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Abstract: For applications in robotics, CAD systems, and scene comprehension, 3D objects must be broken down into
their component geometric primitives. Current methods frequently depend on manually created features or
regularised transformations, such as voxelization, which result in quantisation artifacts and inefficiencies.
This study, which draws inspiration from PointNet, suggests a unified neural network architecture that breaks
down 3D objects into basic geometric forms like spheres, cylinders, and planes by directly processing raw
point clouds. Our model incorporates extra modules to learn local geometric characteristics for accurate
decomposition, while utilizing PointNet’s capability to handle unordered point sets, guaranteeing permutation
invariance.

1 INTRODUCTION

The decomposition of 3D objects into geometric
primitives is a fundamental problem in computer vi-
sion and computational geometry, with applications
spanning robotics, augmented reality, computer-aided
design (CAD), and autonomous systems. This pro-
cess involves breaking down complex 3D shapes into
simpler components such as planes, spheres, cylin-
ders, and other primitive geometries. Such decompo-
sition enables a more interpretable and efficient repre-
sentation of 3D objects, facilitating downstream tasks
like simulation, manipulation, and rendering.

Traditional methods for 3D object decomposition
often rely on handcrafted algorithms and feature en-
gineering, which may struggle to generalize across
diverse object geometries and noisy datasets. With
the rise of deep learning, data-driven approaches have
shown remarkable promise in addressing these limita-
tions. PointNet, a pioneering deep learning architec-
ture, has emerged as a robust solution for processing
raw point cloud data. By directly operating on un-
ordered sets of 3D points, PointNet preserves permu-
tation invariance and learns global and local geomet-
ric features effectively.

This research aims to leverage the PointNet frame-
work to address the challenge of decomposing 3D
objects into their constituent geometric primitives.

The study explores how PointNet’s feature extrac-
tion capabilities can be adapted to identify and seg-
ment primitives within complex point cloud represen-
tations. By focusing on a data-driven approach, this
work seeks to overcome challenges associated with
noise, incomplete data, and diverse object geometries,
contributing to a scalable and generalized solution for
3D object decomposition.3D object decomposition
into geometric primitives simplifies complex object
representations, enabling efficient storage, manipu-
lation, and analysis. Traditional methods rely heav-
ily on data transformation into regular grids or hand-
crafted geometric approximations, which are compu-
tationally intensive and fail to generalize across varied
datasets.

PointNet, a deep learning framework designed for
point cloud data, has demonstrated success in 3D clas-
sification and segmentation tasks by directly process-
ing unordered sets of points. This work extends Point-
Net to address the specific challenge of geometric de-
composition. By identifying local and global point
features, our approach achieves robust decomposition
of objects into primitive shapes, providing a scalable
and interpretable solution.
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2 RELATED WORK

The related work section provides an overview of ex-
isting methods and research relevant to the decompo-
sition of 3D objects into geometric primitives. For the
given problem, the section would include the follow-
ing topics:

1.Traditional Methods for Geometric Decom-
position Traditional approaches rely on geometric
algorithms and handcrafted rules to identify primi-
tives in 3D models: RANSAC Based Plane Detec-
tion: Techniques such as Random Sample Consensus
(RANSAC) are commonly used for detecting planes
in point clouds by fitting geometric models iteratively.
While effective for simple shapes, these methods
struggle with noise and complex structures. Model
Fitting and Optimization: Optimization-based tech-
niques aim to fit geometric primitives like spheres,
cylinders, and cones by minimizing error metrics.
However, these are computationally expensive and
sensitive to parameter tuning. Region Growing Meth-
ods: Algorithms that group points into regions based
on geometric similarity have been used but often fail
with incomplete or noisy data.

2. Deep Learning for 3D Data Processing The
rise of deep learning has led to novel methods for un-
derstanding and processing 3D data: Volumetric Rep-
resentations: Early works converted point clouds into
3D voxel grids and applied 3D convolutional neu-
ral networks (e.g., VoxNet, 3DShapeNets). These
methods suffer from high memory and computational
costs due to voxelization.(Ding et al., 2023)(Liu et al.,
2019)(Ioannidou et al., 2017). Multiview CNNs:
Techniques like Multi-View CNNs render 3D shapes
into 2D projections and process them using 2D convo-
lutional networks. While effective for classification,
this approach loses detailed geometric information,
making it unsuitable for precise primitive decompo-
sition. Spectral CNNs: Applied on mesh data, these
methods process shapes using graph-based represen-
tations. However, they are limited to manifold meshes
and struggle with generalizing to point clouds.

3. PointNet and Point-Based Networks
PointNet introduced a breakthrough in processing

raw point clouds directly: It demonstrated how
symmetric functions, like max pooling, ensure
permutation invariance for unordered point sets.
Extensions of PointNet, such as PointNet++ and
PointCNN, focused on capturing local point fea-
tures and hierarchical structures, enabling finer
segmentation and part identification.(Liu and Tian,
2024) However, these methods primarily target
classification and segmentation tasks, without spe-
cific adaptations for decomposing 3D objects into

primitives.

4. Primitive Decomposition with Deep Learning
Recent works have explored the application

of deep learning for geometric decomposition:
Learning-Based Fitting: Some models directly pre-
dict primitive parameters (e.g., plane equations, cylin-
der radii) using neural networks. While promising,
these require large labeled datasets with annotated
primitives, which are scarce.(Fu et al., 2023)(Huang
et al., 2018) Hybrid Methods: Approaches combin-
ing traditional RANSAC with learned features from
deep networks have shown improvements in robust-
ness and efficiency. Self-Supervised Learning: Tech-
niques leveraging self-supervision to identify geomet-
ric primitives without labeled data are emerging but
remain experimental.

5. Limitations of Existing Methods Scalability:
Most methods struggle to handle large-scale, dense
point clouds due to computational inefficiency. Ro-
bustness: Traditional and some learning-based meth-
ods are sensitive to noise, occlusions, and incom-
plete data. Generalization: Models trained on specific
datasets or object categories often fail to generalize to
unseen shapes and environments.

3 PROBLEM STATEMENT

The framework is designed to process 3D objects rep-
resented as ordered point sets to decompose them into
geometric primitives. Each 3D object is defined as a
set of n points {Pi | i = 1, . . . ,n}, where each point Pi
is characterized by its (x,y,z) coordinates. Additional
feature channels, such as normals or colors, may also
be incorporated when available; however, the focus
remains primarily on the spatial (x,y,z) representa-
tion.

For the decomposition task, the input point cloud
is uniformly sampled from a 3D object while preserv-
ing its inherent order. The proposed deep learning
framework identifies and segments points into groups
corresponding to specific geometric primitives, in-
cluding planes, cylinders, and spheres. The network
outputs n× p scores, where n is the number of points
in the object, and p is the number of primitive cat-
egories. Each score represents the likelihood that a
point belongs to a specific primitive. By leveraging
the ordered structure of the data set and integrating
deep learning with geometric post-processing tech-
niques, the framework achieves effective decompo-
sition of 3D objects into their constituent geometric
primitives.

Decomposition of 3D Objects into Geometric Primitives

497



3.1 Pointnet

PointNet, introduced by a Stanford University re-
searcher in 2016, aims to classify and segment 3D
image representations. The approach leverages a data
structure known as a point cloud, which consists of
a collection of points representing the geometry of
a 3D object or shape. However, due to its irregu-
lar structure, point clouds are only applicable to spe-
cific use cases.Traditionally, many researchers trans-
formed point clouds into alternative representations,
such as voxels (3D volumetric pixels), before process-
ing them through deep neural networks. This transfor-
mation, however, often results in overly large datasets
and introduces quantization errors, potentially alter-
ing the natural characteristics of the 3D structure.
In their work, the authors present a novel technique
that directly processes point clouds, enabling efficient
classification and segmentation without requiring in-
termediate transformations.

3.2 Architecture

The input for the suggested architecture is Point Sets
that are extracted from a Point Cloud. With each
point represented by its coordinates (xi,yi,zi), a Point
Cloud is a collection of 3D points Pi.

Either a direct sampling of the item’s form or an
extraction from a segmented scene Point Cloud is
used for the object classification job. For semantic
segmentation, the input may be a smaller area of a 3D
scene obtained via object region segmentation, or it
could be a single object for part segmentation.

Key Characteristics of Point Sets

1. Permutation Invariance: Point Clouds lack in-
herent structure, and a collection of N points can
have N! different permutations. Any processing
method must ensure that the output remains con-
sistent regardless of the order of points.

2. Transformation Invariance: Outputs for classi-
fication and segmentation tasks should not be af-
fected by geometric transformations such as rota-
tions or translations applied to the input points.

3. Point Interactions: Important contextual infor-
mation is frequently carried by nearby sites. As
a result, points shouldn’t be discussed separately.
Because segmentation tasks yield more pertinent
information than classification tasks, these inter-
actions are particularly crucial.

Figure 1: the fusion of pointnet shown in green and 3
transformer modules shown in yellow represents our point-
based classification model with fc standing for intercon-
nected layer and ⊕ representing matrix addition

4 POINTNET ARCHITECTURE

The PointNet architecture is designed with simplic-
ity and effectiveness in mind. The classification net-
work begins by applying a shared multi-layer percep-
tron (MLP) to transform each of the n input points
from 3 dimensions to 64 dimensions. Notably, the
same MLP is applied to all n points to ensure consis-
tency. In the subsequent layer, each of these n points
is further transformed from 64 dimensions to 1024 di-
mensions. A max-pooling operation is then used to
aggregate these features into a single global feature
vector in R1024. Finally, a three-layer fully connected
network (FCN) maps this global feature vector to k
output classification scores.

Pointnet is built with a focus on simplicity and ef-
ficiency it utilizes a shared multi-layer perceptron mlp
to map each of the n points from a 3d input space into
a 64-dimensional feature representation a critical fea-
ture of the design is the consistent application of the
same mlp across all n points subsequently these fea-
tures are further transformed into a 1024-dimensional
space for each point a max-pooling layer then aggre-
gates these features forming a comprehensive global
feature vector this global representation is finally pro-
cessed through a three-layer fully connected network
fcn to produce k classification scores.

5 METHODOLOGY

5.1 Dataset Preparation

• The data set is fetched from the Kaggle repository
using the Kaggle API.

• The ModelNet10 dataset, which contains 3D ob-
ject files in .off format, is downloaded, ex-
tracted, and loaded into the working directory for
processing.

• The data set structure is printed to verify the pres-
ence of files and directories.
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5.2 Point Cloud Preprocessing

5.2.1 File Loading

• If the input file is a mesh (e.g., . off), it is con-
verted to a point cloud using Poisson disk sam-
pling to generate a uniform set of points.

• If the input file is already a point cloud, it is di-
rectly loaded.

• A validation step ensures that the loaded data con-
tains valid points. If the point cloud is empty, an
error is raised.

5.2.2 Input Representation

• Each 3D object is represented as a point cloud,
where each point contains its (x,y,z) coordinates.
Additional features such as normals or colors may
also be included if available.

5.3 Deep Learning Framework for
Feature Extraction

A custom deep learning framework is implemented to
extract features from the point cloud:

• Convolutional Layers (conv2d): Extract spa-
tial features from the input point cloud with batch
normalization and ReLU activation.

• Max Pooling (max pool2d): Aggregate local
features into a compact representation.

• Fully Connected Layers
(fully connected): Map features to
higher dimensions and combine them for global
understanding.

• Transform Network (get transform): A
spatial transformer ensures alignment of the in-
put point cloud and feature space to a canonical
coordinate system.

• Dropout (dropout): Regularization is applied
to reduce overfitting during training.

5.4 Plane Segmentation Using RANSAC

5.4.1 Plane Detection

• The RANSAC (Random Sample Consensus) al-
gorithm is used iteratively to detect planes in the
point cloud.

• Key parameters, such as distance threshold,
ransac n, and num iterations, are optimized
for precise plane detection.

Plane Detection Probability

The success probability of RANSAC is related to:
• The fraction of inliers (w) in the data.
• The number of iterations (N) required to ensure a

good model with high probability (p).
The probability p of at least one sample being free

of outliers is given by:

p = 1− (1−wn)N

Where:
• w: Fraction of inliers.
• n: For a plane, the minimum number of points

needed to suit the model is n = 3..
• N: Number of iterations.

This formula is derived from binomial probability.
RANSAC is a robust statistical algorithm de-

signed to estimate the parameters of a mathematical
model from a dataset that may contain a significant
proportion of outliers.
i. Random Sampling Randomly select a minimal

subset of the data points required to fit the desired
model. For example, to estimate a plane with the
equation:

ax+by+ cz+d = 0,
a minimum of three points is required.

ii. Model Fitting Fit the model to the sampled points
using standard techniques (e.g., solving linear
equations or optimization).

iii. Consensus Measurement Compute the residuals
for all data points to evaluate how well the model
fits. The residual for a point (xi,yi,zi) is calculated
as:

di =
|axi +byi + czi +d|√

a2 +b2 + c2
.

Count the number of points (inliers) whose resid-
uals are below a predefined threshold ε (e.g., ε =
0.01).

iv. Statistical Concept RANSAC iteratively per-
forms the above steps (random sampling, model
fitting, and consensus measurement). The quality
of a model is evaluated based on the number of
inliers it explains. After a predefined number of
iterations, the model with the highest consensus
(most inliers) is selected as the best estimate.

5.4.2 Primitive Extraction

• Points classified as inliers for a detected plane are
grouped and visualized in a distinct color.

• Remaining points (outliers) are retained for fur-
ther segmentation.
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5.5 Thresholding

The algorithm employs a distance threshold (ε) to sep-
arate inliers from outliers:

Points with distances less than ε are classified as
part of the plane.
Points with distances greater than ε are excluded (out-
liers).

This involves binary classification of points based
on a fixed threshold, a common statistical decision
boundary.

5.6 Residual Segmentation for Other
Primitives

• After removing inlier points of detected planes,
the residual point cloud is iteratively processed to
detect other geometric primitives such as cylin-
ders and spheres.

• Points not belonging to any primitive are classi-
fied as outliers and visualized in gray.

5.7 Visualization and Saving Results

5.7.1 Color-Coding

• Each detected geometric primitive is assigned a
random color for easy visualization.

5.7.2 Output Generation

• The decomposed point cloud, including all prim-
itives and outliers, is merged into a single point
cloud.

• The result is saved in .ply format for further use
or analysis.

5.8 Workflow

• An example file (chair 0904.off) is processed
through the framework.

• The point cloud is decomposed into geometric
primitives.

• The output is saved as trial4.ply.

6 RESULTS

The decomposition results highlight the exceptional
capabilities of PointNet in accurately reconstructing
and simplifying complex 3D objects into geometric
primitives. The reconstructed primitives closely align

Figure 2: Monitor

Figure 3: sofa

with the original structures, preserving intricate de-
tails such as the ornate back design of the chair and
the precise alignment of the table’s legs. This demon-
strates PointNet’s ability to capture and retain fine-
grained features from raw point cloud data, showcas-
ing its strength in effectively representing detailed ge-
ometries. Furthermore, the use of geometric prim-
itives allows for efficient approximation of the ob-
jects by reducing their complexity while maintaining
their essential structural attributes. Such simplified
representations are highly advantageous in compu-
tationally intensive applications like CAD modeling,
robotics, and virtual reality, where reduced complex-
ity leads to improved processing efficiency and faster
computations. Moreover, the algorithm’s robustness
is evident in its ability to handle both simple flat sur-
faces and complex, intricate designs with ease, ensur-
ing reliable performance across a wide range of ge-
ometries. This makes PointNet a powerful tool for
tasks requiring precise, scalable, and efficient 3D ob-
ject decomposition. The outcomes show how well
the plane identification algorithm works with various
3d objects the algorithm makes use of open3ds arbi-
trary sample concurrence ransac technique accuracy
was calculated using the formula below:

Accuracy = min
(

Detected Planes
Expected Planes

,1.0
)
×100 (1)

The algorithm identifies detected planes, while ex-
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Figure 4: Montior;Bed

pected planes represent the known number of planes
in the object. The elapsed time indicates the total time
taken to process each object, including reading, de-
tecting planes, and writing results.

Table 1: Comparison of Detected and Expected Planes for
Various Objects

Object Detected Planes Expected Planes Accuracy (%) Elapsed Time (s)
Sofa 7 5 100.00 13.68
Bed 11 5 100.00 9.88
Chair 18 5 100.00 14.49
Table 4 5 80.00 32.16
Monitor 17 5 100.00 27.41

7 CONCLUSION

• PointNet demonstrates high efficiency and effec-
tiveness in the decomposition of 3D objects into
geometric primitives. Its use of symmetric func-
tions like max-pooling enables efficient aggre-
gation of global features from unordered point
clouds, capturing key geometric structures such
as planes, edges, and curves. This eliminates the
need for manual feature extraction and parame-
ter tuning, making PointNet superior to traditional
methods.

• The architecture supports end-to-end training with
standard back-propagation, optimizing perfor-
mance without manual intervention. It directly
processes raw point cloud data, avoiding compu-
tationally expensive conversions like voxelization
and retaining finer details of the object. Com-
pared to voxel-based methods like VoxNet and
3D-CNNs, Point-Net achieves better memory ef-
ficiency and faster inference by operating directly
on unstructured data.

Pointnet’s ability to learn semantic representations of
geometric primitives enhances its robustness in han-

dling complex designs, while its lightweight architec-
ture ensures efficient training and scalability for large
datasets. In contrast to point net, which improves lo-
cal feature capture but increases numerical cost, point
net is an effective tool for 3D object deconstruction
because it balances accuracy and efficiency.

8 CONCLUSIONS

• PointNet demonstrates high efficiency and effec-
tiveness in the decomposition of 3D objects into
geometric primitives. Its use of symmetric func-
tions like max-pooling enables efficient aggre-
gation of global features from unordered point
clouds, capturing key geometric structures such
as planes, edges, and curves. This eliminates the
need for manual feature extraction and parame-
ter tuning, making PointNet superior to traditional
methods.

• The architecture supports end-to-end training
with standard backpropagation, optimizing per-
formance without manual intervention. It directly
processes raw point cloud data, avoiding compu-
tationally expensive conversions like voxelization
and retaining finer details of the object. Com-
pared to voxel-based methods like VoxNet and
3D-CNNs, PointNet achieves better memory ef-
ficiency and faster inference by operating directly
on unstructured data.
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