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Future wireless cellular networks are expected to not only improve broadband access for human-centric ap-
plications but also enable massive connectivity for tens of billions of devices. Internet of things(IoT) devices
are central to realizing the massive machine-type communication(mMTC) in 5G. It is expected to handle bil-
lions of IoT devices in mMTC. This research focuses on optimizing connectivity and resource allocation for
IoT devices in 5G networks to ensure scalability and efficiency, particularly in smart cities, healthcare, and
industrial IoT applications. This study proposes a predictive resource demand model combined with dynamic
network slicing to optimize connectivity and resource allocation in 5G networks. Using an ensemble of Long
Short-Term Memory (LSTM) models, resource demands are forecasted, and tailored slices are deployed to
meet the specific needs of 1oT applications. Simulation results demonstrate that the proposed approach re-
duces latency and improves throughput compared to traditional resource allocation methods. Furthermore, the
prediction model achieved an accuracy of 96.15% for latency estimation and 81.14% for bandwidth forecast-
ing, highlighting the effectiveness of the approach. This research provides a scalable and efficient framework
for IoT connectivity in 5G networks, paving the way for enhanced performance in critical applications like

smart cities and healthcare.

1 INTRODUCTION

The fifth generation of wireless communication tech-
nology, or 5G, promises incredibly high speeds, lit-
tle latency, and extensive connectivity to transform
sectors and make cutting-edge applications possible.
An innovative development in wireless communica-
tion, mMTC(Bockelmann et al., 2018) in 5G is the
foundation of the Internet of Things, enabling seam-
less connectivity for millions of low-power devices in
smart cities, industries, and beyond. IoT paradigm
is the seamless integration of potentially any object
with the Internet(Li et al., 2017). Globally, there are
currently about 21.7 billion active connected devices.
More than 30 billion IoT connections are anticipated
by 2025, with an average of nearly four IoT devices
per person(Lueth, 2020). This context imposes strong
need for having optimized connectivity between IoT
devices. Optimizing connectivity for mMTC is essen-
tial to efficiently handle the massive number of IoT
devices, ensuring reliable communication, minimiz-
ing network congestion(Najm et al., 2019), and con-
serving energy.
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5G wireless networks are user-centric, they must
allocate resources efficiently to meet Quality of Ser-
vice (QoS) requirements(Aljiznawi et al., 2017).
However, a significant obstacle to the growing de-
mand for the 5G cellular network is effective resource
distribution.(Tayyaba and Shah, 2019). Efficient re-
source allocation(Rehman et al., 2020) is key to opti-
mizing connectivity in mMTC, enabling reliable and
scalable communication for massive IoT device net-
works in 5G. Optimizing connectivity(Pons et al.,
2023) for mMTC ensures that these devices remain
reliably connected to the network, even under con-
ditions of extreme device density and diverse oper-
ational requirements. As the integration of 5G net-
works and IoT continues to transform communication
environments, optimising connectivity becomes cru-
cial(Imianvan and Robinson, 2024). With 5G, mobile
virtual network operators can share the physical net-
work infrastructure thanks to the Radio Access Net-
work (RAN) (Shi et al., 2020a; Foukas et al., 2017)
slicing feature. Network slicing replaces the static
distribution of resources (such as frequency, power,
and processing resources) by reserving them dynami-
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cally in response to user demand.

5G is expected to handle billions of IoT devices in
mMTC. This research focuses on optimizing connec-
tivity, resource allocation, and power management for
IoT devices in 5G networks to ensure scalability and
efficiency, particularly in smart cities, healthcare, and
industrial IoT applications. Optimizing connectivity
in mMTC is critical to meeting the demands of bil-
lions of IoT devices expected to operate within 5G
networks. These devices often have varying require-
ments for data rate, latency, and reliability, making
efficient resource allocation essential. The high den-
sity of connected devices can lead to network con-
gestion, interference, and power constraints, posing
significant challenges. By leveraging advanced tech-
niques like machine learning, dynamic spectrum man-
agement, and predictive resource allocation, mMTC
can ensure seamless device communication, enhance
network reliability, and support applications in smart
cities, healthcare, and industrial IoT.

The primary objective of this work to explore
and apply suitable machine learning algorithms on
dataset, to develop a predictive resource demand
model combined with dynamic network slicing, lever-
aging Machine Learning techniques to forecast re-
source demands in 5G networks. By accurately pre-
dicting the required bandwidth and latency for IoT
applications, the proposed model optimizes connec-
tivity and resource allocation, ensuring efficient per-
formance. The approach not only reduces latency and
improves throughput but also ensures scalability and
adaptability to dynamic network conditions.

This paper is organized as follows: Section II pro-
vide a detailed review of related work, highlighting
existing approaches for optimizing connectivity for
mMTC. This is followed by an in-depth discussion
of the proposed methodology of predicting resource
demands and network slicing in section III. In section
IV, effectiveness of these predictions is evaluated with
performance metrics such as accuracy, prediction er-
ror, and computational efficiency being analyzed. Fi-
nally paper is concluded with section V.

2 BACKGROUND

Emerging technologies such as 5G, IoT, Al, and ML
are transforming resource allocation and network op-
timization to address the growing demands of modern
services and large-scale 10T applications. Intelligent
Decision Models(IDM), based on Al and ML, enables
efficient management of 5G resources by dynamically
handling network traffic, user behavior, and configu-
ration changes. Such models when deployed together

with Software Defined Network (SDN) and Network
Function Virtualization (NFV) enable resource dis-
tribution without centralization where they obtain an
efficiency of up to 91.85% minimizing problems re-
lating to operations and maintenance issues (Logesh-
waran et al., 2023a).

Traditional resource allocation algorithms, Water-
Filling and Round Robin, ensure fairness but face is-
sues of scalability, latency, and bandwidth. Advanced
models, such as the Energy-Efficient Resource Allo-
cation Model (EERAM), show a drastic improvement
in energy efficiency at 92.97% and decrease end-to-
end latency by 25.47% in device-to-device (D2D)
communication within 5G Wireless Personal Area
Networks (Logeshwaran et al., 2023b). These models
include techniques such as power control, frequency
selection, and priority-based allocation to mitigate in-
terference.

Machine learning can predict signal strength,
bandwidth requirement, and traffic pattern to opti-
mize 5G. The algorithms used are such that random
forests and neural networks enhance Quality of Ser-
vice and reduce latency, which can be seen in the
smart cities and industrial IoT. Advanced reinforce-
ment learning frameworks such as Proximal Policy
Optimization(PPO) can effectively manage real-time
constraints (Shi et al., 2020b), and Asynchronous
Advantage Actor-Critic (A3C) models enhance the
throughput in mMTC (Yin et al., 2022). Double Deep
Q-Network (DDQN) frameworks provide hierarchi-
cal resource distribution to delay-sensitive 10T sys-
tems, ensuring ultra-low latency and reliable commu-
nication(Firouzi and Rahmani, 2024).

Federated Learning-based Resource Allocation
Models are designed to address privacy and energy
efficiency in IoT systems by processing data in a de-
centralized manner (Nguyen et al., 2021). Multi-
Agent Deep Deterministic Policy Gradient (MAD-
DPG) frameworks will allow for efficient spectrum
sharing as well as power management. This can en-
hance cooperation in dense 5G environments among
devices(Hu et al., 2024).

These innovations affect various industries rang-
ing from healthcare to education and industrial au-
tomation. In healthcare, 5G and IoT allow patients
to be monitored remotely and enables predictive an-
alytics. In education, it supports intelligent class-
rooms through augmented and virtual reality experi-
ence. These technologies improve energy and spectral
efficiency, addressing key problems such as latency to
pave the way for the progression to sixth-generation
(6G) networks (Zheng et al., 2023).

Despite the strong progress, there are still chal-
lenges such as scalability for billions of heteroge-
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neous devices, real-time adaptivity, and ultra-low
power consumption. Security, privacy, and equitable
access are considered to be the critical problems, es-
pecially for the underserved communities and ethical
concerns such as data privacy and the digital divide.
The solution of these challenges is essential in the
successful deployment and integration of these trans-
formative technologies(Chen et al., 2019; Nguyen
etal., 2021).

3 PROPOSED WORK

This proposed model consists of four main modules:
Data gathering, Preprocessing, Model training, Model
evaluation, and the Slicing Module, which collec-
tively form an integrated system for processing data,
training predictive models, evaluating performance,
and implementing dynamic resource allocation, as il-
lustrated in Fig. 1.

1. Preprocessing: The preprocessing phase in-
volves cleaning historical IoT traffic data. Miss-
ing values in the dataset are identified using the is-
null().sum() function, which highlights null entries
in the feature.Interpolation or imputation addresses
cases of absent or corrupted data. Then, the fea-
tures are normalized using Min-Max normalization,
thus allowing the possibility of comparing equally
scaled input values that further trains more stably and
quickly. Normalized data is transformed into time-
series sequences by applying a sliding window tech-
nique. A raw data into time-series sequences: fixed-
length windows of past observations make up each
one’s sequence used to forecast the likelihood of de-
mand in future. Split the data into training and testing.

2. Model training: The LSTM networks are de-
signed to handle sequential data and capture temporal
dependencies. It is therefore very useful in forecast-
ing resource demands in IoT traffic, which often ex-
hibits time-varying patterns. An ensemble of LSTM
models is used to improve prediction accuracy and ro-
bustness by combining outputs from multiple models
with diverse configurations.

As shown in Fig.2 it is composed of two primary
phases: LSTM Ensemble Training and forecasting. In
first phase, multiple LSTM networks are trained inde-
pendently with sequence length. This setup ensures
that each LSTM captures temporal features unique to
its assigned sequence length. These networks learn
patterns at various time resolution. This is the benefit
of ensemble of LSTM. Forecasting phase integrates
the outputs from the trained LSTM networks through
a weighted combination approach. Each model gen-
erates its own predictions such as R1(t), R2(t), and
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R3(t) resource demands at time t. Once the models
have produced their predictions after being trained, all
output from the model would now be available to an
aggregation layer. The process of aggregating the pre-
dictions is through the manner of weighted average as
given in equation(1)

R 1Y
Ry = Y wi-Rilo) (1)
i=1

3. Model Evaluation: Model evaluation for our
project focuses on assessing the performance of the
LSTM ensemble model in accurately predicting re-
source allocation metrics, such as bandwidth, latency,
and signal-to-noise ratio (SNR), for IoT applications
in 5G networks. Key evaluation metrics include Mean
Absolute Error (MAE), and Mean Absolute Percent-
age Error (MAPE) to quantify prediction accuracy.

The model parameters are initialized and los func-
tion Mean Squared Error (MSE) defined to evaluate
accuracy of prediction. The Adam optimizer is used
with the learning rate of 0.001 for stable convergence.
The LSTM is trained with a batch size of 32 on 40
epochs, and learns to map input sequences into pre-
dicted resource demands.

4. Network Slicing: Network slicing concepts
provide personalised solutions for a wide range of
applications, including Enhanced Mobile Broadband
(eMBB), Ultra-Reliable Low Latency Communica-
tions (URLLC), and Massive Machine Type Com-
munications (mMTC), by separating and optimising
network slices for each use case. In the case of
mMTC, network slicing goes a step further by break-
ing the mMTC slice into sub-slices to fulfil the unique
needs of distinct IoT applications. This enables accu-
rate resource allocation, allowing low-power devices,
periodic sensors, and event-driven devices to coex-
ist without interference while optimising performance
based on their specific requirements.

This approach combines several systematic steps
so that the outputs of predictive resource demand
models will work for dynamic creation and manage-
ment of slices in the network. Predicted parameters,
such as bandwidth and delay, can give important in-
formation about the requirements for different IoT
applications (such as industrial IoT, smart cities, or
healthcare) and will act as input for determining the
slice configuration. The requested slices fall under
eMBB, URLLC, and mMTC, whose demand submis-
sion requests are the predictions. Slices under eMBB
are supposed to provide fast data access thus, they
require bandwidth and can be used by applications
with a need for quick access of data. Streaming of
videos is one example of this kind. URLLC slices
would have low latency dependence and high depend-
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ability: these are going to be key for applications
like self-driving cars or remote surgery where delays
could prove catastrophic. mMTC slices have massive
device connectivity and energy efficiency, so would
therefore have an excellent experience in applications
such as smart cities or environmental monitors where
most [oT devices would be working flawlessly.
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Figure 3: Network Slicing((@rvwomersley), 2018)

Implementation-related problems were such that
it was also very difficult to procure quality, live IoT
traffic data for test purposes in this project. Such data
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would benefit the training and validation of predictive
models, yet it is difficult to obtain data because of pri-
vacy concerns and data sharing constraints. Another
important challenge was in the tuning of the LSTM
model parameters. The performance of the LSTM
models is highly sensitive to hyperparameters such as
number of layers, hidden units, learning rate, and se-
quence length. Finding the optimal configuration that
provides the best prediction accuracy for the resource
demand in 5G networks involves a lot of experimen-
tation and large computational resources.

4 RESULTS AND ANALYSIS

The Resource Allocation dataset, of 400 tuples is ex-
panded into an augmented set of 2,000 tuples enrich-
ing its volume and diversity. All represent a single
instance of one user’s usage scenario from the net-
work and involve nine key attributes including times-
tamp, user_ID, application_type, signal_string, la-
tency, required_bandwidth, allocated_bandwidth, and
resource_allocation.  These attributes encapsulate
the following aspects of network performance and
application-dependent resource distribution related to
video call, voice call, video stream, emergency call
and online game, etc. The general view of this data
set is that the actual circumstances of a 5G network
are as follows: Signal_Strength in the form of dBm,
latency in milliseconds, and bandwidth in megabits
per second or Kbps, respectively. Percent resource
allocation was considered to indicate the level of re-
sources being used efficiently. The strategies applied
in data augmentation ensured simulated conditions
hence providing a concrete base for training the ma-
chine learning models on predicting bandwidth and
latency that eventually helped with making the best
optimized strategy for network slicing and the alloca-
tion of resources.

Table 1: 5G Resource Allocation Dataset(Omar Sobhy,
2023)

Features Example Tuples
Timestamp 09-03-2023 10:00:00
User_ID User_1
Application_Type Video_Call
Signal_Strength -75 dBm

Latency 30 ms
Required_Bandwidth 10 Mbps
Allocated_Bandwidth 15 Mbps
Resource_Allocation 70%
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The combination of LSTM models followed by XG-
Boost regressors was successful in predicting required
bandwidth and latency for 5G applications. The
model obtained the following performance metrics:
Mean Absolute Error (MAE): Bandwidth Require-
ment: 0.0049 Latency: 0.0042 R-squared (R?): It has
high values with a good fit for bandwidth and latency
prediction. Threshold-based accuracy for 10% toler-
ance Required Bandwidth: 81.14% Latency: 96.15%
The predicted values were then further categorized
into 5G slices like URLLC, eMBB, and mMTC ac-
cording to their bandwidth and latency characteristics.

Table 2: Model performance metrics.

Metrics | Predicted Attribute | Result
MAE Required Bandwidth | 0.0049
Accuracy | Required Bandwidth | 81.14%
MAE Latency 0.0042
Accuracy Latency 96.15%
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Figure 4: Difference between actual and predicted required
bandwidth values

The results show that the proposed model can predict
required bandwidth and latency with adequate accu-
racy. The predicted values align well with the actual
values, as is visible from both the bandwidth and la-
tency plots. The model captures all trends properly,
including critical spikes that are highly important for
high-demand scenarios like IoT and real-time com-
munication.

The small differences are noticed especially on the
peak values; those differences could be caused by data
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noise or because of how the model could not really
handle extreme cases.
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Classification of applications into the right 5G
slice based on the predicted values is practical signif-
icance in terms of efficient network resource alloca-
tion. High classification accuracy for URLLC appli-
cations, particularly in emergency services, will have
a significant impact on low-latency and highly reli-
able real-time communication. Such a model can aid
network operators in making dynamic decisions re-
garding service prioritization and resource allocation.

The original objective has been to predict key net-
work performance metrics, such as bandwidth and la-
tency, for different kinds of applications and classify
them into 5G slices. The objectives may be met by the

model through predicting bandwidth and latency and
classifying the samples of applications into URLLC,
eMBB, mMTC, or default slices. It has also classi-
fied emergency service samples correctly as URLLC,
well suitable for real-time network management and
emergency response scenarios.

The results indicate the robustness and accuracy
of the model in predicting the critical 5G parameters.
The ability to consistently predict required bandwidth
and latency highlights the model’s potential for op-
timizing resource allocation in dynamic 5G environ-
ments.

S CONCLUSION

The proposed framework demonstrates significant
progress over existing methodologies in the 5G net-
work slicing with an ensemble learning methodology
that implements XGBoost for enhancing slice clas-
sification along with resources. This also provides
high predictions with low errors in bandwidth and la-
tency, where it depicts an improvement than the exist-
ing methods like IDM, EERAM, and A3C for enhanc-
ing energy efficiency. Integration of machine learning
techniques at every level of networking allows this
framework not only to improve coordination but also
to scale billions of IoT devices in dynamic environ-
ments. Additionally, by incorporating considerations
for privacy, fairness in access, and economical de-
ployment, the framework remains open and prepared
for emerging 6G.

This impact can further be elevated by the inclu-
sion of more diverse and realistic 5G datasets, fea-
tures encompassing network complexity, or even ad-
vanced temporal models that are Gated Recurrent
Unit(GRUSs) or even attention-based LSTMs. On-
line and federated learning methodologies will open
new avenues for continuous adaptation to constantly
changing network conditions without compromise on
data privacy. The framework will provide an approach
to robust, scalable, and equitable solutions that will
cater to reliability and adaptability within the ever-
changing landscape of IoT and 5G networks, by ad-
dressing real-time updates and extreme network sce-
narios.
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