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Abstract: This paper presents MATRIX (Malware Analysis and Threat Research with STIX), a graph database for the
comprehensive analysis and research of malware and threats. To provide a unified view of the threat land-
scape, MATRIX integrates data from major cybersecurity frameworks, including MITRE ATT&CK, DEF3ND,
CAPEC, Malware Behavior Catalog (MBC), Metasploit, Common Vulnerabilities and Exposures (CVE) and
Common Weakness Enumeration (CWE). Developed in Neo4j using the Structured Threat Information Expres-
sion (STIX™) standard, MATRIX includes more than 22,910 nodes and combines 14 STIX Domain Objects
(SDOs) and 6 STIX Relationship Objects (SROs) to provide a detailed analysis of malware behavior, detection
rules and defense strategies, making it a valuable tool for cybersecurity research. The system also integrates
real-world malware reports and is automatically updated with data from sources such as VirusTotal, Malware-
Bazaar and VirusShare, supporting continuous and up-to-date threat analysis. We demonstrate its versatility
through case studies comparing malware objectives and analyzing the impact of detection and mitigation.

1 INTRODUCTION

Cybersecurity research demands efficient methods to
represent and analyze diverse data. Graph databases
are increasingly adopted for their ability to model
complex relationships (Reading, 2021), integrating
alerts and logs from multiple tools (Neo4j, 2021)
and revealing hidden patterns (Sheikhalishahi et al.,
2022). Knowledge graphs, a form of graph database,
map real-world entities and relationships, supporting
CTI (Sikos, 2023) (Bolton et al., 2023) and enabling
real-time retrieval, especially in Retrieval Augmented
Generation (RAG) systems (Lewis et al., 2020).

However, cybersecurity research still lacks uni-
fied models that combine disparate data and provide
real-time updates, essential for dealing with evolving
threats. Effective analysis of malware and threats re-
quires an understanding of both the individual compo-
nents and their interactions. For this reason, systems
that are able to logically and semantically combine
different cybersecurity elements into a cohesive struc-
ture are essential to improve threat and malware anal-
ysis. Graphs can help researchers achieve this goal
by enabling the connection of different components,
such as vulnerabilities, exploits, malware and attack
patterns, into a single, interconnected model. It is also

important to constantly update this system to reflect
the ever-changing threat landscape.

Contribution. This paper presents MATRIX
(Malware Analysis and Threat Research with STIX), a
graph-based framework specifically designed for the
comprehensive analysis of malware and threats. It in-
tegrates and links data from MITRE ATT&CK (Cor-
poration, 2025b), DEF3ND (Corporation, 2025d),
CAPEC (Corporation, 2025a), Malware Behavior
Catalog (MBC), Metasploit Framework (Project,
2025a) (Rapid7, 2025), Common Vulnerabilities and
Exposures (CVE), and Common Weakness Enumer-
ation (CWE) to provide a comprehensive overview
of the threat landscape. All data within MA-
TRIX has been obtained through an extensive crawl-
ing process of the aforementioned sources. The
structured information is collected and organized
using the Structured Threat Information Expres-
sion (STIX™) (OASIS, 2020) standard, leveraging
datasets from mitre/cti (Corporation, 2025c) and
MBCProject (Project, 2025b) to ensure a detailed
and consistent representation of malware and threats.
The latest data crawling operation was conducted
in January 2025, ensuring that MATRIX maintains
an up-to-date and reliable knowledge base for cy-
bersecurity analysis. MATRIX contains 14 differ-
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ent node types, called STIX Domain Objects (SDOs):
Malware, Malware Behavior, Malware Objective,
Malware Method, Indicator, Course of Action,
Data Component, Data Sources, Tool, Intrusion
Set, Campaign, Weaknesses, Vulnerabilities and
Exploit. There are 6 different edge types, called STIX
Relationship Objects (SROs): related-to, mitigates,
uses, indicates, detects, exploits. By linking differ-
ent cybersecurity elements, MATRIX helps to better
understand the behavior of different malware and im-
prove detection, analysis and defense against complex
threats, making it a valuable tool for cybersecurity re-
search and intelligence. The main contributions of
MATRIX:

• We introduce a Neo4j-based graph that integrates
mitre/cti, MBCProject, 14 SDOs, 6 SROs
and rules from CAPA (Mandiant, 2025a) and
SIGMA (SigmaHQ, 2025). Malware reports from
VirusTotal (VirusTotal, 2025) are linked via Elas-
ticSearch (Elastic, 2025). All data and containers
are publicly available.1 2

• The graph includes over 22,910 nodes (excluding
vulnerabilities and exploits), making it 5x larger
than mitre/cti and 25x larger than MBCProject,
and contains more than 10,000 real malware
hashes.

• MATRIX is continuously updated with data from
VirusTotal, MalwareBazaar (abuse.ch, 2025), and
VirusShare (VirusShare.com, 2025), ensuring on-
going relevance and completeness.

• The graph enables detailed analyses of malware
behavior, objectives, and defensive impact, with
case studies such as rule-based comparison of ob-
jectives, impact evaluation of mitigations, behav-
ior linking across malware families, and tactic-
specific API analysis.

Paper Organisation. The paper is organized
as follows: Section 2 covers background on graph
databases, CTI, and STIX. Section 3 describes the
MATRIX architecture. Section 4 showcases example
analyses. Section 5 reviews related work in cyberse-
curity knowledge graphs. Section 6 concludes with
future directions.

2 BACKGROUND

Graph Databases and Knowledge Graphs. A
graph database is a NoSQL model optimized for

1https://github.com/MATRIX-Malware-Analysis/MA
TRIX/

2https://hub.docker.com/r/matrixmalware/matrix

managing complex, often directed, relationships via
graph structures. A knowledge graph extends this
by defining a labeled, directed graph G = (V,E,L),
where entities V are linked by labeled edges E ⊆
V ×V ×L, representing typed relationships.

Cyber Threat Intelligence (CTI). CTI provides
actionable insights on threats, enabling organizations
to enhance defenses. It operates at tactical (immediate
threats), operational (actors/campaigns), and strategic
(long-term planning) levels. Effective CTI must be
complete, accurate, relevant, and timely.

Structured Threat Information Expression
(STIX). STIX is a standardized format for shar-
ing machine-readable CTI. STIX 2.1 models threat
data as a graph, using STIX Domain Objects (SDOs)
as nodes and STIX Relationship Objects (SROs) as
edges. It supports objects like Malware, Indicator,
and Threat Actor, connected via predefined or custom
relationships (e.g., indicates).

3 MATRIX ARCHITECTURE

The MATRIX architecture, shown in Fig. 1, was built
using the Neo4j framework to organize and connect
the key elements of malware and threat analysis. Most
of the components are based on the MITRE ATT&CK
framework, but to provide a more complete view of
the threat landscape, we have also integrated data
from the Malware Behavior Catalog (MBC), which
focuses specifically on malware objectives and be-
haviors. The mitre/cti and MBCProject are two
of the most important STIX standards and collections
used in cybersecurity. In MATRIX, all nodes and re-
lationships are based on the STIX objects from the
mitre/cti dataset, with the exception of Malware
Behavior, Objective and Method (in blue in Fig. 1),
which follow the format of the MBCProject. This en-
sures that our graph conforms to the MBC STIX stan-
dard and provides a more detailed and consistent ap-
proach to analyzing malware. The nodes Weaknesses,
Vulnerabilities, and Exploit are not included in any
of the two standard collections; the node Weaknesses
is a new SDO that we have specifically defined. In
addition, the graph is kept up to date through contin-
uous and automatic updates and becomes more com-
prehensive over time so that it always reflects the lat-
est threat data. Below is a breakdown of the SDOs of
the graph.

Malware includes definitions from MITRE
ATT&CK and MBC, providing details such as aliases,
descriptions, and external references. Malware Be-
havior captures the actions of malware using tech-
niques from MITRE ATT&CK, MBC (with prefixes
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Figure 1: MATRIX Architecture Overview.

T, B, E, C, F), and CAPEC. These behaviors are
associated with CAPA and Sigma rules through the
detection rules field and are modeled as Attack
Pattern objects in STIX. Malware Objective repre-
sents the high-level intent behind malware behaviors,
derived from ATT&CK tactics and expanded with
objectives from MBC. Malware Method refers to
how behaviors are executed, often represented as sub-
techniques or specific implementations. These meth-
ods are always associated with behaviors and cannot
exist independently. Indicators include over 10,000
malware hashes and YARA rules from 269 families,
automatically collected from sources like Malware-
Bazaar and VirusShare. Corresponding reports from
VirusTotal are stored in an Elasticsearch database for
analysis, with regular updates ensuring the dataset re-
mains current. Course of Action nodes represent
defensive strategies derived from MITRE ATT&CK
Mitigations and the DEFEND framework, providing
guidance on how to prevent or reduce the impact of
threats. Intrusion Sets describe groups of threat ac-
tors—referred to as Groups in ATT&CK—that oper-
ate over time to conduct campaigns or coordinated
attacks. Campaigns are coordinated sets of mali-
cious activities carried out by an intrusion set, usu-
ally targeting specific sectors or organizations. Data
Sources represent broader categories of information
such as logs or telemetry that are relevant to identi-
fying ATT&CK techniques. Data Components, on
the other hand, are the specific elements or system
events—like API calls or process creations—that al-
low the detection of malicious behaviors. Finally,
Tools are legitimate software applications that can be
leveraged by attackers. Analyzing their usage helps in
profiling threat actor tactics and understanding how
campaigns are executed. Weaknesses refer to soft-
ware or hardware flaws identified in the CWE catalog,
which may expose systems to potential risks. Vulner-
abilities correspond to publicly disclosed issues listed
in the CVE database, each describing a specific flaw
that can be exploited to compromise a system. Ex-
ploits are modules from the Metasploit Framework
designed to target known CVEs, used to simulate or
conduct real-world attacks.

Table 1: MATRIX Nodes and Relationships Summary.

Node Size Number of Nodes
Campaign 120K 28
Course of Action 25M 6029
Data Component 452K 109
Data Source 156K 38
Exploit 38M 4531
Indicator 54M 13407
Intrusion Set 860K 163
Malware 3.4M 829
Malware Behavior 20M 1705
Malware Method 2.0M 482
Malware Objective 144K 35
Tool 352K 85
Vulnerabilities 968M 231315
Weaknesses 5.1M 964

Relationship Type Size Count
MATRIX Relationships 351M 87,642

Table 2: Dataset Comparison.

Dataset Nodes Relat. Malware Indic.
mitre/cti 4237 22259 734 -
MBCProject 892 1015 50 183

Table 1 outlines the MATRIX dataset structure,
including over 230K Vulnerabilities (968MB), 13K
Indicators (54MB), and 6K Courses of Action
(25MB), along with Malware, Tools, and Weak-
nesses. Behavioral data is captured through nodes
like Malware Behavior (1.7K nodes, 20MB) and
Malware Method. The graph comprises 87,642 re-
lationships (351MB). As shown in Table 2, MATRIX
is 541% larger than mitre/cti and 2568% larger than
MBCProject, with over 22,910 nodes (excluding vul-
nerabilities and exploits), and includes over 13,000
real-world indicators and malware reports.

4 APPLICATION OF MATRIX TO
THREAT AND MALWARE
ANALYSIS

We present 7 examples of analytical insights that can
be derived from the graph, along with the time re-
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quired to compute them. The analyzes that can be per-
formed are not limited to those we have shown. For
example, while we often perform studies on Malware
Objectives, similar analyzes can also be performed on
Malware Behaviors that are more complex to visual-
ize. More examples can be found here3. The first five
examples were determined using the graph based on
information from MITRE, which would otherwise be
difficult to recognise without putting this information
into a graph. However, the last two examples depend
on the number of real hashes collected; the more mal-
ware samples collected, the more accurate the analy-
sis will be.

Comparison of Malware Objectives Based on
API and String Correlation. Fig. 2 compares the
objectives of 60 Ransomware families, 38 Spyware
families, and 112 Trojan families based on APIs and
strings extracted from detection rules in Malware Be-
havior nodes. The graphs were created by linking
the behaviors of each malware to its objectives and
measuring the correlation between APIs, strings and
objectives. The distribution shows how often APIs
or strings are correlated with an objective, while the
entropy (Morato et al., 2018) indicates the variety of
APIs or strings used to reach each objective. Fig. 2a
shows that all malware types correlate strongly with
the objectives Discovery and Defense Evasion based
on APIs. Ransomware and Trojan have a low cor-
relation with Impact and Persistence, while spyware
has none. Trojan are the only ones that show a low
correlation with Credential Access. Fig. 2b shows
higher API entropy for Discovery and Defense Eva-
sion for ransomware and Trojan, while spyware uses
more predictable APIs. Fig. 2c shows that all malware
types correlate strongly with Credential Access based
on strings, but Trojan show no correlation with Im-
pact and Persistence. Finally, Fig. 2d shows that ran-
somware and Trojan use more distinct strings for Dis-
covery and Defense Evasion, while spyware is more
predictable across all objectives. The time required to
obtain these results is approximately 0.06s.

Analyzing Data Component Impact on Mal-
ware Categories. Figure 3 shows the impact of var-
ious common Data Components on 60 Ransomware
families, 38 Spyware families, 112 Trojan families
and 15 Worm families. The impact is calculated from
the frequency with which each Data Component con-
tributes to the detection of a malware type in relation
to the total data components that affect this malware.
Process Creation and Command Execution are very
influential for all malware types, especially spyware,
suggesting that system-level behaviors are important

3https://github.com/MATRIX-Malware-Analysis/MA
TRIX/tree/main/EXAMPLES

detection indicators. Spyware also shows a greater
reliance on OS API Execution, Script Execution and
File Access, reflecting the use of commands and file
operations for malicious purposes. Trojan are also
characterized by their dependency on OS API Execu-
tion, but also on Network Traffic Flow and Connection
Metadata, so network monitoring is crucial for their
detection. Both the worm and the ransomware affect
Service Metadata and Windows Registry Key Modi-
fication, probably to persist in the system and main-
tain control by changing critical settings. On the other
hand, other data components such as Process Modifi-
cation and File Creation have minimal impact on all
malware types, making these behaviors less important
for detecting these specific threats. The time required
to obtain these results is approximately 0.3 ms.

Prioritizing Mitigation Techniques Based on
Malware Type. Figure 4 shows the impact of dif-
ferent mitigation strategies (Course of Action) on 60
Ransomware families, 38 Spyware families, 112 Tro-
jan families and 15 Worm families. The impact is
based on how often each strategy effectively defends
against a malware type in relation to the total Courses
of Action that affect that malware. The graph shows
that spyware relies heavily on Data Loss Preven-
tion and User Training, underlining the importance
of educating users and preventing data exfiltration.
Trojan particularly benefit from Execution Preven-
tion and Endpoint Behavior Prevention on Endpoint,
highlighting the need to block unauthorized execution
and monitor malicious behavior. Ransomware is pri-
marily influenced by User Account Management and
Restrict File and Directory Permissions, which em-
phasizes the importance of managing access rights.
Worms, on the other hand, are strongly influenced
by User Account Management and Restrict File and
Directory Permissions, showing that restrictions and
user permission management are important strategies.
Less effective strategies such as Limit Access to Re-
sources Over Network and Account Use Policies play
a lesser role in containing all malware types. The
time required to obtain these results is approximately
0.04s.

How Key Techniques Connect and Support Di-
verse Malware Types. Measuring Betweenness Cen-
trality (Pontecorvi and Ramachandran, 2015) allows
us to identify which Techniques play a crucial role
in connecting different malware categories. The ob-
jective is to pinpoint key actions that multiple mal-
ware families depend on for propagation, persistence,
or execution. By targeting techniques with high
betweenness centrality, defense strategies can effec-
tively disrupt multiple malware types simultaneously.

As illustrated in Figure 6, T1082 (System Infor-
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Figure 3: Impact of various common Data Components on Ransomware, Spyware, Trojan and worms.

mation Discovery) exhibits the highest centrality for
Ransomware-RAT and RAT-Spyware connections, a
finding consistent with reports from (Security, 2025)
(Mandiant, 2025b). Similarly, T1105 (Ingress Tool
Transfer) is critical for Backdoor-Ransomware and
Backdoor-Worm relationships, as confirmed by (Ca-
nary, 2025) (for Threat-Informed Defense, 2025) and
(MITRE, 2025). Additionally, T1140 (Deobfusca-
tion/Decoding) serves as a central technique link-
ing Backdoor-Spyware and RAT-Spyware, corrobo-
rated by findings in (Mandiant, 2025b). T1210 (Com-
mand and Scripting Interpreter), cited as first tech-
niques in the top-10 by (MITRE, 2025) exhibits high-
est centrality for Ransomware-RAT and Backdoor-

Ransomware.
Overall, techniques characterized by high interde-

pendence, such as deobfuscation and system discov-
ery, act as essential links between different malware
categories. This makes them prime targets for dis-
rupting malware operations and strengthening cyber-
security defenses. The computational time required
to obtain these results is 5.9 seconds.

Evaluating the Importance of Malware Tech-
niques Using PageRank Analysis. Figure 5 shows
the PageRank (Gleich, 2015) values for the tech-
niques used by 60 Ransomware families, 38 Spy-
ware families, 112 Trojan families, 15 Worm fam-
ilies, 15 RAT families and 208 Backdoor families.
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Figure 4: Impact of different mitigation strategies (Course of Action) on Ransomware, Spyware, Trojan and Worm.

A higher PageRank indicates that a particular tech-
nique plays a greater role in the malware’s opera-
tions or is used more frequently. Worms have con-
sistently high PageRank values for several key tech-
niques, such as File and Directory Discovery, as con-
firmed by (MITRE, 2025) and Native API, which are
essential for their distribution and operation. This
means that the worms rely on a few key actions, mak-
ing these techniques prime targets for disrupting their
spread. Backdoor relies on techniques such as Ingress
Tool Transfer, Web Protocols (also very important for
spyware) and Windows Command Shell, as confirmed
by (Canary, 2025), to gain unauthorized access and
assert itself in a system. In particular, ransomware
relies on techniques such as Inhibit System Recov-
ery, also this confirmed by (MITRE, 2025) and Native
API to disable restore options and manipulate system-
level functions, making it more difficult for users to
restore their system. In contrast, RAT and spyware
have lower PageRank scores, suggesting that they use
a wider range of techniques without relying heavily
on a single action. Even though these types of mal-
ware spread their operations over several techniques,
focusing on a wide range of defense strategies can still
help mitigate their impact. The time required to ob-
tain these results is approximately 0.15s.

Behavioral and Technical Similarities Be-
tween Two Emotet Samples. Table 3 sum-
marises the common API calls, registry keys,
loaded modules and MITRE ATT&CK tech-
niques observed in two Emotet malware samples:
2fd433c3ff68507ddbf0ec3e90a6320b35b44c8089504
403c457bc9819190a0a and 214946b987ad69fa46f1d
27ab35026b856a4fcd2abd46b0b5ba86dc71be58d89.
The data was extracted from CAPE sandbox reports
with real malware samples from VirusShare. The
Jaccard similarity (Fender et al., 2017) score of 0.97
indicates a very high similarity between the two
malware samples based on their common characteris-
tics. The listed API calls, such as VirtualProtect,
GetCPInfo and CloseHandle, show that both
malware samples are involved in similar activities,

including process control, memory management
and system information retrieval. These are typical
actions used by Emotet to achieve persistence and
execute its malicious operations. MITRE techniques
used by both malware samples include Credential
Dumping, Virtualization/Sandbox Evasion and Im-
pair Defenses, suggesting that they focus heavily
on credential evasion and theft. This reflects the
typical behaviour of Emotet, which is known for its
ability to bypass security measures and collect sen-
sitive information from infected systems. he loaded
modules, including BCRYPT.DLL and WININET.DLL,
also confirmed by (Shaddy43, 2025), indicate that
both examples use the same Windows libraries for
cryptographic functions, Internet communication and
shell operations. The time required to obtain these
results is 0.2 s.

5 RELATED WORK

Knowledge graphs (KGs) have become crucial in cy-
bersecurity for representing and analyzing complex,
multi-source data. Sikos (Sikos, 2023) emphasizes
their role in enhancing cyber situational awareness
and supporting machine learning. Li et al. (Li et al.,
2024) focus on KG construction and quality evalu-
ation to improve cybersecurity analysis, while Li et
al. (Li et al., 2023a) and (Li et al., 2023b) propose
methods integrating KGs and pre-trained models for
cyber threat intelligence extraction and automation.
Bolton et al. (Bolton et al., 2023) explore ATT&CK-
based threat mapping, and Wang et al. (Wang et al.,
2021) demonstrate how graph databases capture at-
tack behaviors to improve 6G network security. Ren
et al. (Ren et al., 2022) present CSKG4APT, com-
bining KGs and deep learning for APT tracking and
proactive defense. Liu et al. (Liu et al., 2020) design
an ontology for network security based on STIX, en-
hancing attack representation and CTI sharing. Chen
et al. (Chen et al., 2024) improve IoC management on
OpenCTI, achieving a 25.18% increase in confidence
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Table 3: Summary of Common Calls, MITRE Techniques between two Emotet hashes.

Category Values

Calls Highlighted VirtualProtect, CryptStringToBinaryA, GetCurrentHwProfileA, CloseHandle, TlsGetValue,
EnterCriticalSection, GetLastError, srand, IsValidCodePage, GlobalLock, VirtualAlloc,
CreateToolhelp32Snapshot, GetCurrentThreadId, CoCreateInstance, GetCPInfo, HeapAl-
loc, LeaveCriticalSection, InterlockedDecrement, GetProcessHeap, GetVersionExA, Pro-
cess32Next, RegOpenKeyExA, GetModuleHandleW, ...

MITRE Techniques T1503, T1497.001, T1003, T1552.001, T1005, T1562, T1081, T1071, T1032, T1555,
T1106, T1497, T1562.001, T1071.001, T1012, T1552, T1082, T1089, T1057, T1555.003.

Modules Loaded BCRYPT.DLL, NTMARTA.DLL, WINHTTP.DLL, SHELL32.DLL, GDIPLUS.DLL,
CRYPT32.DLL, NTDLL.DLL, SECHOST.DLL, WININET.DLL, WS2 32.DLL,
CRYPTBASE.DLL, CFGMGR32.DLL, OLE32.DLL, ADVAPI32.DLL, GDI32.DLL,
RPCRT4.DLL, SHLWAPI.DLL, RSTRTMGR.DLL, USER32.DLL, MSVCR100.DLL,
NSI.DLL, KERNEL32.DLL ...

scoring. Bhalekar et al. (Bhalekar and Saini, 2024)
and Habaybeh and Marshall (Habaybeh and Mar-
shall, ) highlight the use of graph databases for cy-
bersecurity data analysis and legal assessments. Un-
like these approaches, MATRIX aggregates malware,
threat, and vulnerability data from multiple sources
into a unified and extensible framework, improving
research and advanced analysis capabilities.

6 CONCLUSION AND FUTURE
WORKS

We presented MATRIX, a unified graph-based frame-
work for malware and threat analysis. Built on

STIX 2.1 and integrating data from seven cyber-
security frameworks (MITRE ATT&CK, MBCProject,
CAPEC, DEF3ND, etc.), MATRIX provides a semanti-
cally consistent view of the threat landscape. MA-
TRIX is over 5x larger than mitre/cti and 25x larger
than MBCProject, and includes 10,000+ real mal-
ware samples from VirusTotal, MalwareBazaar,
and VirusShare, linked to detection rules, behaviors,
and objectives for in-depth analysis. We showcased
MATRIX’s capabilities via case studies on malware
behavior correlations, mitigation impacts, and tech-
nique influence across families. The system is de-
signed for continuous updates and future expansion.
Upcoming work will focus on integrating MATRIX
into RAG systems to support real-time analysis.
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V., Goyal, N., Küttler, H., Lewis, M., Yih, W.-t.,
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