) results on Diabetes and Covid19
datasets when data is distributed among 5, 10, and 20
parties.

guess (1 for member, 0 for non-member). The
probabilities represent the attack model’s confidence
in distinguishing members from non-members.

Each FL model is trained under the different
agent configurations (5, 10, and 20 agents denoted
as D5, D10, and D20), ensuring consistent
hyperparameter settings across experiments. The
evaluation framework measures the trade-off between
F1-score and privacy leakage for each optimization
method, highlighting the impact of FL aggregation
strategies on both predictive performance and patient
data protection.

4 EXPERIMENTAL RESULTS

In this section, we present the datasets used in this
study, and the experimental results including the
accuracy, privacy, and trade-off results (codes here1).

Two well-known tabular medical related datasets
have been used in this study: 1) Diabetes Health
Indicators dataset2: The first dataset is the Diabetes
Health Indicators dataset. This dataset contains
253680 patient records of 21 input variables, and a
binary output label. These 21 input variables contain
14 binary variables, and 7 numerical variables. 2)
COVID-19 Dataset3: The second dataset is the
COVID-19 dataset, which contains 263007 patient
records, each containing 18 binary variables, 5
numerical variables and a binary output variable.

4.1 Accuracy Results

Figure 1 presents the F1-score comparison for the
Diabetes Health Indicators and COVID-19 datasets,
revealing distinct performance patterns across FL
models. Models perform significantly better on the
COVID-19 dataset, maintaining higher and more
stable F1-scores across D5, D10, and D20, likely due
to more uniform data distributions across federated
clients, making it less susceptible to performance
degradation as decentralization increases. In
contrast, the Diabetes dataset experiences a sharp
accuracy drop at D20, particularly for Avg and
TrimmedAvg, indicating greater learning challenges
from non-IID distributions. The best-performing
models vary by dataset. For Diabetes, Median,
Adagrad, and Yogi achieve the highest F1-scores at
lower decentralization levels, while Prox struggles,
suggesting its regularization is less effective in this
setting. For COVID-19, Prox, Median, and Yogi
consistently perform well, with Prox maintaining an
F1-score near 0.97, benefiting from its stabilization
technique. Therefore, Median aggregation proves
robust across both datasets, while adaptive optimizers
(Adagrad, Adam, Yogi) show dataset-dependent
variations. Prox and Yogi excel in COVID-19, while
Adagrad is better suited for Diabetes, emphasizing
the need for dataset-specific FL model selection in
healthcare applications.

1https://github.com/Anja-Hobby/
evalFLonTabularDatasets

2https://www.kaggle.com/datasets/alexteboul/
diabetes-health-indicators-dataset

3https://github.com/marianarf/covid19 mexico data
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(a) Diabetes Health Dataset

(b) Covid19 Dataset

Figure 3: Trade-off (privacy-accuracy) results on Diabetes
and Covid19 datasets when data is distributed among 5, 10,
and 20 parties.

4.2 Privacy Results

Figure 2 compares privacy scores for the Diabetes and
COVID-19 datasets across different decentralization
levels (D5, D10, D20). FL models exhibit higher
privacy risks in the Diabetes dataset, where most
models have elevated privacy scores, indicating
greater vulnerability to privacy leakage. In contrast,
the COVID-19 dataset shows lower privacy scores,
suggesting stronger resistance to privacy attacks,
likely due to its data distribution characteristics.
For Diabetes, TrimmedAvg (0.9799 at D10) and
Avg (0.8774 at D5) are the most privacy-vulnerable,
whereas Median (0.7389 at D5, 0.7688 at D20) and
Prox (0.7405 at D10, 0.7441 at D20) offer better
privacy protection, though Prox trades off some
accuracy. In the COVID-19 dataset, Prox and Median
achieve the lowest privacy scores ( 0.5–0.64), while
Avg and Adam ( 0.91) remain more privacy-exposed.
TrimmedAvg shows the largest fluctuations in privacy
risks, particularly at D10. Overall, FL models face
greater privacy risks in the Diabetes dataset, while
Prox and Median consistently offer stronger privacy
protection. These findings emphasize the importance
of selecting FL models that balance privacy and
accuracy based on dataset characteristics.

4.3 Trade-off Results

The trade-off score results for the Diabetes and
COVID-19 datasets, shown in Figure 3, highlighting
how FL models balance accuracy and privacy. For the
Diabetes dataset, trade-off scores generally decline

Table 2: Guidelines for selecting FL models in healthcare.

Objective Recommended Models

High Model Accuracy FedAdam, FedYogi

Strong Privacy Preservation FedProx, FedMedian

Privacy-Accuracy Trade-off FedAvg + DP, FedAdagrad

Handling Non-IID Data FedProx, FedYogi

Communication Efficiency FedAvg, FedMedian

Adversarial Robustness FedMedian, FedYogi

as the number of nodes increases (Avg: 0.7345
at D5 to 0.5926 at D20), consistent with previous
findings. However, Yogi (0.8864 → 0.8898) and
Adagrad (0.8816 → 0.8818) maintain stable scores,
indicating effective balance. Median and Adam
also perform well, with scores above 0.83. In the
COVID-19 dataset, Adam excels (0.8618 → 0.9071),
while Adagrad and Yogi perform well initially, but
Yogi’s score drops at D20 (0.8088). TrimmedAvg
and Prox, which struggled with Diabetes, improve
here, with Prox peaking at 0.8217 at D10. However,
Median’s score declines (0.8059 → 0.7536), making
it less favorable for COVID-19. Hence, Adam,
Adagrad, and Yogi show the best trade-offs, with
Adam excelling in COVID-19 and Yogi remaining
stable for Diabetes. Median is strong for Diabetes
but weaker for COVID-19, while Prox improves in
COVID-19 but remains less effective in Diabetes.
These results emphasize the need for dataset-specific
FL model selection.

4.4 Guidelines

Choosing the right FL model depends on trade-offs
between accuracy, privacy, communication efficiency,
and robustness to data heterogeneity. Table 2
outlines selection guidelines for federated healthcare
applications.

• For high accuracy, FedAdam and FedYogi
are preferred for their adaptive learning rates,
enhancing convergence in non-IID settings, ideal
for tasks like disease diagnosis and clinical
decision support.

• When privacy is key, FedProx and FedMedian
offer stronger protection, and FedProx ensures
stable training in diverse settings, while
FedMedian resists adversarial attacks, making
them ideal for sensitive tasks like personalized
healthcare.

• To balance privacy and accuracy, FedAvg
with DP and FedAdagrad provide practical
solutions—FedAvg with DP protects
confidentiality with solid performance, while
FedAdagrad ensures stability across diverse
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clients, making them suitable for federated health
monitoring.

• In heterogeneous data settings, FedProx and
FedYogi are the best choices. FedProx
prevents divergence by regularizing updates,
while FedYogi adapts learning rates for
client variability, making them ideal for
multi-institutional studies and mobile health.

• For communication efficiency, FedAvg and
FedMedian minimize overhead. FedAvg reduces
update frequency, and FedMedian boosts
robustness, making them suitable for remote
healthcare and edge-based AI.

• For adversarial robustness, FedMedian and
FedYogi resist malicious updates. FedMedian
mitigates adversarial impact, while FedYogi
stabilizes training, ideal for secure wearable
health and remote diagnosis.

By aligning FL model selection with these criteria,
healthcare practitioners and researchers can ensure
optimal performance while maintaining privacy and
efficiency in federated medical AI systems.

5 CONCLUSION

This study evaluated various federated learning (FL)
optimization strategies on tabular health datasets,
analyzing accuracy, privacy, and trade-offs. Adaptive
optimizers like FedYogi and FedAdam showed
improved performance in non-IID settings, while
robust aggregation methods like FedMedian and
FedTrimmedAvg enhanced resilience against noisy
updates. The findings emphasize that no single
FL model is universally optimal; instead, selection
should be guided by specific healthcare requirements,
such as the need for high accuracy or privacy. Future
work should explore stricter privacy mechanisms,
such as differential privacy, and assess scalability in
real-world deployments. We also plan to explore the
performance of FL models, when data is distributed
vertically rather than horizontally.
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