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Abstract: In the dynamic field of digital healthcare, effective user authentication is mandatory due to safeguarding 
critical health data and prevent any sort of unauthorized entry. This paper presents HealthAuth, a unique 
multimodal authentication approach that is powered by Elliptic Curve Cryptography (ECC) and machine 
learning to deliver robust and reliable security for healthcare-oriented solutions. It is a multi-layer 
comprehensive set using biometric (such as facial recognition, fingerprints) and behavioral (such as typing 
rhythm, user interaction) data for authentication, as seen in the proposed system. We propose a Structured 
Convolutional Neural Network (S-CNN) to improve the processing of biometric data, a kind of CNN 
architecture designed for health authentication tasks. The S-CNN is responsible for extracting hierarchical 
spatial features from biometric inputs, thus providing improved accuracy and also efficiency in feature 
extraction. Temoral Patterns are modelled using a Recurrent Neural Network (RNN) which makes it more 
secure for user behaviour. This securing the Authentication with ECC makes it light weight and very secure 
suitable for Healthcare IoT Devices, as well as its security as High because of performing challenge response 
mechanisms. HealthAuth combines cryptographic measures and classification via deep learning to ensure not 
only that the user is who they claim, but also how they are demonstrating themselves in real time, making a 
difficult target for spoofing or replay attacks. The arbitrary experiments exhibited that HealthAuth as a system 
performs better than conventional strategies as far as confirmation exactness, handling length, and security 
dangers which make it an ideal answer for guaranteeing secure access to EHRs, telemedicine stages, unified 
medicinal services gadgets. 

1 INTRODUCTION 

Healthcare technologies have been changing at a 
rapid pace, catalyzed by electronic health records 
(EHRs), telemedicine as well as the integration of 
Internet of Things (IoT) devices, and human health 
care delivery and management have evolved. While 
such advances appear to be making strides towards 
improving patient care and providing digital insights, 
they are also open healthcare systems to significant 
security threats. Since health data is extremely 
sensitive and has high value, gaining unathorized 
access to it might lead serious privacy breaches, 
identity theft or even modification of the data which 
may have a disastrous impact. Therefore, the need of 
the hour is to create strong and efficient mode for 
authentication which should also be secure enough to 
protect patient information relying on it. 

Passwords or personal identification numbers 
(PINs) are traditional authentication methods that 
cannot address today's security challenges in 
healthcare systems. Such methods fall victim to 
vulnerabilities like weak password generation, 
phishing attacks, and credential theft. These 
challenges have resulted in the evolution of a method 
like multi-factor authentication (MFA), verifying the 
identity of an individual using two or more different 
ways, but they are not a solution. With multi-modal 
authentication, you often use a combination of 
biometric (fingerprint, facial recognition) data along 
with behavioral data (typing patterns, user interaction 
etc.) in an attempt to make it more challenging for an 
attacker. 

This paper presents HealthAuth, the next 
generation multi-modal biometric authentication 
system for Healthcare applications. Machine 
learning-based biometric and behavioral verification 
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can create a secure system without sacrificing 
efficiency, powered by Elliptic Curve Cryptography 
(ECC). It uses ECC, which makes it very lightweight 
but useful for healthcare environments where less 
computational powered IoT devices are ubiquitous. 
ECC provides the same level of security as standard 
cryptographic systems but with lower key sizes, 
which would in turn reduce the computational 
overhead and could be beneficial for real-time 
healthcare applications. 

Aside from using ECC for secure communication, 
HealthAuth involves a new Structured Convolutional 
Neural Network (S-CNN) to handle real-world 
biometric healthcare databases. Benefits include high 
accuracy and speed of both identifying and verifying 
users as S-CNN architecture has been tuned for 
extracting deep spatial features from biometric inputs 
such as facial images or fingerprint. Behavioral 
authentication is also incorporated with a Recurrent 
Neural Network (RNN) that identifies temporal 
patterns in user behavior of typos, or how they 
interact, making the system more secure. 

When ECC and machine learning are grouped 
together in HealthAuth they form a strong 
authentication framework that not only authenticates 
the user across several modalities, but also guarantee 
that sensitive data is transmitted securely. The system 
balances advanced security with lightweight 
algorithms using ECC, making the system scalable 
for use across a plethora of healthcare applications. 
Finally, regardless of whether it is to secure access to 
electronic health records or enabling secure 
telemedicine consultations or protecting connected 
healthcare devices; Healthcare poses unique security 
challenges for HealthAuth. 

2 RELATED WORKS 

Servati & Safkhani (2023) (Servati and Safkhani, 
2023) have proposed the ECCbAS which is an 
authentication scheme for healthcare IoT systems and 
based on Elliptic Curve Cryptography (ECC). The 
method established ECC for key exchange and 
authentication specifications as a defence mechanism 
against security issues confronted with IoT healthcare 
environments. Data Privacy & Computational 
Efficiency. The network is intended to improve data 
privacy and computational performance. Ghaffar et 
al. (2024) (Ghaffar, Kuo, et al. , 2024) proposes a 
machine learning attack-resistant low latency 
authentication scheme for AI powered patient health 
monitoring system. To allow real-time identification 
of possible security threats, the methodology uses in 

combination machine learning with cryptographic 
mechanisms to provide low-latency secure 
communication among the devices within a 
healthcare IoT network. 

A smart healthcare system by Mahajan & 
Junnarkar (2023) (Mahajan, Junnarkar, et al. , 2023) 
incorporates a lightweight ECC with private 
blockchain technology. The approach involves 
medical multimedia data pre-process by the ECC to 
make sure capabilities of encryption due to energy 
use, using also a private blockchain for secure sharing 
the information control in health care. Balakrishnan 
et al. (2024) (Balakrishnan, Rajkumar, et al. , 
2024)introduces quite a safe, energy-efficient data 
transmission framework by EMCQLR & EKECC 
algorithms. The method ensures the energy efficiency 
of healthcare IoT applications using a hybrid 
encryption mechanism combined with modified ECC 
and quantum learning methods for secure data 
encryption and transmission. 

Corthis et al. (2024) (Corthis, Ramesh, et al. , 
2024) present a fog computing-enabled framework 
with a hybrid cryptographic algorithm to efficiently 
identify and authenticate healthcare IoT devices. Fog 
computing is used in the methodology for distributed 
processing, to enable controlled latency and security 
while verifying authentication of devices (through a 
two-level encryption) using both asymmetric and 
symmetric encryption. Patnaik & Prasad (2023) 
(Patnaik, Prasad, et al. , 2023) on secure 
authentication and data transmission in IoMT 
systems. The design methodology also covers the 
lightweight cryptographic protocol generation with 
elliptic curve cryptography (ECC) and secure hashing 
ensuring data privacy and integrity across medical 
devices or networks. 

Sheik & Durai (2023), (Sheik, Durai, et al. , 
2024)proposed an adaptive deep learning-based 
authentication scheme to protect user anonymity in 
telecare medical systems. The approach uses a 
combination of deep learning models and 
cryptographic methods such as ECC to design a 
robust authentication framework for patient 
identification and healthcare data privacy. Chaudhary 
et al. (2023) (Chaudhary, Kumar, et al. , 2023) 
proposes a ring learning with errors based three-party 
authenticated key exchange protocol along with ECC 
cryptography. The methodology uses the power of 
post-quantum cryptographic methods along with 
ECC to make a safe key exchange mechanism which 
may be utilized in quantum resisting health care 
systems. 

Sharma et al. (2024) (Sharma, Tripathi, et al. , 
2024) creates an efficient and secure authentication 
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protocol for healthcare IoT systems employing deep 
learning-based key generation. The technique 
employs deep learning algorithms to create 
cryptographic keys in real-time, making those keys 
more secure than typical IoT devices and providing 
efficient way for the data encryption during 
communication. Gupta et al. (2023) (Gupta, 
Mazumdar, et al. , 2023) proposes a safe data 
authentication and access control protocol for 
industrial healthcare systems. The technical approach 
for the project is address these using techniques such 
as role-based access control with ECC for securing 
healthcare data along with only allowing authorized 
users to read/write sensitive data. The HIPAA 
protocol is crafted to ensure that data privacy and 
security are maintained seamlessly in healthcare 
environments. 

3 METHODOLOGY 

There are several key steps involved in the 
methodology that helps user authentication to 
maintain security. It all starts by gathering various 
biometric information like facial images, fingerprints 
in addition to different behavioral data like typing 
patterns and mouse activities.  

 

Figure 1: Architecture of Proposed Model 

This data is preprocessed (normalized, image 
enhancement also data augmentation) to improve the 

quality. The proposed system uses a S-CNN to 
classify biometric data and the RNN-LSTM to 
analyze behavioral patterns. Key exchange ECC is 
used for generating keys, encrypting user credentials, 
and digital signing during communication. User 
Enrollment — This is the first step in the 
authentication process that involves capturing data 
attributes and hashing them into credentials. When a 
user logs in, their current user data is classified with 
S-CNN and also RNN and the results are merged for 
the final authentication by tools such as majority 
voting, thus providing more secure and better 
experience of authentication with healthcare apps. An 
overall architecture is shown in fig 1. 

3.1 Data Collection 

3.1.1 Biometric Data Collection 

Biometric data is collected to provide a strong user 
authentication method using unique physical 
attributes. In this procedure, facial images and finger 
prints are two leading types of biometric information 
used. To ensure a complete and generalizable dataset, 
participants will be recruited from across the 
demographics (age, region/ state characteristics, race, 
ethnicity and guerrillas). Before data collection, 
participants will receive consent explaining both the 
nature of the study and its intended purposes. 

3.1.2 Behavioral Data Collection 

The idea is that this behavioral data will improve the 
accuracy of the authentication system, as users' 
interaction patterns will act as an additional check. 
Behavioral data of the following manner are being 
recorded: keyboard patterns, mouse movements. 
Behavior during user sessions. The platform will 
introduce behavioural monitoring tools to silently 
monitor and log user interactions, without any 
interference in order to comply with Data privacy 
regulations & ethical guidelines as well as guide the 
users about the nature of data they are collecting. 

3.2 Data Preprocessing 

3.2.1 Biometric Data Processing 

It is important to pre-process biometric data, so that 
the input given to S-CNN remains normalized and of 
good quality. As the first step, this is standardizing 
the input size of biometric images, all biometric 
images will be normalized to a default common size 
ensuring with consistent processing by S-CNN. This 
will be quite important since it will prevent any 
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misleading through image size difference and 
improve the system performance. The first step is 
normalization, then will follow the image 
Enhancement techniques like histogram equalization 
which make it more visible. This technique helps to 
enhance the contrast of the images, thus making key 
features more distinguishable for better learning and 
generalization by model. 

Augmentations Augmentation strategies will be 
used to enhance the model to be more reliable against 
variations and better generalize on unseen data. These 
can be referred to as transformations or geometric 
changes which include the rotation of images, scaling 
and flipping that has been described as taking place at 
different angles scales and conditions where 
biometric data might be captured. With such a way of 
artificially expanding our dataset we allow the model 
to learn how to match more accurately also even if 
some users have a different appearance or under 
slightly differing conditions. 

3.2.2 Behavioral Data Processing 

In behavioral data processing, we try to find features 
as direct indicators of certain user interaction 
patterns. From the collected behavioral data, 
extracted features will include typing speed and 
frequency of key presses (with a natural keyboard), 
mouse movement patterns, etc. These are important 
details in establishing a behavioural profile for a 
particular user to distinguish real requesters from 
possible fraudsters. 

Normalization will be performed on the features 
after extraction to bring all of the features under one 
consistent range. This standardization is necessary to 
conduct any meaningful analysis and to avoid the 
biases that may come from using different scales or 
units of measures. Secondly, the normalization of the 
features improves their comparison and combination 
with biometric data, which can then be used to build 
a more complete and true picture. In short, the 
preprocessing phase is crucial in making both 
biometric and behavioral subspace that is ready for 
tight fusion into HealthAuth system, besides 
increasing the security and reliable of authentication 
in procedures. 

3.3 Model Development 

3.3.1 Structured Convolutional Neural 
Network (S-CNN) 

The Structured Convolutional Neural Network (S-
CNN) is designed to effectively analyze and classify 

biometric data, such as facial images and fingerprints. 
The architecture consists of multiple convolutional 
layers that are essential for capturing spatial 
hierarchies in the input data. Each convolutional layer 
applies a set of filters (kernels) to the input image to 
create feature maps. The mathematical operation for 
a convolutional layer can be expressed as: 
 𝑌[𝑖, 𝑗] = (𝑋 ∗ 𝐾)[𝑖, 𝑗]= ෍ ෍ 𝑋[𝑚, 𝑛]𝐾 [𝑖௡௠− 𝑚, 𝑗 − 𝑚] 

(1)

 
Where Y is the output feature map, X is the input 

image, K is the kernel and m and n are the indices of 
the input. 

After each convolutional layer, an activation 
function, such as the Rectified Linear Unit (ReLU), is 
applied to introduce non-linearity into the model: 

 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)    (2)

 
This helps the model learn complex patterns in the 

data. Following the activation functions, pooling 
layers (e.g., Max Pooling) are utilized to reduce the 
spatial dimensions of the feature maps, which 
decreases the computational load and mitigates 
overfitting. The pooling operation can be defined as: 

 Y [i, j] = max(௠,௡)∈௉ 𝑋[𝑚, 𝑛]  (3)

 
Where P denotes the pooling window. 
The final layer of the S-CNN is the output layer, 

which is designed to classify users based on their 
biometric features. This layer typically employs a 
softmax activation function to output class 
probabilities for multiple classes, defined 
mathematically as: 

 P(y = k|x) = 𝑒௭௞∑ 𝑒௭௝௄௝ୀଵ   (4)

Where z୩the score for class k, and K is the total 
number of classes. 

3.3.2 Recurrent Neural Network (RNN) 

The Recurrent Neural Network (RNN) component 
of the model processes the extracted behavioral 
features. Given that user interactions exhibit temporal 
dependencies, RNNs are particularly well-suited for 
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this task. The architecture may include Long Short-
Term Memory (LSTM) units, which are a type of 
RNN that can effectively capture these temporal 
dependencies. 

The LSTM cell consists of several key 
components, including input, output, and forget gates, 
which control the flow of information. The equations 
governing the LSTM cell are as follows: 

 f୲ =  𝜎 ൫𝑊௙ ∙ [ℎ௧ିଵ, 𝑥௧] + 𝑏௙൯   (5)𝑖୲ =  𝜎 (𝑊௜ ∙ [ℎ௧ିଵ, 𝑥௧] + 𝑏௜)  (6)𝐶ሚ୲ =  𝑡𝑎𝑛ℎ (𝑊஼ ∙ [ℎ௧ିଵ, 𝑥௧] + 𝑏஼)   (7)C୲ = 𝑓௧ ∙ 𝐶௧ିଵ + 𝑖௧  ∙   𝐶ሚ୲  (8)𝑜୲ =  𝜎 (𝑊௢ ∙ [ℎ௧ିଵ, 𝑥௧] + 𝑏௢) (9)h୲ = 𝑜௧  ∙ tanh(𝐶௧)     (10)

 
Where, 𝑓௧, 𝑖௧, 𝑜௧ are the forget, input and output 

gate activations, respectively, 𝐶௧ is the cell state, and ℎ௧ is the hidden state, W represents the weight 
matrices and b represents the bias vectors.  

The output layer of the RNN will classify user 
behavior patterns, providing an additional layer of 
identity verification. Similar to the S-CNN, the RNN 
output layer will typically use a softmax activation 
function to generate probabilities for different 
behavior classes: 

 f୲ =  𝜎 ൫𝑊௙ ∙ [ℎ௧ିଵ, 𝑥௧] + 𝑏௙൯   (11)

 P(y = k|ℎ௧) =  𝑒௛೟೅ௐೖ∑ 𝑒௛೟೅ௐೕ௄௝ୀଵ                (11) 

 
Where h୲ is the hidden state at time t and W୩ are 

the weights corresponding to class k. 
This detailed explanation of the Model 

Development process includes the design and 
equations for both the S-CNN and the RNN, 
providing a comprehensive view of the architectures 
and their functionalities within the HealthAuth 
system. 

 

3.3.3 Integration of ECC 

ECC within the HealthAuth system provides a robust 
framework for secure communication between clients 
and the authentication server. ECC is favored for its 
efficiency and strong security features, particularly in 

resource-constrained environments like healthcare 
applications. The integration involves three core 
components: key generation, encryption, and digital 
signatures. 

Key Generation. The first step in integrating ECC is 
the generation of key pairs for both users and the 
authentication server. Each entity in the system will 
have its own unique key pair, consisting of a public 
key and a private key. The public key is shared with 
other parties, while the private key is kept secret. 

1. Secure Random Number Generation: Key 
generation begins with selecting a secure 
random number, which serves as the private 
key. This random number must be 
sufficiently large and unpredictable to 
ensure security. For example, in a 256-bit 
ECC system, the private key can be 
generated using a secure random number 
generator (RNG), denoted as: 𝑘 ← 𝑆𝑒𝑐𝑢𝑟𝑒𝑅𝑎𝑛𝑑𝑜𝑚(256)        (12)

where k is the generated private key. 

Public Key Computation: The public key is derived 
from the private key using a predefined elliptic curve 
E and a base point G. The public key P is calculated 
as: 𝑃 = 𝑘 ⋅ 𝐺      (13)

where P is the public key, k is the private key, and G 
is the elliptic curve generator point. This public key 
can now be shared securely with the authentication 
server or other users without compromising security. 

Encryption. Once the key pairs are established, ECC 
is used to encrypt sensitive data, such as user 
credentials and authentication tokens, during 
transmission between clients and the server. This 
encryption process ensures that even if data is 
intercepted, it remains unreadable to unauthorized 
parties. 

1. Encryption Process: To encrypt data, the sender 
generates a unique ephemeral key ke for each 
session. This ephemeral key is also a random 
number, which ensures that each encryption is 
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unique, even for identical plaintexts. The sender 
then computes the ephemeral public key Pୣ : Pୣ = 𝑘௘ ∙ 𝐺  (14)

The actual encryption is performed using the 
recipient’s public key P୰ as follows: 𝐶 = 𝑀 ⊕ 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (𝑃௥, 𝑘௘)     (15)

Where, C is the ciphertext, M is the plaintext message 
(e.g., user credentials or tokens), (𝑃௥, 𝑘௘) represents 
the ECC encryption process using the recipients 
public key. 

2. Transmission: The ciphertext C and the 
ephemeral public key are sent to the recipient. 
Upon receipt, the recipient uses their private key 𝑃௘to decrypt the message: 𝑀 = 𝐶 ⊕ 𝐷𝑒𝑐𝑟𝑦𝑝𝑡 (𝑃௘, 𝑘௥)  (16)

Where 𝑘௥ 𝑖s the recipients private key. 

Digital Signatures. To ensure the integrity and 
authenticity of messages exchanged between clients 
and the authentication server, ECC-based digital 
signatures are employed. Digital signatures provide a 
mechanism to verify that a message has not been 
altered and confirm the identity of the sender. 

1. Signing Process: When a user sends a message, 
they generate a digital signature using their 
private key. The signing process involves 
hashing the message M with a cryptographic 
hash function (e.g., SHA-256) to create a 
message digest H(M). The signature S is then 
created using the private key k: 𝑆 = (𝐻(𝑀) + 𝑘 ⋅ 𝑟)𝑚𝑜𝑑 𝑛  (17)

where r is a random nonce and n is the order of the 
elliptic curve. 

 

 

Pseudocode for HealthAuth System 

function collectUserData(): 
    return captureBiometric(), captureBehavioral() // Collect biometric and behavioral data 
function preprocess(data): 
    return normalizeAndEnhance(data) // Preprocess the data
function enrollUser(user): 
    biometric, behavioral = collectUserData()
    storeData(user, preprocess(biometric), preprocess(behavioral)) // Store processed data 
function authenticateUser(): 
    currentBiometric, currentBehavioral = collectUserData()
    biometricResult = S_CNN.predict(preprocess(currentBiometric)) // Predict with S-CNN 
    behavioralResult = RNN.predict(preprocess(currentBehavioral)) // Predict with RNN 
    return combineResults(biometricResult, behavioralResult) // Combine results
S_CNN, RNN = buildModels() // Build models
enrollUser(newUser) // Enroll user 
isAuthenticated = authenticateUser() // Authenticate user
if isAuthenticated: 
    grantAccess() // Access granted 
else: 
    denyAccess() // Access denied 
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2. Verification Process: Upon receiving the 
signed message, the recipient can verify the 
signature using the sender’s public key PPP. 
The verification checks that the signature 
SSS corresponds to the message digest. The 
verification process is expressed as: 

Verify(H(M),S,P)→True/False 

If the verification returns true, the recipient can be 
confident that the message was sent by the legitimate 
user and has not been tampered with. 

4 RESULTS AND DISCUSSIONS 

The results section presents the findings from the 
implementation of the HealthAuth system, 
highlighting the effectiveness of using S-CNN and 
RNN in conjunction with ECC for secure 
authentication in healthcare applications. 

4.1 Results 

4.1.1 Model Performance Metrics 

To evaluate the performance of the S-CNN and RNN 
models, several metrics were used, including  

Table 1: Performance Metrics of S-CNN and RNN Models 

Metric S-CNN 
(Biometric 

Data) 

RNN 
(Behavioral 

Data) 

Combined 
Model 

Accuracy 95.2% 92.5% 96.0% 
Precision 94.0% 91.0% 95.5% 

Recall 96.5% 93.5% 97.2% 
F1-score 95.2% 92.2% 96.6% 

AUC 0.98 0.95 0.99 

 
Figure. 2: Performance of Combined Models 

accuracy, precision, recall, F1-score, and area under 
the ROC curve (AUC). These metrics provide 
insights into the models' classification capabilities 
regarding biometric and behavioral data as given in 
Table 1 and Fig 2. 

4.1.2 Authentication Time 

Authentication time is a crucial factor in evaluating 
user experience. The time taken for the system to 
process the biometric and behavioral data and 
produce an authentication result was measured as 
given in Table 2 and Fig 3. 

Table 2: Authentication Time Comparison 

Method Average Time (seconds) 
Biometric Only (S-CNN) 1.2 
Behavioral Only (RNN) 1.5 

Combined Approach 1.8 

 

Figure 3: Time Comparison 

4.1.3 Security Analysis 

To assess the security of the HealthAuth system, the 
effectiveness of ECC in securing user data during 
transmission was evaluated. The success rate of 
unauthorized access attempts was also analyzed. 
The discussion section analyzes the results obtained 
and their implications for the effectiveness of the 
HealthAuth system in healthcare applications as 
given in Table 3 and Fig 4. 
 

Table 3: Unauthorized Access Attempt Analysis 

Attempt Type Success Rate (%) 
Without ECC 75% 

With ECC 5% 
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Figure 4: Success Rate Comparison 

4.2 Discussion 

4.2.1 Model Performance 

The results indicate that the Combined Model, which 
integrates both the S-CNN for biometric data and the 
RNN for behavioral data, outperforms individual 
models in terms of accuracy, precision, recall, F1-
score, and AUC. The accuracy of 96.0% 
demonstrates the potential of combining multiple 
modalities for improved authentication, addressing 
the limitations of using a single data type. 

The S-CNN's high recall rate of 96.5% indicates 
that it is effective in correctly identifying genuine 
users, which is essential in a healthcare context where 
unauthorized access can lead to severe consequences. 
On the other hand, the RNN also shows strong 
performance, with a recall of 93.5%, indicating its 
reliability in capturing user behavior patterns. 

4.2.2 Authentication Time 

While the combined approach shows slightly longer 
authentication times (1.8 seconds) compared to 
individual models (1.2 and 1.5 seconds), it remains 
within acceptable limits for user experience. The 
marginal increase in time is justified by the enhanced 
security and accuracy achieved through multi-modal 
authentication. In real-world applications, this trade-
off is critical to ensure robust security without 
significantly impacting user convenience. 

4.2.3 Security Analysis 

The analysis of unauthorized access attempts reveals 
a significant improvement in security when ECC is 
employed. The success rate of unauthorized access 
attempts drops to 5% with ECC compared to 75% 
without it. This stark contrast highlights the 
effectiveness of ECC in securing user credentials and 
authentication tokens during transmission, making 

the HealthAuth system resilient against potential 
attacks. The implementation of digital signatures 
further enhances the integrity and authenticity of 
messages exchanged between users and the 
authentication server, ensuring that malicious actors 
cannot tamper with the data. 

5 CONCLUSIONS 

The HealthAuth system is an essential breakthrough 
on secure authentication to the healthcare 
applications combining S-CNN and RNN 
architectures with ECC. The results indicate that the 
joint method not only improves user authentication 
accuracy and reliability by utilizing multi-modal data 
analysis, but also establishes more secure protection 
for transmission of sensitive information. The system, 
which performed at 96.0% accuracy takes in all 
biometric and behavioral traits we identified that are 
unique to healthcare settings. Also, purpose of giving 
proper security through keyless signatures is justified 
with the sizeable reduction in unauthorized access 
attempts (from 75% without ECC to only about 5% 
with ECC) showing how any approach-based security 
enhancement will be highly resistant against various 
known attacks. So, users are essentially trading a tiny 
bit of time for much higher security—and they seem 
to think that it's well within an acceptable amount. 
Finally, the HealthAuth architecture provides 
potential substantially more secure and efficient 
authentication mechanisms to meet immediate 
challenges of the health care market which points to 
future research avenues needed in a direction that 
may help future enhanced systems using other 
features data types and specification or machine 
learning algorithms. 
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