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Abstract: The Multilayer Perceptron (MLP) in weather forecasting is used for regression tasks based on input features
such as pressure values, temperature, pressure values, wind. This proposed work focuses on evaluating the
efficiency of MLP for accurate time series pattern predictions. This study incorporates ERA5 hourly data on
pressure levels from 1940 to the present and uses a Feedforward Neural Network(FNN) MLP architecture. In
addition, techniques such as the Cosine Annealing Learning Rate Scheduler and Hyperparameter Tuning are
employed to analyze temporal relationships, perform feature selection and ultimately improve model perfor-
mance. Experiments conducted with MLPs demonstrate competitive accuracy with MSE 91.92, MAE 7.02
and R² 0.9985 compared to traditional forecasting models, highlighting MLPs as a valid method for meteoro-
logical applications.

1 INTRODUCTION

Weather forecasting plays a crucial role in under-
standing the dynamics of the atmosphere and is
critical for numerous industries, including agricul-
ture, transportation, energy, and disaster manage-
ment.(Jaseena and Kovoor, 2022) The process of
predicting the weather condition for the future is
known as weather forecasting.(Singh et al., 2019) It
reduces risks, maximizes agricultural yields, allows
safe transportation, and enables proper energy man-
agement. The use of real-time temperature, humid-
ity, and pressure data using various sensors(Singh
et al., 2019). The task of weather forecasting is in-
herently challenging because atmospheric systems are
complex and unpredictable and Artificial Neural Net-
works (ANNs) have some interesting properties that
made this family of machine learning algorithms very
appealing when confronted with difficult pattern dis-
covery tasks.(Fente and Singh, 2018)

Traditional models of weather forecasting usually
fail to account for many inherent nonlinearities and
complexities in the data. They tend to focus more
on the broad strokes among the fundamental atmo-
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spheric variables that comprise temperature, pressure,
moisture, and wind. As a result, they often produce
less reliable forecasts of the weather, especially in the
long range or for regions where the weather changes
rapidly.

Pressure is one of the primary atmospheric vari-
ables and, thus, holds meteorological importance
as its changes mark weather fronts, high- or low-
pressure systems, etc. Therefore, accurate predictions
of pressure levels are likely to provide essential in-
formation regarding the atmospheric pattern at var-
ious altitudes, and in general, it enhances the over-
all accuracy of weather prediction. However, even
in the present day models, pressure levels cannot be
predicted accurately, which leads to a call for more
advanced techniques.

This paper explores the possibility of using Mul-
tilayer Perceptrons, a form of artificial neural net-
work, to overcome these challenges. MLPs have been
shown to be capable of capturing complex, nonlin-
ear relationships between atmospheric variables. Un-
like traditional forecasting methods, MLPs can pro-
cess large historical datasets and uncover subtle pat-
terns and correlations that conventional approaches
might overlook. This makes MLPs a powerful tool
for improving the accuracy and reliability of weather
forecasts.

The purpose of this research is to use MLPs to
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develop an efficient and accurate forecasting model
for atmospheric pressure levels. There are two types
of data mining tasks: descriptive data mining tasks
that describe the general properties of existing data
and predictive data mining tasks that attempt to
make predictions based on inference from available
data.(Bushara and Abraham, 2014) This proposed
model will use high-resolution historical data from
sources such as the ERA5 dataset(Zhong et al., 2024)
to model the intricate interactions between various at-
mospheric variables while ensuring high accuracy in
predictions.

The primary objectives of this proposed model are
to develop and train an MLP model for weather fore-
casting, especially focusing on the prediction of pres-
sure levels. The model will be designed to capture the
complex interactions among atmospheric variables
and, therefore, provide a more accurate representation
of pressure variations. It generates the data set assim-
ilating high-quality and abundant global observations
with ECMWF’s IFS model(Chen et al., 2023).

The performance of the developed MLP model
shall be evaluated with Established performance met-
rics also used include Mean Absolute Error (MAE),
Mean Squared Error (MSE), and R-squared (R²).
These will give a good and all-rounded estimate of
how accurate the model is in terms of predictive abil-
ity. For comparing MLP results with some baseline
models or preexisting approaches to forecasting, im-
provements based on the application of MLPs over
other methods may be highlighted through a better
accuracy and reliability in forecasting. Experiments
conducted with MLPs demonstrate competitive accu-
racy with MSE 91.92, MAE 7.02 and R² 0.9985 com-
pared to traditional forecasting models, highlighting
MLPs as a valid method for meteorological applica-
tions.

The organization of the paper is as follows: Sec-
tion 2 discusses the existing approaches to weather
forecasting and their limitations. Section 3 details
the methodology and techniques employed in predict-
ing weather forecasting using a Multilayer Percep-
tron. Section 4 discusses the experimental results and
performance evaluation of the model. Lastly, Section
5 provides the conclusion by illustrating how effec-
tively MLPs work to increase the accuracy of weather
forecasts and provide a scalable solution for medium-
range forecasts and discusses potential future direc-
tions for research.

2 BACKGROUND STUDY

2.1 Significance of Weather Forecasting
and Traditional Methods

Weather forecasting remains a critical domain due to
its essential role in addressing challenges across sec-
tors such as agriculture, disaster preparedness, and
logistics. Traditional predictive techniques, includ-
ing statistical and physical modeling, have laid the
groundwork for weather prediction systems. For in-
stance, statistical methods leverage numerical model
outputs, and numerical modelers acknowledge the
effectiveness of well-applied statistical procedures
(Medar et al., 2017). These approaches often struggle
to manage the inherent complexity and chaotic nature
of atmospheric processes. They also demand signifi-
cant computational resources and may yield subopti-
mal results in dynamic scenarios.

2.2 Limitations of Numerical Weather
Prediction Models

The development of techniques based on ML has in
recent years been suggested as potential alternatives
to traditional NWP models. Examples include the tra-
ditional NWP models, such as those developed at the
European Centre for Medium-Range Weather Fore-
casts (ECMWF), which rely on physics-based sim-
ulations but are computationally intensive and lim-
ited by increasing uncertainty over longer lead times.
To address these challenges, several ML models have
been developed using large historical datasets to de-
liver fast and accurate predictions.

2.3 Machine Learning Models in
Weather Forecasting

In one of the works of Fuxi, a cascade machine
learning forecasting system for the 15-day global
weather forecast(Chen et al., 2023), Fuxi demon-
strates the ensemble capabilities for uncertainty es-
timation and outperforms the deterministic ECMWF
high-resolution model on certain metrics.

MLP is one of the many types of artificial neural
networks widely used in machine learning for vari-
ous tasks such as regression, classification, forecast-
ing, and others. Figure 1 shows the interconnected
layers responsible for feature selection and prediction.
Multiple Linear Regression is a common approach to
building prediction models, generating potential pre-
dictors, and forecasting rainfall(Kothapalli and Totad,
2017).
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Figure 1: Systematic diagram of MLP: Depicting the inter-
connected layers responsible for feature selection and pre-
diction.

2.4 Advancements in ML Architectures
for Weather Forecasting

In “Spatio-temporal forecasting of weather and at-
tention mechanism on convolutional LSTMS”(Tekin
et al., 2021), Convolutional LSTM with Attention
Mechanisms was introduced as a hybrid architec-
ture combining context matchers and attention mech-
anisms with convolutional LSTM. MetNet(Sønderby
et al., 2020), Google Research’s neural weather
model, leverages ConvLSTM and axial attention pro-
cesses for high spatial and temporal resolution in
precipitation forecasting. MetNet outperforms lead-
ing operational weather forecasts based on NWP for
short-term predictions up to eight hours.

AIFS-ECMWF is a data-driven forecasting sys-
tem in which AIFS is a strong model providing profi-
cient forecasts for upper-air variables, surface weather
parameters, and tropical cyclone tracks(Lang et al.,
2024). While effective, AIFS exhibits a slower im-
provement rate compared to the proposed MLP.

2.5 Optimizations and Challenges in
ML Forecasting Models

These ML models demonstrate the potential to over-
come the computational limitations of NWP by of-
fering high-resolution forecasts with reduced compu-
tational overhead. Research has also highlighted the
significance of optimization strategies, including dy-
namic learning rate adjustments, regularization tech-
niques, and early stopping, in enhancing MLP perfor-
mance. With frameworks like TensorFlow and Keras,
these models have become more accessible, enabling
rapid prototyping and exploration of various architec-
tural configurations.

While ML models excel in handling short lead
times, they often face challenges with error prop-
agation as lead times increase. Additionally, cur-

rent models underutilize diverse data sources, such as
satellite imagery and ground-based observations, and
struggle to provide high-resolution forecasts within
reasonable computational constraints, especially for
global models. The proposed method addresses these
challenges by integrating pre-trained models tailored
for specific prediction periods, thereby reducing cu-
mulative errors and improving forecast accuracy for
both short and long lead times. By incorporating di-
verse datasets, including sensor observations, reanal-
ysis datasets, and satellite imagery, the approach cap-
tures complex weather dynamics comprehensively.

Innovative architectural designs strike a balance
between resolution and computational efficiency, en-
abling high-fidelity forecasts with manageable re-
source requirements. This study advances ML-
based weather forecasting systems by providing ro-
bust methodologies for reliable, long-term, high-
resolution predictions, complementing or surpassing
traditional methods in various scenarios.

3 PROPOSED METHODOLOGY

This section details the methodology and techniques
employed in predicting weather forecasting using a
Multilayer Perceptron. A model fundamentally forms
a formula that, given a set of weights and their cor-
responding values attached to every training variable,
produces the target value(Jakaria et al., 2020). These
models are particularly useful in solving problems
where relationships among input features and target
variables exhibit complex non-linear forms. Weather
forecasting used a myriad of methodologies relying
on Genetic Algorithms and Neural Networks; yet, the
approaches used were insufficient enough to capture
the intricate relationships between a myriad of factors
determining weather(Singh et al., 2019). For this re-
search, the implementation of the MLP utilized Ten-
sorFlow and Keras frameworks, which provide effi-
cient design and training tools for neural networks.

These frameworks enable dynamic model archi-
tecture definitions and support systematic hyperpa-
rameter tuning through libraries like Keras Tuner.
This facilitates exploring parameters such as the num-
ber of layers, neurons per layer and the learning rate
to identify the optimal configuration for weather pre-
diction. This process is divided into different stages:
data preprocessing, model design and training, evalu-
ation and metrics. In coordinates, we have date times-
tamps representing the temporal resolution. Pressure
levels in hectopascals (hPa), indicating vertical reso-
lution. Latitudes indicating Geographical north-south
axis (in degrees). Longitudes indicating Geographi-
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cal east-west axis (in degrees). Version information
for data experiments (Expver).

Figure 2: Workflow of the weather prediction model using
MLP.

3.1 Algorithmic Workflow

Algorithm 1 MLP Weather Data Modeling.

1: Load the weather dataset using
xarray.open mfdataset().

2: Extract relevant features: temperature, pressure,
and wind speed.

3: Handle missing values using fillna().
4: Normalize the dataset with StandardScaler().
5: Define the model using

tensorflow.keras.Sequential().
6: Compile the model with the adam optimizer and

mse loss function.
7: Split the data into training and testing sets.
8: Train the model using model.fit() with early

stopping and a cosine annealing scheduler.
9: Evaluate the model using

model.evaluate(test data, test labels).
10: Generate predictions using model.predict().
11: Compute mean absolute error (MAE) to compare

predictions with actual values.

We evaluate the model using metrics such as MSE in
fig 4a, MAE in fig 4b, and R-squared (R2) in fig 4c on
both training and testing datasets.

3.2 Data Preprocessing

Data preprocessing involves several steps to prepare
the dataset for training the Multilayer Perceptron
model. Data Loading where ERA5 NetCDF(Zhong
et al., 2024) files are loaded using the xarray library,
which allows efficient manipulation of multidimen-
sional data, such as pressure levels. A subset of the

data is extracted for computational efficiency, focus-
ing on pressure levels and other key features. Data
Cleaning where missing values in the dataset are han-
dled by either dropping them or imputing with sta-
tistical methods, such as mean imputation, to ensure
data consistency. Scaling where the StandardScaler
is used to normalize input features, improving the nu-
merical stability of to be standardized to have a mean
of 0 and a standard deviation of 1. Data Splitting by
dividing the dataset into training and testing sets us-
ingtrain test split, thus ensuring proper evaluation of
the model’s performance.

3.3 Feature Target Split

To predict atmospheric pressure levels as the target
variable, we performed a feature-target split on the
dataset. In the figure 2. Features used as inputs
(X) are atmospheric variables such as temperature (t),
horizontal and vertical wind components (Y), humid-
ity (r), and cloud cover (c). The target variable (Y),
which represents the vertical atmospheric pressure
level, was explicitly excluded from the feature set to
prevent data leakage. This manual feature selection is
a very direct and efficient technique to ensure that the
model is only trained on the relevant predictor vari-
ables. By separating the target from the predictors,
we maintained the integrity of the predictive model-
ing process.

3.4 Scaling

Here, we manually select the relevant features in the
dataset to train our model. In this instance, the tar-
get variable, pressure level, is kept separate from
the rest of the features, such as feature 1 through fea-
ture 10. The columns remaining are the input to the
model. This is a straightforward form of feature se-
lection, where we explicitly exclude the target vari-
able from the dataset and use the remaining columns
as predictor features.

3.5 Implementation Approach

In MLP if labelled data are available, one may use
it as a training dataset from which to build a func-
tion that maps given inputs to outputs(Bochenek and
Ustrnul, 2022). Input Layer represents features in
the dataset, with each neuron representing one fea-
ture. Hidden Layer extracts patterns using fully con-
nected neurons and non-linear activation functions
like ReLU, enabling the model to learn complex rela-
tionships. Output layer produces the final predictions.
In regression, it has one neuron with a linear activa-
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tion for continuous outputs.
In the model training, the cosine annealing learn-

ing rate scheduler dynamically adjusts the learning
rate during training referring to the figure 2. It fol-
lows a cosine-shaped curve, starting from a maximum
learning rate, gradually decreasing, and then rising
slightly before restarting in the next cycle.

lr = lrinitial ×0.5×
(

1+ cos
(

π · epoch%Tmax

Tmax

))
(1)

The cosine annealing technique modifies in the
equation 1, the learning rate according to the train-
ing progress within a predetermined cycle Tmax. Low
learning rates (for fine-tuning and convergence) and
high learning rates (for quick exploration of parame-
ter space) are seamlessly transitioned by it.

3.5.1 Metrics Calculation

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

The accuracy of the weather forecasting model is
assessed using the MSE 2. It restricts more severely
larger discrepancies between the predicted ŷi and ac-
tual yivalues since it squares the mistake. Extreme er-
rors, such as those in temperature or wind speed pre-
dictions, can be crucial in weather forecasting, there-
fore this is especially crucial. Here in the equation 2
n represents the sum of all observations, also known
as data points. This is a reference to the quantity of
weather forecasts under consideration. yi represents
the actual value that was observed in the ith instance.
ŷi represents the expected value for the instance of
ith. For the same variable as yi, this is the value that
the weather forecasting model predicts. A low MSE
shows that the model can minimize significant dis-
crepancies in predicted values, meaning that the pre-
dictions are close to the observed meteorological data.

MAE =
1
n

n

∑
i=1

|yi − ŷi| (3)

Another measure is MAE 3, which concentrates
on absolute differences rather than squaring them. It
is appropriate for assessing the average magnitude of
prediction mistakes since it is less susceptible to out-
liers than MSE. In the field of weather forecasting,
MAE offers a more comprehensible indicator of the
average deviation between projections and actual ob-
servations. This measure makes sure that the forecast-
ing system operates consistently in all situations and
isn’t unduly impacted by excessive errors. n denotes
the total number of observations, much like in MSE 2.

yi for the ith instance, is the actual observed value. ŷi
is the anticipated value for the occurrence of ith

r2 = 1− ss residual
ss total

(4)

The model’s goodness-of-fit is assessed using R2

as 4. It calculates the ratio of the observed data’s vari-
ance (yi) to that of the model’s predictions (ŷi). A
high-quality model is suggested by R2 value nearer
1, which shows that the model accounts for the ma-
jority of the variability in the meteorological data.
Lower values, on the other hand, would suggest that
the model has trouble identifying patterns in the data.

SSresidual =
n

∑
i=1

(yi − ŷi)
2 (5)

Equation 5 gives the residual sum of squares. This
is the overall squared error for all data points between
the observed and anticipated values. It is the equa-
tion’s numerator and shows how much variance the
model is unable to account for.

SStotal =
n

∑
i=1

(yi − ȳ)2 (6)

Equation 6 gives the total sum of squares. By cal-
culating the squared differences between the observed
values and their mean ȳ, this sums up the variance in
the observed data yi.

3.6 Challenges and Solutions

In the absence of techniques such as hyperparameter
tuning, Adam W optimizer and cosine annealing
scheduler optimization, we were obtaining test and
train accuracies that were identical, with not even
a decimal point difference. We discovered a differ-
ence between them after utilizing hyperparameter
adjustment, the Adam W optimizer, the cosine
annealing scheduler, and deepening the MLP with
train accuracy present in the table ?? MSE 56.3173,
MAE 5.4549 and R² 0.9991 and the test accuracy
as MSE 91.9154, MAE 7.0193 and R² 0.9985. The
dataset contained inconsistent rows, which could
cause errors in the analysis. Furthermore, there was a
large search space for hyperparameter optimization,
which made it challenging to quickly find the ideal
combination. The last problem was overfitting, which
occurred when the model appeared to memorize the
training data instead of effectively generalizing to
new data.

In order to resolve the problem of inconsistent
rows, we either eliminated rows with missing data or,
when practical, filled in the missing values, keeping
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the dataset accurate and clean. We employed keras-
tuner to address the intricate issue of hyperparameter
tuning, which aided in automating and streamlining
the search procedure, increasing its effectiveness and
focus. We used early stopping to prevent overfitting,
which uses validation splitting to track performance
on unseen data during training and stops training
when the model’s performance begins to deteriorate
on the validation set. These tactics made sure the
model stayed strong and had good generalization
capabilities.

4 RESULTS AND ANALYSIS

This dataset serves as a crucial resource for under-
standing key concept of the weather forecasting. It
is available in the NetCDF format, retrieved from the
hourly ERA5 pressure level data provided by the Eu-
ropean Centre for Medium-Range Weather Forecasts
(ECMWF). It spans 36 months, from January 2021 to
September 2024, sampled monthly, and includes two
pressure levels (1000 hPa and 500 hPa). It covers a
latitude range from 90.0° to -90.0° and a longitude
range from 0.0° to 359.75°, both in 0.25° intervals.
Coordinates include timestamps representing tempo-
ral resolution, pressure levels indicating vertical res-
olution, and geographical north-south (latitude) and
east-west (longitude) axes, with version information
for data experiments (expver).

The Dataset has 36 timestamps (date), 2 pressure
levels, 721 latitude points, and 1440 longitude points.
It has 16 atmospheric variables including tempera-
ture, in general, can be measured to a higher degree
of accuracy relative to any of the other weather vari-
ables(Tektaş, 2010), wind components, relative hu-
midity, ozone concentration, and different cloud prop-
erties. The variables are stored in multidimensional
arrays indexed by time, pressure level, latitude, and
longitude in the float32 format. The NetCDF format
ensures storage and access efficiency for the multi-
dimensional data, permitting slicing and aggregation
operations. Metadata follows CF-1.7 conventions and
outlines information about the source, institution, and
experiment version of the data. Thus, this dataset is
adequate for weather forecasting and modeling atmo-
spheric conditions. Here with an R2 value of 0.9991,
the MLP conquers numerous confinements of the sin-
gle layer perceptron (Shamshad et al., 2019) MLP
demonstrated great accuracy during training, explain-
ing almost all of the variance in the target variable.
Strong generalization abilities are demonstrated on
the test set by the R2 of 0.9985, despite somewhat

higher MSE and MAE, which indicate slight overfit-
ting. The outcomes confirm that optimization meth-
ods such as cosine annealing and AdamW are able to
improve learning and avoid overfitting. The Adam
is a stochastic method of optimization, which uses
an idea of gradient descent combined with the con-
cept of momentum toward minimizing the loss func-
tion and also find the minimum value of its function.
A comparative analysis of the proposed MLP model
against state-of-the-art approaches (AIFS ,FuXi ,Met-
Net , and ConvLSTM) reveals the following:

Figure 3: Line graph showing the model performance in
epochs.

The line graph in fig 3 shows the models’ per-
formance over 50 epochs in terms of MSE fig 4a.
Proposed MLP shows consistent progress, achieving
competitive MSE values at training’s conclusion. Af-
ter referring to the table 1 we can see that AIFS
maintains a strong overall performance but exhibits a
somewhat slower rate of improvement as compared to
the proposed MLP. FuXi consistently performs well
throughout, achieving the best MSE values. MetNet
a little better than AIFS and FuXi, but with a some-
what higher MSE. ConvLSTM has the greatest MSE
at the conclusion of each epoch and the slowest MSE
reduction. Although AIFS requires a lot of process-
ing power for training, its use of sophisticated GNNs
and attention mechanisms makes it highly flexible and
scalable to big datasets.

The models’ development during training is seen
in this visualization. The AIFS model outperforms
the suggested MLP by a small margin on these met-
rics, with an MSE of 88.0 and an MAE of 6.85. Ad-
vanced GNN and transformer-based designs are two
advantages of AIFS that help explain its excellent ac-
curacy with the best MSE (70.32) and MAE (6.12),
the FuXi model performs better when it comes to gen-
eralizing over long-term weather forecasts. Both the
Proposed MLP and the MetNet model have compet-
itive MSE and R2 values. Nonetheless, the empha-
sis placed by MetNet on high-resolution precipitation
forecasts might marginally diminish its overall gen-
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(a) Figure 4.a (b) Figure 4.b (c) Figure 4.c
Figure 4: Visualization showing the performance of different models during training.

erality. The Proposed MLP (R2 = 0.9985) comes in
second to the AIFS model, which has the greatest R2

(0.9986). This indicates that nearly all of the volatility
in the data can be explained by both models. MetNet
performs admirably as well (R2 = 0.9983), lagging the
proposed MLP by a small margin.

Table 1: Performance metrics for training and testing
datasets.

Model MSE MAE R2

AIFS (Lang et al., 2024) 88.0 6.85 0.9986

FuXi (Chen et al., 2023) 70.32 6.12 0.9978

MetNet (Sønderby et al., 2020) 90.67 7.03 0.9983

ConvLSTM (Tekin et al., 2023) 95.21 7.50 0.9975

Proposed MLP 91.92 7.02 0.9985

Although AIFS needs enormous computational power
for training it is highly flexible and scalable with big
datasets due to the use of complex GNNs and atten-
tion mechanisms. The previous study further pro-
poses to represent weather by the use of hierarchi-
cal features which are learned from large amounts of
weather data through DNN.(Salman et al., 2015). Ad-
vantage, which is suitable for medium-range forecast-
ing applications.

ANN has advantages over other weather forecast-
ing techniques in that the ANN minimizes the error
with a variety of algorithms and gives us a predicted
value which is nearly equal to the actual value. (Ab-
hishek et al., 2012). The Proposed MLP is more
approachable due to its more straightforward archi-
tecture, which strikes a balance between competitive
accuracy and computing economy. In the Bar chart
3AIFS dominates the analysis by striking a compro-
mise between scalability for big datasets and excel-
lent accuracy (lowest MSE and highest R²). Its pro-
cessing needs, however, are much greater. For long-
term forecasting, the optimal option for 15-day fore-

casts is FuXi, which has the lowest MSE and MAE.
Sometimes a very low MSE can be mistaken as good
accuracy when in fact it points to a serious prob-
lem called ‘overfitting’(Abhishek et al., 2012). In the
figure 4, the results indicate that MLPs are suitable
for deployment in real-world systems and validate
their feasibility for precise weather prediction tasks
with lower scores indicating more successful predic-
tions.(Sha et al., 2024)

5 CONCLUSIONS

By creating an accurate and effective MLP based
model for predicting atmospheric pressure levels, this
work addressed the shortcomings of conventional
forecasting techniques. It achieved high R2 values
of 0.9991 (training) and 0.9985 (testing). A weather
forecast is crucial for the outcome and understanding
all the processes that lead to the outcome and chang-
ing environment.(Inness and Dorling, 2012) Accu-
racy, strong generalization, and less overfitting were
guaranteed by methods like cosine annealing, hy-
perparameter optimization, and the AdamW opti-
mizer.(Llugsi et al., 2021) In medium-range weather
forecasting, the model performed better than tradi-
tional methods, providing increased efficiency and
accuracy. Forecasts can be used to plan activities
around these events and to plan ahead and survive
them(Narvekar and Fargose, 2015). Future research
might concentrate on improving hyperparameters,
adding factors like precipitation, integrating hybrid
models for long-term projections, growing datasets,
and creating useful tools for uses like disaster relief.
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