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Dynamic pricing is a vital strategy in e-commerce, enabling retailers to adapt to fluctuating demand and ge-
ographic constraints. This paper introduces a novel framework that integrates geographic network analysis,
Dijkstra’s algorithm, and machine learning (ML) for dynamic pricing optimization. A geographic network
is constructed with cities as nodes and edges representing the shortest paths calculated using Dijkstra’s algo-
rithm, which facilitates location-based price adjustments. ML techniques are used to predict demand across
cities using historical retail data, enabling real-time adjustments based on geographic proximity and demand
variability. Computational efficiency is achieved through KD-Trees for spatial searches and multiprocessing
for large datasets. The proposed approach demonstrates the ability to optimize pricing strategies by account-
ing for both geographic and demand variability, resulting in enhanced customer satisfaction and increased
revenue. This work offers a robust methodology for e-Commerce platforms to personalize pricing and lever-

age predictive analytics, providing a competitive edge in dynamic and diverse markets.

1 INTRODUCTION

In the highly competitive landscape of e-Commerce,
dynamic pricing has emerged as a vital strategy that
allows retailers to adjust prices in real-time based on
fluctuating market conditions, demand patterns, and
geographic factors. Unlike traditional static pricing,
dynamic pricing provides a more flexible approach
that can significantly enhance customer satisfaction
and increase revenue by offering prices that reflect the
true value of products in different contexts.(Deksnyte
and Lydeka, 2012)

This project explores a novel approach to dynamic
pricing by integrating geographic network analysis
with Dijkstra’s algorithm and machine learning (ML)
techniques. Using physical distances between cities,
our methodology enables location-based price adjust-
ments, where customers closer to distribution hubs
might experience reduced shipping costs, and those
farther away see adjusted prices. Dijkstra’s algorithm
is applied to efficiently calculate the shortest routes
across a network of cities, creating a foundation for
calculating distance-based price modifications.(gee, )

Beyond geographic adjustments, demand predic-
tion is crucial to optimizing pricing. Therefore, ma-
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chine learning models are used to predict demand
for different cities and product categories, allow-
ing dynamic pricing that adapts not only to geo-
graphic distance but also to anticipated customer de-
mand.(Enache, 2021) This combination of distance-
based pricing and ML-driven demand prediction cre-
ates a robust and scalable pricing system that aligns
with both spatial and temporal variations in consumer
behavior.(Saci, )

The contributions of this project include an effi-
cient computational framework using KD-Trees for
fast spatial searches, parallel processing to handle
large datasets, and a comprehensive demand fore-
casting model that enhances pricing decisions.(Aguila
et al., 2015) By integrating geographic insights with
predictive analytics, this project demonstrates a pow-
erful approach to dynamic pricing in e-commerce, of-
fering a competitive edge for retailers seeking to per-
sonalize pricing and maximize revenue.

2 LITERATURE SURVEY

Dynamic pricing has emerged as a critical tool in rev-
enue management, allowing businesses to optimize
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pricing strategies based on real-time factors such as
demand, competition, and supply. Traditional ap-
proaches rely on static pricing models, which often
fail to adapt to market fluctuations. Advanced tech-
niques, such as machine learning and algorithmic
methods, have proven effective in addressing these
limitations. Dijkstra’s algorithm, a well-known graph
traversal method, has been successfully applied in cal-
culating shortest paths for distance-based optimiza-
tion, particularly in logistics and supply chain con-
texts. Using datasets like the world cities dataset, dy-
namic pricing models can integrate spatial and logis-
tical factors, enhancing decision-making for location-
sensitive pricing strategies.

The paper by Samuel B. Hwang and Sungho Kim
(Hwang and Kim, 2006) introduces a model that auto-
mates price adjustments to optimize profit and reduce
sales time by gathering competitor prices through
web crawlers and employing a three-phase process
of data collection, strategic analysis, and formula-
tion. While this approach focuses on competitor-
based pricing and frequent updates to enhance com-
petitiveness, the proposed work focuses on logistics-
driven pricing strategy. By leveraging the World
Cities dataset and Dijkstra’s algorithm, it dynamically
adjusts prices based on delivery costs and customer
location, prioritizing the balance between logistical
expenses and accessibility over competitor undercut-
ting.

El Youbi et al. (2023)(El Youbi et al., 2023) dy-
namic pricing using machine learning, focusing on
developing an accurate pricing model. Their study
compared Gradient Boosting Machines (GBM), Ran-
dom Forest, and Neural Networks, with GBM out-
performing the others, achieving a low Mean Squared
Error (MSE) of 0.012 and an R-squared score of 0.92.
By incorporating features like customer segmentation
and product categories, their approach aligns pricing
with customer behavior and market trends. The study
underscores the potential of machine learning in cap-
turing complex pricing dynamics and highlights the
importance of feature engineering and hyperparame-
ter optimization for effective implementation.

The study by Chunli Yin and Jinglong Han (Yin
and Han, 2020)explores dynamic pricing strategies
for e-commerce platforms using deep reinforcement
learning (DRL), emphasizing the technology’s ability
to optimize pricing decisions by adapting to consumer
behaviors and market fluctuations. The research inte-
grates game-theoretic models with DRL algorithms,
such as Q-learning, SARSA, and Monte Carlo meth-
ods, to address pricing challenges under diverse mar-
ket and consumer conditions. The authors propose a
multi-layered dynamic pricing framework, consisting

of a data layer for collecting and preprocessing trans-
action data, an analysis layer utilizing machine learn-
ing techniques like clustering and association rules
to uncover pricing patterns, and a decision layer im-
plementing strategies like market segmentation and
auction-based pricing. Their experimental results val-
idate the model’s efficiency in achieving equilibrium
in both single and multi-commodity auctions, show-
ing significant potential to enhance profit maximiza-
tion and competitiveness. While the study bridges the
gap between Al technologies and economic theories
in pricing, it identifies future research opportunities
in integrating production planning with pricing strate-
gies to fully capture supply chain dynamics.

W.Feijen et al.(Feijen and Schifer, 2021) explore
the fusion of Machine Learning with Dijkstra’s Short-
est Path Algorithm. Their method uses machine learn-
ing predictions to preemptively estimate likely short-
est paths, enhancing Dijkstra’s computational effi-
ciency. This hybrid approach is particularly effective
in large, complex networks, reducing computation
time while retaining accuracy in pathfinding. This re-
search demonstrates the utility of machine learning as
a complementary tool in traditional algorithms, em-
phasizing applications in large-scale networks where
computational savings are essential

A.Abudureheman et al.(Abudureheman and Nilu-
paer, 2023) introduce an Optimization Model for
Cross-border E-commerce during the COVID-19 pan-
demic, integrating Dijkstra’s algorithm to optimize
transportation routes under pandemic restrictions.
This model factors in cross-border logistics chal-
lenges, including limited transportation options and
fluctuating demand, using a modified shortest-path al-
gorithm to reduce delivery times. The study by Zhang
et al. contributes to logistics optimization in con-
strained environments, illustrating how traditional al-
gorithms can be adapted to meet the challenges of the
modern supply chain during global crises.

Dynamic pricing in e-commerce has evolved with
the integration of Al and machine learning, enabling
more efficient and adaptive pricing strategies. Chen
and Chen (2015) (Chen and Chen, 2015)laid the
groundwork with models addressing the challenges of
competition and limited demand information, empha-
sizing the need for real-time adjustments. Schlosser
and Boissier (2018)(Schlosser and Boissier, 2018)
contributed reactive Al-based pricing strategies using
historical data to simulate price adjustments and their
effects on customer behavior. Proactive approaches,
such as those by Mohamed et al. (2022)(Mohamed
et al., 2022), employed regression models and neural
networks to forecast prices, particularly for seasonal
products, highlighting the predictive power of Al in
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dynamic pricing. Tseng et al. (2018)(Tseng et al.,
2018) extended this with auto regressive models and
neural networks for pricing in electronics, showcas-
ing the versatility of these methods. Reinforcement
learning-based strategies, as explored by Yin and Han
(2021)(Yin and Han, 2020), demonstrated the efficacy
of algorithms like Q-learning and SARSA in auction-
based pricing scenarios. Beser et al. (2019)(Beser
et al., 2019) emphasized simulation-based individ-
ualized pricing, advocating for its integration into
decision-making frameworks for greater automation.
Despite these advancements, challenges persist, in-
cluding data privacy concerns, algorithmic bias, and
the need for standardized datasets for benchmarking.
Future research should focus on developing unified
frameworks that seamlessly integrate Al into existing
IT systems, enabling fully automated and ethical dy-
namic pricing.

The paper by Shukla et al.(Shukla et al., 2023)
proposes an innovative framework for dynamic pric-
ing optimization in e-commerce platforms, integrat-
ing fuzzy logic systems with demand-side manage-
ment to address the uncertainty inherent in customer
demand. By utilizing fuzzy logic, the system incorpo-
rates linguistic variables to represent imprecise fac-
tors like demand levels, time of day, and competi-
tor pricing. It generates dynamic, customer-specific
pricing strategies through fuzzification, fuzzy infer-
ence, and defuzzification processes. This adaptive
pricing system enhances both customer satisfaction
and platform revenue by balancing real-time demand
changes and consumer preferences. The study high-
lights fuzzy logic’s advantages over traditional ma-
chine learning techniques, including interpretability,
reduced data requirements, and effective handling of
the cold start problem.

Using information from Bangalore’s ”"Dunzo” op-
erations, Hrithik T. H. et al.’s paper (Hrithik et al.,
2024)suggests a machine learningbased architecture
for online shopping platform warehouse site opti-
mization. In order to forecast the demand for new
warehouse locations, the study focuses on important
variables such order volume, delivery distance, and
the availability of alternative facilities. KNN, Support
Vector Regression (SVR), Random Forest, Decision
Trees, Gradient Boost, Artificial Neural Networks
(ANN), and Long Short-Term Memory (LSTM) were
among the machine learning techniques that were as-
sessed. Among these models, the Random Forest
and Gradient Boost regressors outperformed others,
achieving the highest R-squared values and minimal
error rates, thereby proving to be the best fit for the ap-
plication. In contrast, SVR and Decision Trees were
found to be less effective due to high errors and over-
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fitting issues. The paper underscores the effectiveness
of machine learning in reducing delivery costs and
improving customer satisfaction by accurately pre-
dicting optimal warehouse locations. It also high-
lights the potential for further advancements through
the integration of deep learning models, which could
provide higher accuracy and efficiency in addressing
the growing demands of e-commerce logistics.

Prakash D. et al. (D et al., 2023)use Dijkstra’s
approach in conjunction with Genetic approach (GA)
and Particle Swarm Optimization (PSO) to optimize
EV charging routes and waiting times. One notable
feature of Dijkstra’s algorithm is its capacity to de-
termine the shortest routes in traffic networks while
taking charging station lines, traffic situations, and
battery levels into consideration. Although it high-
lights speed and adaptability limitations in compari-
son to flexible approaches like PSO, which demon-
strated greater performance in the majority of cases,
the study shows its efficacy in identifying the best
routes for EVs. However, because of its determin-
istic nature and accurate pathfinding, Dijkstra’s al-
gorithm continues to be a fundamental technique for
routing. This makes it especially pertinent in situa-
tions that demand certain and dependable outcomes,
such static traffic networks or established routes.The
findings highlight how important it is to combine Di-
jkstra’s algorithm with other optimization techniques
for increased effectiveness in real-time EV routing ap-
plications.

Madhura Srinivasan and Sireesha K. (Srinivasan
and Sireesha, 2022)combine K-Means++ clustering
with Ant Colony Optimization (ACO) to provide
an optimum solution to the Logistic Routing Prob-
lem (LRP), a subset of the Vehicle Routing Prob-
lem (VRP). Using K-Means++ initially to group geo-
graphical areas and then using ACO for route creation
and optimization, the method reduces travel costs and
distances. In order to improve routing performance,
the methodology uses the elbow method to find the
ideal number of clusters and emphasizes the impor-
tance of hyperparameter tweaking in ACO, such as
pheromone evaporation and attractiveness. Accord-
ing to the results, this hybrid approach outperforms
conventional methods in terms of computing effi-
ciency and solution quality, greatly increasing route
efficiency and lowering trip distances across datasets.
As a result, it is a scalable and useful framework for
real-world logistics challenges.

In order to find the best pricing that maximizes
revenue and corresponds with customer willingness
to pay, Mandava Jaswanth et al’s (Jaswanth et al.,
2022)research offers a framework for product price
optimization that uses the Least Squares Regression
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approach. To determine important pricing character-
istics, the study uses regression and demand curve
analysis methodologies, backed by information gath-
ered from e-commerce platform web scraping. The
model demonstrates the efficiency of Least Squares
in determining the best regression lines based on vari-
ables like cost, demand, and consumer behavior by
training and testing product pricing predictions using
Python’s sklearn package. The results of the experi-
ments show that the pricing projections for a range of
products are correct, highlighting the importance of
dynamic pricing techniques in increasing profitabil-
ity. The study ends with recommendations for the use
of cutting-edge machine learning models to improve
real-time pricing decisions.

Akshay A. S. et al.’s(A S et al., 2023) research
investigates last-mile delivery optimization with so-
phisticated algorithms including the Distance Matrix
API, Optical Character Recognition (OCR) and the
Traveling Salesman Problem (TSP). It presents a soft-
ware program for e-commerce logistics that optimizes
routes, greatly cutting delivery times and distances
while improving customer happiness and operational
effectiveness. The system adjusts to changing cir-
cumstances, such as traffic, by using Google APIs for
precise distance computations and OCR for precise
location data extraction from invoices. Comparative
studies show significant efficiency improvements over
conventional techniques, underscoring the revolution-
ary potential of algorithm-driven logistics. Sangwan’s
insights into heuristic and exact TSP-solving strate-
gies and Ripon et al.’s work on genetic algorithms for
TSP optimization are only two examples of the contri-
butions that the study draws upon, incorporating these
developments into a robust framework for real-world
applications.

In order to improve customer engagement on
e-commerce platforms, the recommendation algo-
rithms are examined in the article by Ranjith Ku-
mar et al.(Kumar et al., 2024) It shows a number
of strategies, such as collaborative filtering for tai-
lored recommendations based on user-item interac-
tions, popularity-based systems for attracting new
users, and sophisticated techniques such as utility ma-
trix factorization and latent component models for
more granular customization. Clustering techniques
such as K-Means are used to analyze product char-
acteristics and provide contextually relevant recom-
mendations to solve the cold start problem. In order
to increase recommendation accuracy, recent devel-
opments are examined, including sentiment analysis,
the integration of demographic features, and graph-
based neural models. System efficacy and flexibility
are guaranteed by evaluation metrics such as CTR,

MAE, RMSE, and clustering-specific measurements.
In order to satisfy the various demands of users and
enterprises, the proposed hybrid solution effectively
combines cooperative filtering and clustering.

3 METHODOLOGY

The proposed work employs a multi-step method-
ology designed to optimize dynamic pricing in e-
commerce using a combination of geographic net-
work analysis, Dijkstra’s algorithm, and machine
learning-based demand prediction. The process can
be divided into the following key phases:

3.1 Data Collection and Preprocessing
3.1.1 City Data

The geographic dataset contains city information, in-
cluding latitude, longitude, and city names. This data
is crucial for building a geographic network.

3.1.2 Retail Data

E-commerce transaction data includes fields such as
product information, quantity, price, and customer lo-
cation (city). This dataset is used for both dynamic
pricing and demand prediction.

3.1.3 Data Cleaning and Column Detection

The preprocessing stage automatically detects column
names for essential fields such as latitude, longitude,
and city, making the method adaptable to datasets
with different structures.

3.2 Geographic Network Construction
Using KD-Trees

3.2.1 KD-Tree Implementation

To efficiently handle geographic data, we construct
a KD-Tree using latitude and longitude coordinates.
KD-Trees enable fast spatial searching, allowing for
an efficient calculation of neighboring cities within
a specified maximum distance (e.g., 500 km). The
distance between two geographic points is calculated
using the Haversine formula, which accounts for the
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curvature of the Earth:

d = 2r - arcsin ( sin? (¢2;¢1>+

cos (1) - cos(¢) - sin? <k2 g M >(>)

Where:

* d: Great-circle distance between two points (in
kilometers)

e r: Radius of the Earth (r =~ 6371km)
* 01,07 Latitudes of the two points (in radians)
* A1,A2: Longitudes of the two points (in radians)

This formula is used to determine whether two cities
are within the specified radius when constructing the
graph.

3.2.2 Graph Creation with Dijkstra’s Algorithm

Once the KD-Tree identifies nearby cities, a graph is
constructed where:

* Nodes represent cities.

» Edges represent connections between cities that
are within the specified radius, weighted by the
great-circle distance between them.

To calculate the shortest paths between all city
pairs, Dijkstra’s algorithm is applied. The algorithm
iteratively minimizes the path cost for each node by
updating the shortest known distance. The formula
used is:

d[v] = min (d[v],d[u] +w(u,v)) 2)
Where:

* d[v]: Current shortest distance to node v

* d[u]: Current shortest distance to node u (a neigh-
boring node)

* w(u,v): Weight of the edge between nodes u and
v (distance between the cities)

The algorithm initializes all distances as infinity
(o) except for the source node, which starts at zero. It
then iteratively updates the distances until the shortest
paths to all nodes are found.

3.2.3 Edge Optimization and Deduplication

To reduce computational complexity, edges are fil-
tered and deduplicated by only adding one-way con-
nections for each city pair, ensuring efficient process-
ing of geographic data.
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3.3 Dynamic Pricing Calculation Using
Distance-Based Adjustments and
Demand

Dynamic pricing in the code is calculated by incorpo-
rating transportation costs based on the distance from
London and demand adjustments through the quan-
tity sold. The transportation cost is determined using
the great-circle distance, precomputed with Dijkstra’s
algorithm, and calculated as the product of the dis-
tance (in kilometres), fuel consumption per kilometre
(0.025 litres/km), and petrol price per litre ($1.72).

Dynamic Price = (Distance (km)
x Fuel Consumption per km
x Petrol Price per litre)
+ Unit Price
+ (Quantity x 0.05) (3)

This ensures that cities farther from London in-
cur higher transportation costs, which are reflected
in the final price. Additionally, demand is factored
in through a 5% adjustment based on the quantity
sold, accounting for the increased logistical and sup-
ply challenges associated with higher demand. The
final dynamic price is obtained by summing the orig-
inal unit price, the distance-based transportation cost,
and the demand adjustment. This approach dynami-
cally adjusts prices to reflect real-world logistics and
demand, offering a sustainable and region-specific
pricing strategy for e-commerce operations.

3.4 Demand Prediction Using Machine
Learning

3.4.1 Feature Engineering

Transactional data is enhanced with new features such
as month and year derived from the transaction date,
which helps in identifying seasonal trends.

3.4.2 Model Selection and Training

To predict demand, machine learning models (e.g.,
Random Forest Regressor) are trained on historical
sales data. The model input includes product and lo-
cation features, along with temporal data, allowing it
to capture variations in demand across cities and sea-
sons.

3.4.3 Model Evaluation

Models are evaluated using metrics such as Mean
Squared Error (MSE) to ensure accurate demand fore-
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casts. Hyperparameter tuning and cross-validation are
performed to optimize model performance.

3.5 Parallel Computation for Efficiency
3.5.1 Batch Processing with Multiprocessing

To handle the large number of city pairs and retail
transactions, the project leverages the Python multi-
processing library. Distance calculations are divided
into batches and processed in parallel, significantly
reducing computation time.

3.5.2 Efficient Memory Management

By batching data and using memory-efficient struc-
tures, the project minimizes memory overhead, which
is particularly important for large datasets commonly
seen in e-commerce applications.

3.6 System Integration and Output
Generation

3.6.1 Integration of Dynamic Pricing and
Demand Prediction

The final dynamic prices, adjusted for distance and
demand, are computed and added to the retail dataset.
This integration allows for real-time or periodic pric-
ing updates in e-commerce systems.

3.6.2 Output Storage

The processed dataset, with columns for dynamic
prices and demand forecasts, is saved in a structured
format (e.g. CSV).

3.7 Visualisation and Analysis

Graph and Demand Visualisations , including geo-
graphic scatter plots of city connections, shortest path
histograms, and monthly demand trends, are used to
analyze and validate the methodology’s effectiveness.
In addition, feature importance plots for the machine
learning model and pricing impact distributions are
generated to provide insights into the factors influenc-
ing pricing and demand.

3.8 Workflow

The workflow diagram presented in Figure 1 outlines
the main steps of the proposed method.

Dynamic Pricing

Data Collection and
Preprocessing

' Geographic Network
g and Shortest Path

Calculation

st Dynamic Pricing and
Demand Prediction

4 Batch Processing and
System Integration

=

=T

¥ Output and
Visualization

Figure 1: Dynamic pricing using Dijikstra’s and ML work-
flow

4 RESULTS AND OUTPUT

The outcomes of the dynamic pricing methodology
and the demand prediction model, as well as the key
metrics, graphs, and outputs are analyzed to demon-
strate the effectiveness of the approach.
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4.1 City Graph Construction and
Connectivity Analysis

The city graph represents a dense logistics network
with 258 nodes (cities) and 30,916 edges, where
nodes denote cities, and edges represent connections
between cities within a maximum distance of 500 km.
Each edge’s weight corresponds to the great-circle
distance, reflecting real-world logistics feasibility.

City Graph Visualization

Figure 2: KD-tree graph based on distance

S5+ Loading data...
Building efficient city graph...
Adding edges to graph...
Graph built with 258 nodes and 38916 edges
Graph build time: 2.72 seconds
Processing unigue source-destination pairs...
Calculating distances in parallel...
Calculating dynamic prices...
Saving results to /content/Updated_Retail Data.csv
Processing completed successfully!

Figure 3: City Graph Construction using KD Trees, Dijik-
stra’s implementation and dynamic pricing calculation

The graph was constructed efficiently in just
2.72 seconds using a KD-tree for nearest-neighbour
searches, significantly reducing computational com-
plexity by identifying city pairs within the specified
distance threshold. This approach highlights a scal-
able method for building large geographical networks
for e-commerce logistics and route optimization.

4.2 Insights from Dynamic Pricing
Adjustments in Retail Dataset

The updated dataset incorporates a dynamic pricing
model that adjusts product prices based on transporta-
tion costs and demand sensitivity. The Dynamic Price
column reflects the impact of distance from London,
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with cities farther away incurring higher prices due to
increased logistical expenses. Additionally, demand-
based adjustments are evident, as a 5% price incre-
ment is applied based on the Quantity sold, account-
ing for supply chain and market dynamics. This
model highlights a strategic approach to pricing, en-
suring profitability while adapting to regional market
conditions. The diverse range of products and cus-
tomer locations underscores the flexibility and appli-
cability of this pricing strategy across varying regions
and consumer demands. These insights emphasize
how businesses can optimize pricing for profitability
while addressing logistical and market-specific chal-
lenges effectively.

3 colum

Stockcode’, “De:

RED RETRO!

HEART IVORY TRE!

o
1
2
3 URBAN BLACK RIBEONS 2
4

552444 21821 VINTAGE UNION JACK BUNTING 2 s 176340  Wallon upon Thames 9627980

Figure 4: Updated retail dataset with calculated dynamic
price

4.3 Comparing Original and Dynamic
Pricing: Impact of Distance and
Demand Adjustments

The box plot titled ”Original vs Dynamic Prices”
compares the distribution of the Unit Price (original
price) and Dynamic Price (adjusted price based on
distance and demand). The plot shows how the dy-
namic pricing model influences the prices of products
in comparison to their original prices.

4.3.1 UnitPrice

The original prices appear to have a tight range with a
few outliers, indicating that most products are priced
within a similar range but there are some high-priced
outliers.

4.3.2 DynamicPrice

The dynamic prices show a wider spread, including
lower and higher outliers. This is expected, as the dy-
namic pricing model accounts for transportation costs
(distance from London) and additional demand-based
increments, causing a more varied price range. The
larger spread in DynamicPrice compared to UnitPrice
suggests that the model effectively adjusts for geo-
graphical and demand factors, which could result in
higher prices for customers located farther from the
central point (London) or with higher demand. The
presence of outliers indicates that certain locations
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Original vs Dynamic Prices

Figure 5: Original Price vs Dynamic Price

or products might be disproportionately affected by
these adjustments.

4.4 Predicting Monthly Demand Using
Machine Learning Models

In this analysis, we predict the monthly demand for
retail products based on various features such as City,
StockCode, and Month. The dataset was first aggre-
gated to calculate monthly demand for each product
in each city. Categorical variables (City, StockCode,
Month) were one-hot encoded to make them suitable
for machine learning models. Two machine learn-
ing models were trained: Random Forest Regressor
and XGBoost Regressor, to predict the demand. The
Mean Squared Error (MSE) was calculated to evalu-
ate the models’ performance, with the Random For-
est model yielding a baseline MSE and the XGBoost
model providing a more accurate prediction with a
lower MSE of 1.0068384256126215. Low MSE val-
ues indicate that the model performs well in predict-
ing demand across cities and products. This is es-
sential for the pricing model, as accurate demand
forecasts enable more responsive price adjustments.
A well-tuned model ensures that pricing reflects not
only logistical costs but also anticipated customer de-
mand, balancing supply-side and demand-side fac-
tors.

3% Mean Squared Error of Demand Pradiction with Log Transformation and XGBoost: 1.8068384256126215

Figure 6: Accuracy of the XGBoost model

The monthly demand distribution was also visu-
alized, revealing the skewed nature of the demand
data. This analysis demonstrates how machine learn-
ing techniques can be applied to predict demand,
which is crucial for inventory management and pric-
ing strategies.

The histogram illustrates the monthly demand dis-
tribution for a specific product or service. The x-
axis represents the demand values, while the y-axis
shows the frequency of occurrences within each de-

Distribution of Monthly Demand

1400 A
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Figure 7: Monthly Demand Prediction

mand range. The data indicates that the majority of
demand falls between 1 and 2 units per month, with
the frequency decreasing as demand rises. The super-
imposed curve suggests a right-skewed distribution,
implying that while most months experience low to
moderate demand, there are a few months with ex-
ceptionally high demand.

4.5 Customer Segmentation Based on
Spending Behaviour

The box plot visualizes customer segmentation based
on their total spending habits. Segment O displays a
wide box and long whiskers, which indicates that cus-
tomers in this segment have a large range of spending,
from low to high. This suggests a diverse group with
varying spending behaviours. In contrast, Segment 1
has a narrow box and shorter whiskers, indicating that
most customers in this segment have similar, concen-
trated spending patterns, with less variation. Finally,
Segment 2, like Segment 0, shows a wider box and
longer whiskers, meaning customers in this segment
exhibit a broader range of spending, but with more
moderate to high spending habits. These insights help
businesses tailor their strategies, such as targeted mar-
keting or personalized offers, to better meet the needs
of each group of customers.

4.6 Feature Importance in Demand
Prediction

A bar chart of feature importance (Fig.9) of the ML
model describes which factors (e.g., city, product cat-
egory) most influence demand predictions. Features
of high importance are the primary drivers of demand
variability. For example, if geographic location (city)
and seasonal trends (month) show high importance,
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Total Spend by Customer Segment
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Figure 8: Customer Segmentation Based on Spending Be-
haviour

this implies that location-based and temporal adjust-
ments are critical for accurate pricing. Insights from
feature importance can inform further refinement of
the pricing and demand models, enhancing the over-
all robustness of the system.

Aggregated Feature Importance by Category

05

0.4

03

Importance

02

0.0

city stockCode Month
category

Figure 9: Feature Importance in Demand Prediction

4.7 Demand Trends Over Time

A time series plot (Fig.10) showing monthly demand
across various cities or products provides a visual of
demand trends and seasonal patterns.

Seasonal spikes or dips in demand help in ad-
justing pricing strategies accordingly. For instance,
higher demand during certain months might prompt a
slight increase in prices, while lower demand periods
could result in discounts. Visualizing demand trends
allows for a nuanced approach to pricing that aligns
with customer purchasing behaviors.

4.8 Summary

The results show that the proposed approach suc-
cessfully integrates geographic distance with ma-
chine learning predictions to enable a dynamic, opti-
mized pricing system. The graph-based city network
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Figure 10: Demand trends of different cities over time

and ML-driven demand forecasts enhance responsive-
ness, while efficient data structures ensure scalabil-
ity. Overall, this system demonstrates a robust solu-
tion for personalized, demand-responsive pricing in
e-commerce, aligning logistical costs with customer
demand to maximize revenue potential.

S Gaps And Novelty

In existing e-commerce pricing systems, dynamic
pricing often relies heavily on historical sales and de-
mand without adequately accounting for geographic
factors and real-time demand variations. Traditional
pricing algorithms may lack adaptability to distance-
based cost structures, which are especially relevant in
large-scale, geographically distributed markets. This
gap in spatial awareness leads to uniform pricing
strategies that overlook potential cost optimizations
and competitive advantages for nearby customers.
Additionally, while demand prediction is widely im-
plemented, integrating it with dynamic pricing in a
way that also accounts for geographic distances re-
mains underexplored.

This project introduces a novel integration of
geographic network analysis, Dijkstra’s algorithm,
and machine learning for a comprehensive, location-
aware dynamic pricing system. By constructing a
city-based graph using KD-Trees and applying Di-
jkstra’s shortest path calculations, this approach en-
ables distance-based price adjustments efficiently, en-
hancing the pricing model’s responsiveness to geo-
graphic proximity. Coupled with machine learning
for demand prediction, the project provides a dual-
layered approach that adjusts prices based not only
on geographic logistics but also on forecasted demand
patterns. This combined framework addresses previ-
ously identified gaps, creating a scalable and adapt-
able pricing system that is bettee-Commercewith real-
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world e-commerce dynamics.

6 CONCLUSION AND FUTURE
SCOPE

The proposed project demonstrates an approach to
dynamic pricing in e-commerce by integrating geo-
graphic network analysis, Dijkstra’s algorithm, and
machine learning for demand prediction. By con-
structing a geographic network of cities and calculat-
ing shortest paths, the system effectively incorporates
distance as a factor in price determination, allowing
for a more cost-efficient and competitive pricing strat-
egy. The use of machine learning to predict demand
across different regions and product categories fur-
ther strengthens the model, enabling prices that adapt
not only to logistical costs but also to anticipated
consumer demand. This dual approach to pricing
optimization provides a scalable and responsive so-
lution, particularly valuable in e-commerce environ-
ments that demand both personalization and agility.
The results show that this integrated method not only
improves pricing precision but also enhances the cus-
tomer experience by offering context-aware prices
that reflect both proximity and demand insights.

Future work can explore the integration of real-
time data sources, such as live traffic patterns, weather
conditions, and regional events, to refine demand
prediction and pricing strategies. Incorporating ad-
vanced machine learning models, such as deep learn-
ing architectures, could enhance the accuracy of de-
mand forecasting by capturing complex, non-linear
patterns in customer behavior. Expanding the geo-
graphic network to include international logistics and
cross-border trade scenarios would make the model
applicable to global e-commerce platforms. Addi-
tionally, integrating blockchain technology for trans-
parency in pricing calculations and logistics data shar-
ing could improve trust among consumers and stake-
holders. These advancements would broaden the ap-
plicability of the proposed approach, paving the way
for smarter, more inclusive, and globally adaptable
dynamic pricing systems.
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